Mineralogy of Cobalt-Rich Ferromanganese Crusts from the Perth Abyssal Plain (E Indian Ocean)
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. General Samples Desription
4.2. EDXRD
4.3. XRF
4.4. DTA and TGA
4.5. EPMA
5. Discussion
5.1. Mineralogy of Ferromanganese Co-Rich Crusts
5.1.1. Fe-Mn Oxyhydroxides
5.1.2. Phyllosilicates
5.1.3. Zeolites
5.1.4. Phosphates
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Mineral Group | Vernadite | Asbolane | Feroxyhyte Ferrihydrite | Phyllosilicates | Phosphates | Zeolites | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subtype | Fe-(Mn) 1 | Mn-(Fe) 2 | Ni-Cu-(Co) 3 | Ni-Co-(Cu) 4 | - | Ti-rich 5 | Glauconite | Fe-smectite | Nontronite | Saponite | Celadonite | Fe-chlorite | Ca-hydroxyapatite | K-phillipsite | Na-chabazite | Na-heulandite Na-klinoptiloite |
Number of EPMA Analyses | n = 8 | n = 56 | n = 27 | n = 9 | n = 11 | N = 8 | N = 12 | N = 6 | N = 2 | N = 8 | N = 4 | N = 2 | N = 11 | N = 4 | N = 3 | N = 1 |
Si [wt. %] | 4.40 | 2.11 | 0.70 | 0.50 | 5.80 | 5.46 | 23.92 | 24.29 | 24.25 | 23.07 | 24.21 | 15.33 | 1.29 | 25.91 | 26.46 | 26.57 |
Al | 1.23 | 0.72 | 2.03 | 1.40 | 0.92 | 1.71 | 4.59 | 7.41 | 1.66 | 2.91 | 2.68 | 3.52 | 0.67 | 9.68 | 10.36 | 10.31 |
Fe | 26.74 | 17.71 | 1.53 | 2.19 | 50.73 | 40.71 | 16.20 | 12.94 | 18.89 | 20.38 | 18.54 | 31.04 | 0.89 | 6.14 | 0.35 | 0.59 |
Mn | 18.71 | 29.30 | 42.12 | 40.31 | 0.06 | 0.06 | 0.07 | 0.09 | <0.01 | 0.08 | 0.01 | 0.61 | 0.04 | 0.66 | 0.06 | 0.09 |
Ti | 2.20 | 1.09 | 0.23 | 0.39 | 0.08 | 4.83 | 0.14 | 0.98 | <0.01 | 0.09 | 0.15 | 0.30 | 0.05 | 0.68 | - | 0.03 |
P | 0.39 | 0.32 | 0.07 | 0.08 | 0.20 | 0.50 | <0.01 | - | - | <0.01 | - | - | 13.51 | <0.01 | - | 0.01 |
Ba | 0.42 | 0.23 | 0.15 | 0.20 | 0.01 | 0.21 | <0.01 | - | - | <0.01 | <0.01 | - | 0.01 | - | - | 0.03 |
Sr | 0.08 | 0.04 | 0.02 | 0.02 | <0.01 | 0.03 | - | - | - | - | - | - | 0.03 | - | - | - |
Ca | 1.70 | 2.61 | 1.10 | 1.57 | 0.17 | 0.80 | 0.38 | 0.26 | 0.25 | 0.23 | 0.24 | 0.18 | 36.70 | 1.54 | 0.37 | 6.96 |
Na | 0.58 | 0.72 | 0.92 | 1.43 | 0.10 | 0.19 | 0.57 | 0.53 | 0.54 | 0.56 | 0.55 | 0.51 | 0.56 | 0.79 | 8.15 | 1.06 |
K | 0.22 | 0.26 | 0.81 | 0.62 | 0.17 | 0.21 | 4.11 | 2.82 | 3.65 | 5.02 | 3.95 | 2.52 | 0.20 | 2.82 | 4.09 | 2.10 |
Mg | 0.75 | 0.96 | 4.11 | 3.08 | 0.77 | 0.90 | 2.63 | 2.23 | 3.25 | 3.93 | 4.73 | 2.28 | 0.25 | 1.92 | 0.09 | 0.38 |
Ni | 0.21 | 0.50 | 3.07 | 4.11 | 0.05 | 0.04 | <0.01 | - | - | <0.01 | <0.01 | - | <0.01 | 0.07 | - | <0.01 |
Cu | 0.11 | 0.15 | 0.84 | 0.32 | 0.12 | 0.18 | <0.01 | - | - | <0.01 | <0.01 | - | 0.10 | 0.05 | - | - |
Co | 0.30 | 0.81 | 0.13 | 0.70 | 0.09 | 0.08 | <0.01 | - | - | <0.01 | <0.01 | - | - | <0.01 | - | 0.01 |
Zn | 0.12 | 0.09 | 0.36 | 0.19 | 0.09 | 0.13 | <0.01 | - | - | 0.01 | - | - | 0.02 | <0.01 | - | 0.02 |
Pb | 0.24 | 0.12 | 0.02 | 0.04 | 0.02 | 0.08 | <0.01 | - | - | <0.01 | <0.01 | - | <0.01 | <0.01 | - | - |
As | 0.03 | 0.02 | 0.05 | 0.03 | 0.03 | 0.08 | <0.01 | - | - | - | <0.01 | - | - | 0.03 | - | - |
