Real-Time Observation of Fibrous Zeolites Reactivity in Contact with Simulated Lung Fluids (SLFs) Obtained by Atomic Force Microscope (AFM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Simulated Lung Fluids (SLFs)
2.3. Single Crystal X-ray Diffraction
2.4. SEM-EDX
2.5. AFM
2.6. Thermodynamic Stability Model
3. Results
3.1. Samples Characterization
3.1.1. Morphology and Morphometry
3.1.2. Crystal Chemistry
3.1.3. Surface Morphology and Topography of the Natural Samples
Offretite (FF)
Erionite (MB2404)
3.2. Interaction with SLFs
3.2.1. Changes in Chemical Compositions
3.2.2. SLFs Interaction with Offretite (FF)
3.2.3. SLFs Interaction with Erionite (MB2404)
4. Discussion
4.1. Surface Dissolution
4.2. Consideration on Health Effects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sheppard, R.A.; Gude, A.J. Zeolites and Associated Authigenic Silicate Minerals in Tuffaceous Rocks of the Big Sandy Formation; US Govt. Print. Off: Mohave County, AZ, USA, 1973.
- Tschernich, R.W. Zeolites of the World; Geoscience Press Inc.: Phoenix, AZ, USA, 1992. [Google Scholar]
- Bargar, K.E.; Keith, T.E. Calcium zeolites in rhyolitic drill cores from Yellowstone National Park, Wyoming. Nat. Zeolites 1995, 93, 69–86. [Google Scholar]
- Gottardi, G.; Galli, E. Natural Zeolites; Springer: Heidelberg, Germany, 1985. [Google Scholar]
- Armbruster, T.; Gunter, M.E. Crystal structures of natural zeolites. In Natural Zeolites: Occuerrence, Properties, Applications; Bish, D.L., Ming, D.W., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Washington, DC, USA, 2001; Volume 45, pp. 1–67. [Google Scholar]
- Dogan, A.U.; Dogan, M.; Hoskins, J.A. Erionite series minerals: Mineralogical and carcinogenic properties. Environ. Geochem. Health 2008, 30, 367–381. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of the Carcinogenic Risk to Humans; Overall Eval. Carcinog. Updating IARC Monographs Vol. 1 to 42; IARC: Lyon, France, 1987. [Google Scholar]
- Carbone, M.; Baris, Y.I.; Bertino, P.; Brass, B.; Comertpay, S.; Dogan, A.U.; Gaudino, G.; Jube, S.; Kanodia, S.; Petridge, C.R.; et al. Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proc. Natl. Acad. Sci. USA 2011, 108, 13623–13628. [Google Scholar] [CrossRef] [PubMed]
- Saini-Eidukat, B.; Triplet, J.W. Erionite and offretite from the Killdeer Mountains, Dunn County, North Dakota, USA. Am. Mineral. 2014, 99, 8–15. [Google Scholar] [CrossRef]
- Ortega-Guerrero, M.A.; Carrasco-Núñez, G. Environmental occurrence, origin, physical and geochemical properties, and carcinogenic potential of erionite near San Miguel de Allende, Mexico. Environ. Geochem. Health 2014, 36, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Ilgren, E.B.; Kazemian, H.; Hoskins, J.A. Kandovan the next ‘Capadoccia’? A potential public health issue for erionite related mesothelioma risk. Epidemiol. Biostat. Public Health 2015, 12, 1–12. [Google Scholar] [CrossRef]
- Giordani, M.; Mattioli, M.; Ballirano, P.; Pacella, P.; Cenni, M.; Boscardin, M.; Valentini, L. Geological occurrence, mineralogical characterization and risk assessment of potentially carcinogenic erionite in Italy. J. Toxicol. Environ. Health B 2017, 20, 81–103. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, A.; Artioli, G.; Passaglia, E.; Bigi, S.; Viani, A.; Hanson, J.C. Crystal structure-crystal chemistry relationships in the zeolites erionite and offretite. Am. Mineral. 1998, 83, 590–606. [Google Scholar] [CrossRef]