Tl | 0.02 | 0.02 | 0.03 | 0.02 | <0.01 | 0.01 | <0.01 | - | - | - | 0.01 | - | - | <0.01 | - | 0.03 |
S | 0.16 | 0.25 | 0.06 | 0.05 | 0.02 | 0.05 | <0.01 | - | - | 0.03 | <0.01 | - | 0.44 | <0.01 | - | 0.07 |
Cl− | 0.65 | 0.69 | 0.17 | 0.18 | 0.08 | 0.36 | 0.09 | 0.12 | 0.08 | 0.06 | 0.09 | 0.13 | 0.03 | 0.08 | <0.01 | 0.02 |
F− | - | - | - | - | - | - | - | - | - | - | - | - | 1.21 | - | - | - |
H2O− = (O,OH) | 17.69 | 20.76 | 20.98 | 23.23 | 17.34 | 15.92 | 8.18 | 7.15 | 9.56 | 7.62 | 8.32 | 11.45 | 8.02 | 6.17 | 6.59 | 10.14 |
Cr | - | - | - | - | - | - | 0.02 | 0.06 | 0.08 | <0.01 | 0.04 | - | - | 0.01 | 0.01 | - |
V | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Y | - | - | - | - | - | - | 44 ppm | 37 ppm | - | 34 ppm | - | 24 ppm | 0.21 | 0.02 | - | - |
La | - | - | - | - | - | - | - | - | - | - | - | - | 0.12 | - | - | - |
Ce | - | - | - | - | - | - | - | - | - | - | - | - | 0.03 | - | - | - |
Pr | - | - | - | - | - | - | - | - | - | - | - | - | <0.01 | - | - | - |
Nd | - | - | - | - | - | - | - | - | - | - | - | - | 0.13 | - | - | - |
Sm | - | - | - | - | - | - | - | - | - | - | - | - | 0.03 | - | - | - |
Gd | - | - | - | - | - | - | - | - | - | - | - | - | 0.03 | - | - | - |
Tb | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Dy | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Ho | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Er | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Tm | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Yb | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Lu | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Eu | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Hf | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
∑REE | - | - | - | - | - | - | 44 ppm | 37 ppm | - | 34 ppm | - | 24 ppm | 0.57 | 0.02 | - | - |
U | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Th | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Si/Al | 3.95 | 3.29 | 0.29 | 0.47 | 6.99 | 3.53 | 8.28 | 3.42 | 14.64 | 9.41 | 16.13 | 4.36 | 1.35 | 2.72 | 2.55 | 2.57 |
Mn/Fe | 0.72 | 1.74 | 57.84 | 90.62 | 0.001 | 0.06 | 0.004 | 0.007 | - | 0.005 | <0.001 | 0.02 | - | - | - | - |
Ni/Co | 0.74 | 0.71 | 83.75 | 6.81 | 0.69 | 0.39 | - | - | - | - | - | - | - | - | - | - |
Ni/Cu | 2.50 | 3.49 | 4.10 | 2.48 | 0.39 | 0.28 | - | - | - | - | - | - | - | - | - | - |
Na/K | 2.65 | 2.75 | 1.15 | 2.30 | 0.59 | 0.93 | 0.14 | 0.19 | 0.15 | 0.08 | 0.14 | 0.20 | 2.78 | 0.28 | 2.23 | 0.50 |
Cr/Fe | - | - | - | - | - | - | 0.001 | 0.005 | 0.004 | - | 0.002 | - | - | - | - | - |
Th/U | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Si4+ | 0.791 | 0.376 | 0.061 | 0.043 | 0.534 | 0.514 | 3.803 | 3.572 | 3.685 | 3.763 | 3.946 | 2.384 | 0.235 | 4.713 | 3.007 | 4.785 |
Al3+ | 0.230 | 0.133 | 0.183 | 0.126 | 0.088 | 0.168 | 0.760 | 1.118 | 0.262 | 0.494 | 0.454 | 0.569 | 0.127 | 1.831 | 1.225 | 1.932 |
Fe2+ | - | - | - | - | - | - | 0.981 | 0.228 | 0.534 | 0.566 | 0.427 | 1.549 | 0.081 | 0.562 | 0.020 | 0.053 |
* Fe3+ | 2.416 | 1.586 | 0.067 | 0.095 | 2.349 | 1.928 | 0.318 | 0.606 | 0.909 | 1.105 | 1.091 | 0.877 | - | - | - | - |
** Mn2+ | 1.715 | 2.662 | 1.857 | 1.779 | 0.003 | 0.003 | 0.005 | 0.005 | 0.001 | 0.007 | 0.001 | 0.048 | 0.004 | 0.061 | 0.004 | - |
Ti2+ | 0.232 | 0.114 | 0.012 | 0.020 | 0.004 | 0.267 | 0.013 | 0.049 | - | 0.009 | 0.014 | 0.027 | 0.020 | 0.289 | 0.003 | 0.011 |
P5+ | 0.063 | 0.051 | 0.005 | 0.006 | 0.017 | 0.043 | - | - | - | - | - | - | 2.221 | 0.001 | - | 0.285 |
Ba2+ | 0.015 | 0.008 | 0.003 | 0.003 | - | 0.004 | - | - | - | - | - | - | - | - | - | 0.001 |
Sr2+ | 0.079 | 0.042 | 0.008 | 0.008 | - | 0.018 | - | - | - | - | - | - | 0.002 | - | - | - |
Ca2+ | 0.214 | 0.325 | 0.067 | 0.095 | 0.011 | 0.053 | 0.042 | 0.046 | 0.026 | 0.025 | 0.020 | 0.019 | 4.656 | 0.196 | 0.030 | 0.876 |
Na+ | 0.127 | 0.157 | 0.097 | 0.151 | 0.012 | 0.022 | 0.111 | 0.122 | 0.100 | 0.083 | 0.109 | 0.097 | 0.125 | 0.176 | 1.130 | 0.231 |
K+ | 0.028 | 0.033 | 0.050 | 0.038 | 0.011 | 0.014 | 0.467 | 0.298 | 0.398 | 0.488 | 0.384 | 0.003 | 0.026 | 0.368 | 0.333 | 0.271 |
Mg2+ | 0.156 | 0.197 | 0.410 | 0.308 | 0.082 | 0.098 | 0.483 | 0.440 | 0.570 | 0.447 | 0.537 | 0.410 | 0.052 | 0.404 | 0.012 | 0.079 |
Ni2+ | 0.018 | 0.043 | 0.127 | 0.170 | 0.002 | 0.002 | - | - | - | - | - | - | - | 0.006 | - | - |
Cu2+ | 0.009 | 0.012 | 0.032 | 0.012 | 0.005 | 0.008 | - | - | - | - | - | - | 0.008 | 0.004 | - | - |
Co2+ | 0.026 | 0.069 | 0.006 | 0.029 | 0.004 | 0.004 | - | - | - | - | - | - | - | - | - | 0.001 |
Zn2+ | 0.009 | 0.007 | 0.013 | 0.007 | 0.003 | 0.005 | - | - | - | 0.001 | - | - | 0.001 | 0.001 | - | 0.002 |
Pb2+ | 0.006 | 0.003 | - | - | - | 0.001 | - | - | - | - | - | - | - | - | - | - |
As3+ | 0.001 | 0.001 | 0.001 | - | - | 0.001 | - | - | - | - | 0.001 | - | - | 0.002 | - | - |
Tl3+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.001 |
S6+ | 0.050 | 0.079 | 0.009 | 0.008 | 0.003 | 0.009 | 0.002 | - | - | 0.004 | 0.001 | - | 0.139 | 0.003 | - | 0.023 |
Cl− | 0.092 | 0.097 | 0.012 | 0.012 | 0.006 | 0.027 | 0.011 | 0.013 | 0.009 | 0.007 | 0.011 | 0.016 | 0.004 | 0.012 | - | 0.003 |
F− | - | - | - | - | - | - | - | - | - | - | - | - | 0.326 | - | - | - |
H2O− = (O,OH) | 1.722 | 2.004 | 0.982 | 1.088 | 0.865 | 0.813 | - | - | - | - | - | - | 0.949 | 1.372 | 1.235 | 1.445 |
Cr3+ | - | - | - | - | - | - | 0.001 | - | 0.006 | - | 0.003 | - | - | 0.001 | 0.001 | - |
V5+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Y3+ | - | - | - | - | - | - | 0.001 | - | - | - | - | - | 0.012 | 0.001 | - | - |
La3+ | - | - | - | - | - | - | - | - | - | - | - | - | 0.005 | - | - | - |
Ce3+ | - | - | - | - | - | - | - | - | - | - | - | - | 0.001 | - | - | - |
Pr3+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Nd3+ | - | - | - | - | - | - | - | - | - | - | - | - | 0.004 | - | - | - |
Sm3+ | - | - | - | - | - | - | - | - | - | - | - | - | 0.001 | - | - | - |
Gd3+ | - | - | - | - | - | - | - | - | - | - | - | - | 0.001 | - | - | - |