- Passaglia, E.; Tagliavini, A. Chabazite-offretite epitaxial overgrowths in cornubianite from Passo Forcel Rosso, Adamello, Italy. Eur. J. Mineral. 1994, 6, 379–405. [Google Scholar] [CrossRef]
- Mattioli, M.; Giordani, M.; Arcangeli, P.; Valentini, L.; Boscardin, M.; Pacella, A.; Ballirano, P. Prismatic to Asbestiform Offretite from Northern Italy: Occurrence, Morphology and Crystal-Chemistry of a New Potentially Hazardous Zeolite. Minerals 2018, 8, 69. [Google Scholar] [CrossRef]
- Ballirano, P.; Pacella, A.; Cremisini, C.; Nardi, E.; Fantauzzi, M.; Atzei, D.; Rossi, A.; Cametti, G. Fe (II) segregation at a specific crystallographic site of fibrous erionite: A first step toward the understanding of the mechanisms inducing its carcinogenicity. Microporous Mesoporous Mater. 2015, 211, 49–63. [Google Scholar] [CrossRef]
- Ortega-Guerrero, M.A.; Carrasco-Núñez, G.; Barragán-Campos, H.; Ortega, M.R. High incidence of lung cancer and malignant mesothelioma linked to erionite fibre exposure in a rural community in Central Mexico. Occup. Environ. Med. 2015, 72, 216–218. [Google Scholar] [CrossRef] [PubMed]
- Pollastri, S.; D’Acapito, F.; Trapananti, A.; Colantoni, I.; Andreozzi, G.B.; Gualtieri, A.F. The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study. J. Hazard. Mater. 2015, 298, 282–293. [Google Scholar] [CrossRef]
- Ballirano, P.; Pacella, A. Erionite-Na upon heating: Dehydration dynamics and exchangeable cations mobility. Sci. Rep. 2016, 6, 22786. [Google Scholar] [CrossRef] [PubMed]
- Bloise, A.; Barca, D.; Gualtieri, A.F.; Pollastri, S.; Belluso, E. Trace elements in hazardous mineral fibres. Environ. Pollut. 2016, 216, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Bursi Gandolfi, N.; Gualtieri, A.F.; Pollastri, S.; Tibaldi, E.; Belpoggi, F. Assessment of asbestos body formation by high resolution FEG-SEM after exposure of Sprague Dawley rats to chrysotile, crocidolite, or erionite. J. Hazard. Mater. 2016, 306, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Giordani, M.; Mattioli, M.; Dogan, M.; Dogan, A.U. Potential carcinogenic erionite from Lessini Mounts, NE Italy: Morphological, mineralogical and chemical characterization. J. Toxicol. Environ. Health A 2016, 79, 808–824. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Gandolfi, N.B.; Pollastri, S.; Pollok, K.; Langenhorst, F. Where is iron in erionite? A multidisciplinary study on fibrous erionite-Na from Jersey (Nevada, USA). Sci. Rep. 2016, 6, 37981. [Google Scholar] [CrossRef] [PubMed]
- Pacella, A.; Fantauzzi, M.; Atzei, D.; Cremisini, C.; Nardi, E.; Montereali, M.R.; Rossi, A.; Ballirano, P. Iron within the erionite cavity and its potential role in inducing its toxicity: Evidences of Fe (III) segregation as extra-framework cation. Microporous Mesoporous Mater. 2017, 237, 168–179. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Pollastri, S.; Gandolfi, N.B.; Gualtieri, M.L. In vitro acellular dissolution of mineral fibres: A comparative study. Sci. Rep. 2018, 8, 7071. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, M.; Giordani, M.; Dogan, M.; Cangiotti, M.; Avella, G.; Giorgi, R.; Dogan, A.U.; Ottaviani, M.F. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers. J. Hazard. Mater. 2016, 306, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Cangiotti, M.; Battistelli, M.; Salucci, S.; Falcieri, E.; Mattioli, M.; Giordani, M.; Ottaviani, M.F. Electron paramagnetic resonance and transmission electron microscopy study of the interactions between asbestiform zeolite fibers and model membranes. J. Toxicol. Environ. Health A 2017, 80, 171–187. [Google Scholar] [CrossRef] [PubMed]
- Pollastri, S.; Gualtieri, A.F.; Vigliaturo, R.; Ignatyev, K.; Strafella, E.; Pugnaloni, A.; Croce, A. Stability of mineral fibres in contact with human cell cultures. An in situ μXANES, μXRD and XRF iron mapping study. Chemosphere 2016, 164, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Cangiotti, M.; Salucci, S.; Battistelli, M.; Falcieri, E.; Mattioli, M.; Giordani, M.; Ottaviani, M.F. EPR, TEM and cell viability study of asbestiform zeolite fibers in cell media. Colloids Surf. B Biointerfaces 2018, 161, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, A.F.; Gandolfi, N.B.; Pollastri, S.; Burghammer, M.; Tibaldi, E.; Belpoggi, F.; Dražić, G. New insights into the toxicity of mineral fibres: A combined in situ synchrotron μ-XRD and HR-TEM study of chrysotile, crocidolite, and erionite fibres found in the tissues of Sprague-Dawley rats. Toxicol. Lett. 2017, 274, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Sebring, R.J.; Lehnert, B.E. Morphometric comparisons of rat alveolar macrophages, pulmonary interstitial macrophages, and blood monocytes. Exp. Lung Res. 1992, 18, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Carlos, T.M.; Harlan, J.M. Leukocyte-endothelial adhesion molecules. Blood 1994, 84, 2068–2101. [Google Scholar] [PubMed]
- Carbone, M.; Yang, H. Molecular pathways: Targeting mechanisms of asbestos and erionite carcinogenesis in mesothelioma. Clin. Cancer Res. 2012, 18, 598–604. [Google Scholar] [CrossRef]
- Stopford, W.; Turner, J.; Cappellini, D.; Brock, T. Bioaccessibility testing of cobalt compounds. J. Environ. Monit. 2003, 5, 675–680. [Google Scholar] [CrossRef]
- Ballirano, P.; Cametti, G. Crystal chemical and structural modifications of erionite fibers leached with simulated lung fluids. Am. Mineral. 2015, 100, 1003–1012. [Google Scholar] [CrossRef]
- Matassa, R.; Familiari, G.; Relucenti, M.; Battaglione, E.; Downing, C.; Pacella, A.; Cametti, G.; Ballirano, P. A Deep Look Into Erionite Fibres: An Electron Microscopy Investigation of their Self-Assembly. Sci. Rep. 2015, 5, 16757. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, G.D.J.; Mossman, B.T. Health Effects of Mineral Dusts; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America; Bookcrafters: Chelsea, MI, USA, 1993; Volume 28. [Google Scholar]
- Fubini, B.; Bolis, V.; Cavenago, A.; Volante, M. Physico-chemical properties of crystalline silica dusts and their possible implication in various biological responses. Scand. J. Work Environ. Health 1995, 21, 9–14. [Google Scholar] [PubMed]