Tb3+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Dy3+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Ho3+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Er3+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Tm3+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Yb3+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Lu3+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Eu3+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Hf4+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
∑REE3+ | - | - | - | - | - | - | 0.001 | - | - | - | - | - | 0.024 | 0.001 | - | - |
U4+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Th4+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
∑ion | 6 | 6 | 3 | 3 | 3 | 3 | 7 | 6.5 | 6.5 | 7 | 7 | 6 | 9 | 10 | 7 | 10 |
No oxyg. at. | 8 | 8 | 4 | 4 | 4 | 4 | 12 | 19.5 | 21.5 | 20.5 | 12 | 12 | 13 | 22 | 18 | 24 |
Appendix B
Basalt Substrate |
Feldspars |
Bytownite (Ca0.463 K0.321 Na0.188 Mg0.012 Ti0.001) ∑ = 0.985 (Si2.552 Al1.437 Fe0.026 Cr0.001) ∑ = 4.016 O8 |
Labradorite (Ca0.490 Na0.470 K0.021 Mg0.007 Ti0.003 Y0.001) ∑ = 0.992 (Si2.500 Al1.462 Fe0.046) ∑ = 4.008 O8 |
Albite [Cl−0.002] (Na0.754 Ca0.021 K0.021 Mn0.019 Ti0.003 Mg0.003) ∑ = 0.800 (Si3.092 Al1.061 Fe0.027) ∑ = 4.18 O8 |
Orthoclase (or sanidyne) [Cl−0.001] (K0.943 Na0.004 Ca0.001 Ti0.001 Mn0.002) ∑ = 0.951 (Si3.046 Al0.996 Fe0.004 Cr0.004) ∑ = 4.05 O8 |
Pyroxenes |
Diopside [Cl−0.001] (Ca0.766 Fe2+0.188 Mg0.030 Na0.016) ∑=1.000 (Mg0.895 Al0.055 Ti0.019 Cr0.019 Mn0.011) ∑ = 1.000 (Si1.927 Al0.073) ∑ = 2.000 O6 |
Augite [Cl−0.003] (Ca0.356 Na0.301 Fe2+0.221 K0.068 Mg0.027 Mn0.015) ∑ = 0.988 (Al0.469 Mg0.416 Fe2+0.103 Ti0.012) ∑=1.000 (Si1.949 Al0.051) ∑ = 2.000 O6 |
Ferrosilite [Cl−0.008] (Mg0.247 Fe2+0.205 K0.183 Ti0.079 Na0.039 Ca0.021 Mn0.008) ∑ = 0.782 (Al0.721 Fe2+0.279) ∑ = 1.000 (Si2.210) ∑ = 2.210 O6 |
Other |
Pseudobrookite (Fe3+1.212 Fe2+0.687 Al0.043 Mg0.040 Mn0.013 Ba0.006 Zn0.005 Si0.003 Na0.003 Ca0.003 Co0.003 K0.002 Ni0.002 Cu0.001 Tl0.001) ∑ = 2.067 (Ti0.667 Fe3+0.333) ∑ = 1.000 O5 |
Mg-chromite (Mg0.538 Fe2+0.464 Ti0.017 Mn0.007 Ca0.005 Zn0.002 Ni0.002 Co0.001) ∑ = 1.036 (Cr1.012 Al0.770 Fe3+0.175 V0.004 Si0.002) ∑=1.963 O4 |
Zircon (Zr0.941 REE3+0.054 Fe3+0.019 Hf0.008 Ti0.004) ∑ = 1.026 Si0.975 O4 |
Basalt Substrate—Crust Transition Zone |
Phosphates |
Ca-hydroxyfluorapatite (CFA) (Ca4.656 Na0.125 Fe0.081 Mg0.052 K0.026 REE3+0.024 Ti0.020 Cu0.008 Mn0.004 Sr0.002 Zn0.001) ∑ = 4.999 [(PO4)2.221 (CO3)0.093 (SiO2 0.235 Al2O3 0.127) (SO3)0.139] ∑ = 2.815 [(OH)0.949 F0.326 Cl0.004] ∑ = 1.279 |
Zeolites |
Na-chabazite [OH−1.235] ∑=1.235 (Na1.130 K0.333 Ca0.030 Fe2+0.020 Mg0.012 Mn0.004 Ti0.003 Cr0.001) ∑ = 1.533 (Al1.225 Si3.007) ∑ = 4.232 O11.5 × 6.5 H2O |
Ca-heulandite (or Ca-klinoptilolite) [Cl− 0.003 OH−1.445] ∑ = 1.448 (Ca0.876 K0.271 Na0.231 Mg0.079 Ba0.001) ∑ = 1.458 (Si4.785 Al1.932 P0.285 Fe0.053 S0.023 Ti0.011 Zn0.002 Co0.001 Tl0.001) ∑ = 7.093 O17.5 × 4.5 H2O |
K-phillipsite [Cl−0.012 OH−1.372] ∑ = 1.384 (Fe0.562 Mg0.404 K0.368 Ca0.196 Na0.176 Mn0.061 Ni0.006 Cu0.004 S0.003 As0.002 Zn0.001 Cr0.001 P0.001 Y0.001) ∑ = 1.786 (Si4.713 Al1.831) ∑ = 6.544 O16 × 6.0 H2O |
Phyllosilicates |
Glauconite [Cl−0.011] (K0.467 Mg0.367 Ca0.042 Na0.111) ∑ = 0.987 (Fe3+0.318 Mg0.116 Fe2+0.981 Al0.563 Ti0.013 Mn0.005 S0.002 Cr0.001 Y0.001) ∑ = 2.000 (Si3.803 Al0.197) ∑ = 4.000 O10 (OH)2 |
Nontronite [Cl−0.009] Ca0.026 Fe2+0.534 (Fe3+0.909 Mg0.570 K0.398 Al0.262 Na0.100 Cr0.006 Mn0.001) ∑ = 2.246 (Si3.685 Al0.262) ∑ = 3.947 O10 (OH)2 × 9.5 H2O |
Fe-smectite [Cl−0.013] (Ca0.046 Na0.122) ∑ = 0.168 (Al0.690 Mg0.440 Fe0.834 Ti0.049 Mn0.005 Cr0.003) ∑ = 2.021 (Si3.572 Al0.428) ∑ = 4.000 O10 (OH)2 × 7.5 H2O |
Saponite [Cl−0.007] (Ca0.025 Na0.083 K0.488) ∑ = 0.596 (Mg0.447 Fe2+0.566 Fe3+1.105 Al0.257 Ti0.009 Mn0.007 Zn0.001 S0.004) ∑=2.396 (Si3.763 Al0.237) ∑ = 4:00 O10 (OH)2 × 8.5 H2O |
Celadonite [Cl−0.011] (Mg0.475 K0.384 Na0.109 Ca0.020) ∑ = 0.988 (Mg0.062 Fe3+0.491 Fe2+0.427 Ti0.014 Cr0.003 Mn0.001 S0.001 As0.001) ∑ = 1.000 (Fe3+0.600 Al0.400) ∑ = 1.000 (Si3.946 Al0.054) ∑ = 4.000 O10 (OH)2 |
Fe-chlorite [Cl−0.016] (Fe2+1.549 Mg0.410 Na0.097 Mn0.048 Ca0.019 K0.003) ∑ = 2.126 (Fe3+0.877 Al0.569 Si0.384 Ti0.027) ∑ = 1.857 Si2.000 O9.800 (OH)3.200 |
Fe-Mn Crusts Zone |
Fe-Mn oxyhydroxides |
Fe-(Mn) Vernadite [Cl−] ∑ = 0.092 (Mn4+1.715 Si0.791 Ti0.232) ∑ = 2.738 (Na0.127 K0.028) ∑ = 0.155 (Ca0.214 Mg0.156 Sr0.079 Co0.026 Ni0.018 Ba0.015 Cu0.009 Zn0.009 Pb0.006) ∑ = 0.532 (Fe3+2.416 Al0.230 As0.001) ∑ = 2.647 (P0.063 S6+0.050) ∑ = 0.113 × 1.72 H2O |
Mn-(Fe) Vernadite [Cl−] ∑ = 0.097 (Mn4+2.662 Si0.376 Ti0.114) ∑ = 3.052 (Na0.157 K0.033) ∑ = 0.190 (Ca0.325 Mg0.197 Sr0.042 Co0.069 Ni0.043 Ba0.008 Cu0.012 Zn0.007 Pb0.003) ∑ = 0.706 (Fe3+1.586 Al0.133 As0.001) ∑ = 1.720 (P0.037 S6+0.079) ∑ = 0.116 × 2.00 H2O |
Ni-Cu-(Co) Asbolane [Cl−0.012 S6+0.009 P0.005] ∑ = 0.026 (Mg0.410 Ni0.127 Ca0.067 Cu0.032 Zn0.013 Sr0.008 Co0.006 Ba0.003) ∑ = 0.666 (Mn2+1.857 Al0.183 Fe3+0.067 Si0.061 Ti0.012 As0.001) ∑ = 2.181 (Na0.097 K0.050) ∑ = 0.147 × 0.98 H2O |
Ni-Co-(Cu) Asbolane [Cl−0.012 S6+0.008 P0.006] ∑ = 0.026 (Mg0.308 Ni0.170 Ca0.095 Co0.029 Cu0.012 Sr0.008 Zn0.007 Ba0.003) ∑ = 0.632 (Mn2+1.779 Al0.126 Fe3+0.095 Si0.043 Ti0.020) ∑ = 2.063 (Na0.151 K0.038) ∑ = 0.189 × 1.09 H2O |
* Feroxyhyte | Ferrihydrite nFe2O3 × nH2O [Cl−0.006] ∑ = 0.006 (Fe3+2.349 Si0.534 Al0.088 Mg0.082 P0.017 Na0.012 K0.011 Ca0.011 Cu0.005 Co0.004 Ti0.004 Mn0.003 Zn0.003 S0.003 Ni0.002) ∑ = 3.128 × 0.87 H2O |
* (Ti)-Feroxyhyte | (Ti)-Ferrihydrite nFe2O3 × nH2O [Cl−0.027] ∑ = 0.027 (Fe3+1.928 Si4+0.514 Ti0.267 Al0.168 Mg0.098 Ca0.053 P0.043 Na0.022 Sr0.018 K0.014 S0.009 Cu0.008 Zn0.005 Co0.004 Ba0.004 Mn0.003 Ni0.002 Pb0.001 As0.001) ∑ = 3.162 × 0.81 H2O |
References
- Hodkinson, R.A.; Cronan, D.S. Regional and depth variability in the composition of cobalt-rich ferromanganese crusts from the SOPAC area and adjacent parts of the central equatorial Pacific. Mar. Geol. 1991, 98, 437–447. [Google Scholar] [CrossRef]