- Komiyama, M.; Gu, M.; Wu, H.M. Determination of extraframework cation positions and their occupancies on heulandite (010) by atomic force microscopy. J. Phys. Chem. B 2001, 105, 4680–4683. [Google Scholar] [CrossRef]
- Ono, S.S.; Matsuoka, O.; Yamamoto, S. Surface structures of zeolites studied by atomic force microscopy. Microporous Mesoporous Mater. 2001, 48, 103. [Google Scholar] [CrossRef]
- Mattioli, M.; Cenni, M.; Passaglia, E. Secondary mineral assemblages as indicators of multi stage alteration processes in basaltic lava flows: Evidence from the Lessini Mountains, Veneto Volcanic Province, Northern Italy. Per. Mineral. 2016, 85, 1–24. [Google Scholar] [CrossRef]
- Embrey, P.G. Fourth supplementary list of British minerals. Mineral. Mag. 1978, 42, 169–177. [Google Scholar] [CrossRef]
- Nelson, A.R.; Liverman, C.T.; Eide, E.A.; Abt, E. A Review of the NIOSH Roadmap for Research on Asbestos Fibers and other Elongate Mineral Particles; The National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Midander, K.; Wallinder, I.O.; Leygraf, C. In vitro studies of copper release from powder particles in synthetic biological media. Environ. Pollut. 2007, 145, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A Fund. Adv. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Pacella, A.; Ballirano, P.; Cametti, G. Quantitative chemical analysis of erionite fibres using a micro-analytical SEM-EDX method. Eur. J. Mineral. 2016, 28, 257–264. [Google Scholar] [CrossRef]
- Passaglia, E. The crystal chemistry of chabazites. Am. Mineral. 1970, 55, 1278–1301. [Google Scholar]
- Cametti, G.; Pacella, A.; Mura, F.; Rossi, M.; Ballirano, P. New morphological, chemical, and structural data of woolly erionite-Na from Durkee, Oregon, USA. Am. Mineral. 2013, 98, 2155–2163. [Google Scholar] [CrossRef]
- Dogan, A.U.; Dogan, M. Re-evaluation and re-classification of erionite series minerals. Environ. Geochem. Health 2008, 30, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Pacella, A.; Fantauzzi, M.; Turci, F.; Cremisini, C.; Montereali, M.R.; Nardi, E.; Atzei, D.; Rossi, A.; Andreozzi, G.B. Dissolution reaction and surface iron speciation of UICC crocidolite in buffered solution at pH 7.4: A combined ICP-OES, XPS and TEM investigation. Geochim. Cosmochim. Acta 2014, 127, 221–232. [Google Scholar] [CrossRef]
- Maurice, P.A.; Hochella, M.F.; Parks, G.A.; Sposito, G.; Schwertmann, U. Evolution of hematite surface microtopography upon dissolution by simple organic acids. Clays Clay Miner. 1995, 43, 60–81. [Google Scholar] [CrossRef]
- Dove, P.M.; Platt, F.M. Compatible real-time reaction rates for in situ imaging of mineral–water interactions using scanning force microscopy. Chem. Geol. 1996, 127, 331–338. [Google Scholar] [CrossRef]
- Eggleston, C.M. High-resolution scanning probe microscopy: Tip-surface interaction, artifacts, and applications in mineralogy and geochemistry. In Scanning Probe Microscopy of Clay Minerals, CMS Workshop Lectures; The Clay Minerals Society: Boulder, CO, USA, 1978; Volume 7, pp. 3–90. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey, Techniques and Methods: Denver, CO, USA, 2013; Volume 6, p. 43.
- Chipera, S.J.; Apps, J.A. Geochemical stability of natural zeolites. In Natural Zeolites: Occuerrence, Properties, Applications; Bish, D.L., Ming, D.W., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Washington, DC, USA, 2001; Volume 45, pp. 117–161. [Google Scholar]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; Wiley-Interscience Publication: New York, NY, USA, 1995. [Google Scholar]
- Oelkers, E.H.; Helgeson, H.C.; Shock, E.L.; Sverjensky, D.; Johnson, J.W.; Pokrovskii, V.A. Summary of the Apparent Standard Partial Molal Gibbs Free Energies of Formation of Aqueous Species, Minerals, and Gases at Pressures 1 to 5000 Bars and Temperatures 25 to 1000 °C. J. Phys. Chem. Ref. Data 1995, 24, 1401–1560. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Asbestos and other Natural Mineral Fibers; Environmental Health Criteria: Geneva, Switzerland, 1986; Volume 53, pp. 69–107. [Google Scholar]
- Alberti, A.; Cruciani, G.; Galli, E.; Vezzalini, G. A re-examination of the crystal structure of the zeolite offretite. Zeolites 1996, 17, 457–461. [Google Scholar] [CrossRef]
- Alberti, A.; Martucci, A.; Galli, E.; Vezzalini, G. A re-examination of the crystal structure of erionite. Zeolites 1997, 19, 349–352. [Google Scholar] [CrossRef]
- Schlenker, J.L.; Pluth, J.J.; Smith, J.V. Dehydrated natural erionite with stacking faults of the offretite type. Acta Crystallogr. B 1977, B33, 3265–3268. [Google Scholar] [CrossRef]
- Fischer, C.; Kurganskaya, I.; Schäfer, T.; Lüttge, A. Variability of crystal surface reactivity: What do we know? Appl. Geochem. 2014, 43, 132–157. [Google Scholar] [CrossRef]
- Yamamoto, S.; Sugiyama, S.; Matsuoka, O.; Kohmura, K.; Honda, T.; Banno, Y.; Nozoye, H. Dissolution of zeolite in acidic and alkaline aqueous solutions as revealed by AFM imaging. J. Phys. Chem. 1996, 100, 18474–18482. [Google Scholar] [CrossRef]
- Eaton, P.; West, P. Atomic Force Microscopy; Oxford University Press: New York, NY, USA, 2010; ISBN 978-0-19-957045-4. [Google Scholar]
- Ragnarsdóttir, K.V. Dissolution kinetics of heulandite at pH 2–12 and 25 °C. Geochim. Cosmochim. Acta 1993, 57, 2439–2449. [Google Scholar] [CrossRef]
- Brady, P.V.; Walther, J.V. Controls on silicate dissolution rates in neutral and basic pH solutions at 25 °C. Geochim. Cosmochim. Acta 1989, 53, 2823–2830. [Google Scholar] [CrossRef]
- Hartman, R.L.; Fogler, H.S. Understanding the dissolution of zeolites. Langmuir 2007, 23, 5477–5484. [Google Scholar] [CrossRef]
- Delannay, F.; Cçekiewicz, S. Dark field TEM and XPS of proton exchanged erionite-offretite (T) zeolites. Zeolites 1985, 5, 69–71. [Google Scholar] [CrossRef]
- Ohsuna, T.; Terasaki, O.; Watanabe, D.; Anderson, M.W.; Carr, S.W. Dealumination of hexagonal (EMT)/cubic (FAU) zeolite intergrowth materials: A SEM and HRTEM study. Chem. Mater. 1994, 6, 2201–2204. [Google Scholar] [CrossRef]