- Hein, J.R. Cobalt-Rich Ferromanganese Crusts: Global Distribution, Composition, Origin and research Activities. In Polymetallic Massive Sulphides and Cobalt-Rich Ferromanganese Crusts: Status and Prospects; ISA Technical Study 2; International Seabed Authority: Kingston, Jamaica, 2002; pp. 36–89. [Google Scholar]
- Hein, J.R.; Koschinsky, A.; Bau, M.; Manheim, F.; Kang, J.-K.; Roberts, L. Cobalt-Rich Ferromanganese Crusts in the Pacific. In Handbook of Marine Mineral Deposits; Cronan, D., Ed.; CRC Press: London, UK, 2000; pp. 239–272. [Google Scholar]
- Hein, J.R.; Conrad, T.A.; Dunham, R.E. Seamount Characteristics and Mine-Site Model Applied to Exploration- and Mining-Lease-Block Selection for Cobalt-Rich Ferromanganese Crust. Mar. Georesources Geotechnol. 2009, 27, 160–176. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, J.; Ren, X.; Shi, X. Geochemistry of rare earth elements in cobalt-rich crusts from the Mid-Pacific M seamount. J. Rare Earths 2009, 27, 169–176. [Google Scholar]
- Zawadzki, D. The state of knowledge and possibilities to extract strategic raw materials from the ocean poly metallic deposits [Stan rozpoznania i możliwości pozyskiwania metali strategicznych z polimetalicznych kopalin oceanicznych]. Prz. Geol. 2013, 61, 45–53. [Google Scholar]
- Hein, J.R.; Koschinsky, A. Deep-Ocean Ferromanganese Crusts and Nodules. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 13, pp. 273–291. [Google Scholar]
- Szamałek, K. The state of knowledge concerning on oceanic mineral resources [Stan rozpoznania oceanicznych zasobów mineralnych]. Prz. Geol. 2018, 66, 189–194. [Google Scholar]
- Hein, J.R.; Conrad, T.; Mizell, K.; Banakar, V.K.; Frey, F.A.; Sager, W.W. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean. Deep-Sea Res. I 2016, 110, 1–19. [Google Scholar] [CrossRef]
- Konstantinova, N.; Cherkashov, G.; Hein, J.R.; Mirão, J.; Dias, P.; Madureira, P.; Kuznetsov, V.; Maksimov, F. Composition and characteristics of the ferromanganese crusts from the western Arctic Ocean. Ore Geol. Rev. 2017, 87, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Conrad, T.; Hein, J.R.; Paytan, A.; Clague, D.A. Formation of Fe-Mn crusts within a continental margin environment. Ore Geol. Rev. 2017, 87, 25–40. [Google Scholar] [CrossRef]
- Marino, E.; González, F.J.; Lunar, R.; Reyes, J.; Medialdea, T.; Castillo-Carrión, M.; Bellido, E.; Somoza, L. High-Resolution Analysis of Critical Minerals and Elements in Fe–Mn Crusts from the Canary Island Seamount Province (Atlantic Ocean). Minerals 2018, 8, 285. [Google Scholar] [CrossRef]
- Hein, J.R. Cobalt-rich ferromanganese crusts: Global distribution, composition, origin and research activities. In Minerals Other than Polymetallic Nodules of the International Seabed Area; International Seabed Authority: Kingston, Jamaica, 2004; Chapter 5; pp. 188–256. [Google Scholar]