- Ballirano, P.; Andreozzi, G.B.; Dogan, M.; Dogan, A.U. Crystal structure and iron topochemistry of erionite-K from Rome, Oregon, U.S.A. Am. Mineral. 2009, 94, 1262–1270. [Google Scholar] [CrossRef]
- Croce, A.; Allegrina, M.; Rinaudo, C.; Gaudino, G.; Yang, H.; Carbone, M. Numerous iron-rich particles lie on the surface of erionite fibers from Rome (Oregon, USA) and Karlik (Cappadocia, Turkey). Microsc. Microanal. 2015, 21, 1341–1347. [Google Scholar] [CrossRef]
- Wise, W.S.; Tschernich, R.W. The chemical compositions and origin of the zeolites offretite, erionite and levyne. Am. Mineral. 1976, 61, 853–863. [Google Scholar]
- Bonneau, L.; Malard, M.; Pezerat, H. Studies on surface properties of asbestos II. Role of dimensional characteristics and surface properties of mineral fibers in the induction of pleural tumors. Environ. Res. 1986, 41, 268–275. [Google Scholar] [CrossRef]
- Eborn, S.K.; Aust, A.E. Effect of iron acquisition on induction of DNA single-strand breaks by erionite, a carcinogenic mineral fiber. Arch. Biochem. Biophys. 1995, 316, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Fach, E.; Kristovich, R.; Long, J.; Waldman, W.J.; Dutta, P.K.; Williams, M. The effect of iron on the biological activities of erionite and mordenite. Environ. Int. 2003, 29, 451–458. [Google Scholar] [CrossRef]
- Pacella, A.; Cremisini, C.; Nardi, E.; Montereali, M.R.; Pettiti, I.; Giordani, M.; Mattioli, M.; Ballirano, P. Different erionite species bind iron into the structure: A potential explanation for fibrous erionite toxicity. Minerals 2018, 8, 36. [Google Scholar] [CrossRef]
- Gazzano, E.; Turci, F.; Foresti, E.; Putzu, M.G.; Aldieri, E.; Silvagno, F.; Lesci, I.G.; Tomatis, M.; Riganti, C.; Romano, C.; et al. Iron-loaded synthetic chrysotile: A new model solid for studying the role of iron in asbestos toxicity. Chem. Res. Toxicol. 2007, 20, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Aust, A.E.; Cook, P.M.; Dodson, R.D. Morphological and chemical mechanisms of elongated mineral particle toxicities. J. Toxicol. Environ. Health B 2011, 14, 40–75. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, A.F.; Mossman, B.T.; Roggli, V.L. Towards a general model to predict the toxicity and pathogenicity of mineral fibres. Chapter 15. In Mineral Fibres: Crystal Chemistry, Chemical-Physical Properties, Biological Interaction and Toxicity; Gualtieri, A.F., Ed.; European Mineralogical Union: Jena, Germany; Mineralogical Society of Great Britain & Ireland: London, UK, 2017; Volume 18, pp. 501–532. [Google Scholar]
- Fubini, B.; Arean, C.O. Chemical aspects of the toxicity of inhaled mineral dusts. Chem. Soc. Rev. 1999, 28, 373–381. [Google Scholar] [CrossRef]
- Schofield, R.E.; Hausrath, E.M.; Gainey, S.R. Zeolite weathering in laboratory and natural settings, and implications for Mars. In Proceedings of the 46th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2015. [Google Scholar]