- Hein, J.R.; Koschinsky, A. Deep-ocean ferromanganese crusts and nodules. In The Treatise on Geochemistry; Scott, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 12, pp. 273–290. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A.; Halbach, P.; Manheim, F.T.; Bau, M.; Kang, J.K.; Lubick, N. Iron and manganese oxide mineralization in the Pacific. In Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits; Special Publications; Nicholson, K., Hein, J.R., Bühn, B., Dasgupta, S., Eds.; Geological Society: London, UK, 1997; Volume 119, pp. 123–138. [Google Scholar]
- Hein, J.R.; Conrad, T.; Staudigel, H. Seamount mineral deposits. A source of rare metals for high-technology industries. Oceanography 2010, 23, 184–189. [Google Scholar] [CrossRef]
- Petersen, S.; Krätschell, A.; Augustin, N.; Jamieson, J.; Hein, J.; Hannington, M.D. News from the seabed—Geological characteristics and resource potential of deep sea mineral resources. Mar. Policy 2016, 70, 175–187. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, Z.; González, F.J.; Hein, J.R.; Zheng, X.; Li, G.; Luo, Y.; Mo, A.; Tian, Y.; Wang, S. Composition and genesis of ferromanganese deposits from the northern South China Sea. J. Asian Earth Sci. 2017, 138, 110–128. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, C.E.; Gillis, K.M. Hydrothermal manganese oxide deposits from Baby Bare seamount in the Northeast Pacific Ocean. Mar. Geol. 2006, 225, 145–156. [Google Scholar] [CrossRef]
- Baturin, G.N.; Dobretsova, I.G.; Dubinchuk, V.T. Hydrothermal manganese mineralization in the Peterbourgskoye ore field (North Atlantic). Oceanology 2014, 54, 222–230. [Google Scholar] [CrossRef]
- González, F.J.; Somoza, L.; Hein, J.R.; Medialdea, T.; León, R.; Urgorri, V.; Reyes, J.; Martín-Rubí, J.A. Phosphorites, Co-rich Mn nodules, and Fe-Mn crusts from Galicia Bank, NE Atlantic: Reflections of Cenozoic tectonics and paleoceanography. Geochem. Geophys. Geosyst. 2016, 17, 346–374. [Google Scholar] [CrossRef]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Asavin, A.M.; Kubrakova, I.V.; Mel’nikov, M.E.; Tyutyunnik, O.A.; Chesalova, E.I. Geochemical Zoning in Ferromanganese Crusts of Ita-MaiTai Guyot. Geochem. Int. 2010, 48, 423–445. [Google Scholar] [CrossRef]
- Dubinin, A.V.; Uspenskaya, T.Y. Geochemistry and specific features of manganese ore formation in sediments of oceanic bioproductive zones. Lithol. Miner. Resour. 2006, 41, 1–14. [Google Scholar] [CrossRef]
- Andreev, S.I. (Ed.) Cobalt Rich Ores in the World Ocean; VNII Okeangeologiya: St. Petersburg, Russia, 2002. (In Russian) [Google Scholar]
- Asavin, A.M.; Anikeeva, L.I.; Kazakova, V.A.; Andreev, S.I.; Sapozhnikov, D.A.; Roshchina, I.A.; Kogarko, L.N. Trace element and PGE distribution in layered ferromanganese crusts. Geochem. Int. 2008, 46, 1179–1205. [Google Scholar] [CrossRef]
- Novikov, G.V.; Yashina, S.V.; Melnikov, M.E.; Vikentev, I.V.; Bogdanova, O.Y. Nature of Co-Bearing Ferromanganese Crusts of the Magellan Seamounts (Pacific Ocean): Communication 2. Ion Exchange Properties of Ore Minerals. Lithol. Miner. Resour. 2014, 49, 138–164. [Google Scholar] [CrossRef]
- ISA Central Data Repository. Available online: https://www.isa.org.jm (accessed on 1 September 2018).