- Gainey, S.R.; Hausrath, E.M.; Hurowitz, J.A.; Milliken, R.E. Nontronite dissolution rates and implications for Mars. Geochim. Cosmochim. Acta 2014, 126, 192–211. [Google Scholar] [CrossRef]
SLFs | Preparation Day | Weeks Later | 37 °C | Corrected by HCl |
---|---|---|---|---|
1°ALF | 4.15 | |||
1°Gamble’s | 7.91 | 8.17 | ||
2°ALF | 4.31 | 4.34 | ||
2°Gamble | 8.12 | 8.51 | 8.48 | 7.4 |
Crystal Data | MB2404 | FF |
---|---|---|
Crystal size (mm) | 0.17 × 0.08 × 0.08 | 0.17 × 0.06 × 0.09 |
a-axis (Å) | 13.2949(5) | 13.2890(4) |
c-axis (Å) | 15.0768(11) | 7.5788(2) |
Cell volume (Å3) | 2307.9(2) | 1159.09(8) |
Z | 2 | 1 |
Space group | P63/mmc | P-6m2 |
Refined chemical formula | Ca3.73K2(Si,Al)36O72∙31H2O | Ca1.96K0.98Mg0.87(Si,Al)18O36∙13.67H2O |
Data Collection | ||
Diffractometer | Bruker APEX II SMART | Bruker APEX II SMART |
X-ray radiation | MoKα λ = 0.71073 Å | MoKα λ = 0.71073 Å |
X-ray power | 50 kV, 30 mA | 50 kV, 30 mA |
Monochromator | Graphite | Graphite |
Temperature (°C) | 25 | 25 |
Time per frame (s) | 10 | 10 |
Max. 2θ | 51.70 | 65.39 |
Index ranges | −15 < h < 16 | −20 < h < 20 |
−16 < k < 16 | −17 < k < 19 | |
−18 < l < 11 | −11 < l < 11 | |
No. of measured reflections | 13,200 | 19,142 |
No. of unique reflections | 879 | 1669 |
No. of observed reflections I > 2σ (I) | 610 | 1466 |
Structure Refinement | ||
No. of parameters used in the refinement | 75 | 88 |
R(int) | 0.0640 | 0.0415 |
R(σ) | 0.0329 | 0.0218 |
GooF | 1.044 | 1.094 |
R1, I>2σ (I) | 0.0602 | 0.0440 |
R1, all data | 0.0915 | 0.0508 |
wR2 (on F2) | 0.1947 | 0.1248 |
Δρmin (−eÅ−3) close to | 0.80 W4 | 1.11 W3 |
Δρmax (−eÅ−3) close to | −0.72 W1 | −0.60 Mg |
FF | Natural N = 7 | In ALF 2 Days N = 7 | In Gamble’s 2 Days N = 10 | ||||||
Average | Min | Max | Average | Min | Max | Average | Min | Max | |
SiO2 | 56.76 | 54.89 | 58.23 | 53.70 | 51.27 | 58.65 | 52.46 | 50.40 | 63.30 |
Al2O3 | 16.03 | 14.89 | 17.54 | 18.19 | 14.30 | 20.56 | 20.19 | 19.43 | 22.99 |
MgO | 2.19 | 1.46 | 3.14 | 2.58 | 1.71 | 2.94 | 2.68 | 1.88 | 3.21 |
CaO | 3.98 | 3.50 | 4.68 | 3.21 | 2.57 | 3.93 | 3.41 | 2.70 | 4.93 |
Na2O | 0.00 | 0.00 | 0.00 | 1.56 | 0.61 | 2.60 | 1.53 | 0.00 | 3.00 |
K2O | 3.05 | 2.66 | 4.03 | 2.88 | 2.69 | 3.09 | 3.53 | 2.85 | 4.90 |
H2O | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 |
Total | 82.00 | 81.99 | 82.01 | 82.00 | 81.99 | 82.01 | 82.00 | 81.99 | 82.01 |
Si | 27.01 | 26.15 | 27.59 | 25.74 | 24.54 | 27.85 | 24.84 | 24.57 | 25.15 |
Al | 8.99 | 8.32 | 9.85 | 10.28 | 8.00 | 11.60 | 11.28 | 10.76 | 11.56 |
ƩT | 35.99 | 35.84 | 36.19 | 36.02 | 35.74 | 36.18 | 36.12 | 35.91 | 36.26 |
Mg | 1.55 | 1.05 | 2.23 | 1.85 | 1.21 | 2.11 | 1.90 | 1.37 | 2.31 |
Ca | 2.03 | 1.77 | 2.41 | 1.65 | 1.32 | 2.03 | 1.74 | 1.40 | 2.58 |
Na | 0.00 | 0.00 | 0.00 | 1.45 | 0.57 | 2.44 | 1.38 | 0.00 | 2.61 |
K | 1.85 | 1.60 | 2.47 | 1.76 | 1.64 | 1.90 | 2.14 | 1.76 | 3.05 |
H2O | 28.57 | 28.38 | 28.85 | 28.78 | 28.51 | 29.04 | 29.06 | 28.88 | 29.36 |
R | 0.75 | 0.73 | 0.77 | 0.71 | 0.68 | 0.78 | 0.69 | 0.68 | 0.70 |
E% | −0.08 | −6.73 | 8.78 | 0.64 | −9.57 | 6.66 | 4.71 | −3.21 | 9.97 |
Mg/(Ca + Na) | 0.78 | 0.43 | 1.21 | 0.61 | 0.44 | 0.81 | 0.62 | 0.46 | 0.80 |
MB2404 | Natural N = 7 | In ALF 2 Days N = 9 | In Gamble’s 2 Days N = 12 | ||||||
Average | Min | Max | Average | Min | Max | Average | Min | Max | |
SiO2 | 52.22 | 50.45 | 52.69 | 51.11 | 49.92 | 52.34 | 50.08 | 48.13 | 51.52 |
Al2O3 | 18.93 | 18.15 | 19.88 | 18.38 | 17.70 | 19.43 | 19.19 | 17.99 | 20.11 |
MgO | 0.93 | 0.00 | 1.30 | 0.08 | 0.00 | 0.71 | 0.38 | 0.00 | 0.93 |
CaO | 6.72 | 5.80 | 8.70 | 0.00 | 0.00 | 0.00 | 0.84 | 0.00 | 2.10 |
Na2O | 0.32 | 0.00 | 0.98 | 9.61 | 7.95 | 10.72 | 7.30 | 5.13 | 9.87 |
K2O | 2.88 | 2.72 | 3.01 | 2.82 | 2.61 | 3.30 | 4.21 | 3.90 | 4.65 |
H2O | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 |
Total | 82.00 | 81.99 | 82.01 | 82.00 | 81.99 | 82.01 | 82.00 | 82.00 | 82.00 |
Si | 25.29 | 24.67 | 25.53 | 25.21 | 24.69 | 25.62 | 24.81 | 24.14 | 25.39 |
Al | 10.81 | 10.37 | 11.45 | 10.69 | 10.28 | 11.32 | 11.21 | 10.48 | 11.81 |
ƩT | 36.10 | 35.90 | 36.21 | 35.90 | 35.71 | 36.13 | 36.02 | 35.75 | 36.23 |
Mg | 0.67 | 0.00 | 0.93 | 0.06 | 0.00 | 0.52 | 0.28 | 0.00 | 0.68 |
Ca | 3.49 | 3.00 | 4.56 | 0.00 | 0.00 | 0.00 | 0.44 | 0.00 | 1.11 |
Na | 0.30 | 0.00 | 0.91 | 9.20 | 7.56 | 10.31 | 7.02 | 4.89 | 9.60 |
K | 1.78 | 1.68 | 1.86 | 1.77 | 1.65 | 2.06 | 2.66 | 2.45 | 2.94 |
H2O | 29.08 | 28.95 | 29.35 | 29.62 | 29.38 | 29.81 | 29.75 | 29.43 | 30.10 |
R | 0.70 | 0.68 | 0.71 | 0.70 | 0.69 | 0.71 | 0.69 | 0.67 | 0.71 |
E% | 4.07 | −3.54 | 8.51 | −3.39 | −9.84 | 5.41 | 1.10 | −8.10 | 8.39 |
Mg/(Ca + Na) | 0.19 | 0.00 | 0.29 | 0.01 | 0.00 | 0.07 | 0.04 | 0.00 | 0.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordani, M.; Cametti, G.; Di Lorenzo, F.; Churakov, S.V. Real-Time Observation of Fibrous Zeolites Reactivity in Contact with Simulated Lung Fluids (SLFs) Obtained by Atomic Force Microscope (AFM). Minerals 2019, 9, 83. https://doi.org/10.3390/min9020083
Giordani M, Cametti G, Di Lorenzo F, Churakov SV. Real-Time Observation of Fibrous Zeolites Reactivity in Contact with Simulated Lung Fluids (SLFs) Obtained by Atomic Force Microscope (AFM). Minerals. 2019; 9(2):83. https://doi.org/10.3390/min9020083
Chicago/Turabian StyleGiordani, Matteo, Georgia Cametti, Fulvio Di Lorenzo, and Sergey V. Churakov. 2019. "Real-Time Observation of Fibrous Zeolites Reactivity in Contact with Simulated Lung Fluids (SLFs) Obtained by Atomic Force Microscope (AFM)" Minerals 9, no. 2: 83. https://doi.org/10.3390/min9020083
APA StyleGiordani, M., Cametti, G., Di Lorenzo, F., & Churakov, S. V. (2019). Real-Time Observation of Fibrous Zeolites Reactivity in Contact with Simulated Lung Fluids (SLFs) Obtained by Atomic Force Microscope (AFM). Minerals, 9(2), 83. https://doi.org/10.3390/min9020083