- Hein, J.R. Cobalt-Rich Ferromanganese Crusts: Global Distribution, Composition, Origin and Research Activities. In Polymetallic Massive Sulphides and Cobalt-Rich Ferromanganese Crusts: Status and Prospects; International Seabed Authority: Kingston, Jamaica, 2004; pp. 188–256. [Google Scholar]
- Zawadzki, D.; Maciąg, Ł.; Kotliński, R.A.; Kozub-Budzyń, G.A.; Piestrzyński, A.; Wróbel, A. Geochemistry of cobalt-rich ferromanganese crusts from the Perth Abyssal Plain (E Indian Ocean). Ore Geol. Rev. 2018, 101, 520–531. [Google Scholar] [CrossRef]
- Watson, S.J.; Whittaker, J.M.; Halpin, J.A.; Williams, S.E.; Milan, L.A.; Daczko, N.R.; Wyman, D.A. Tectonic drivers and the influence of the Kerguelen plume on seafloor spreading during formation of the Early Indian Ocean. Gondwana Res. 2016, 35, 97–114. [Google Scholar] [CrossRef]
- Whittaker, J.M.; Halpin, J.A.; Williams, S.E.; Hall, L.S.; Gardner, R.; Kobler, M.E.; Daczko, N.R.; Müller, R.D. Tectonic Evolution and Continental Fragmentation of the Southern West Australian Margin. In Proceedings of the West Australian Basins Symposium, Perth, Australia, 18–21 August 2013. [Google Scholar]
- Gibbons, A.; Barckhausen, U.; Van Den Bogaard, P.; Hoernle, K.; Werner, R.; Whittaker, J.M.; Müller, R.D. Constraining the Jurassic extent of Greater India: Tectonic evolution of the Australian margin. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
- Cresswell, G.R.; Peterson, J.L. The Leeuwin Current south of Western Australia. Aust. J. Mar. Freshw. Res. 1993, 44, 285–303. [Google Scholar] [CrossRef]
- Richardson, L.; Mathews, E.; Heap, A. Geomorphology and Sedimentology of the South Western Planning Area of Australia. Review and Synthesis of Relevant Literature in Support of Regional Marine Planning; Geoscience Australia: Canberra, Australia, 2005.
- IHO-IOC. GEBCO Gazetteer of Undersea Feature Names. 2006 version. Available online: https://www.gebco.net/data_and_products/undersea_feature_names/ (accessed on 29 January 2019).
- Williams, S.E. The Perth Abyssal Plain: Understanding Eastern Gondwana Break-Up, RV Southern Surveyor Voyage SS2011_v06 Scientific Highlights. CSIRO, 2011. Available online: http://www.marine.csiro.au/nationalfacility/voyagedocs/2011/index.htm (accessed on 4 September 2018).
- Williams, S.E.; Whittaker, J.M.; Granot, R.; Müller, D.R. Early India-Australia spreading history revealed by newly detected Mesozoic magnetic anomalies in the Perth Abyssal Plain. J. Geophys. Res. Solid Earth 2013, 118, 3275–3284. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.E.; Whittaker, J.M.; Müller, D.R. Newly-recognised Continental Fragments Rifted from the West Australian Margin. In Proceedings of the West Australian Basins Symposium, Perth, Australia, 18–21 August 2013. [Google Scholar]
- Grazulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.T.; Quiros, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database—An open-access collection of crystal structures. J. Appl. Cryst. 2009, 42, 726–729. [Google Scholar] [CrossRef]
- Paulik, F.; Paulik, J.; Erdey, L. Derivatography—A complex Method in Thermal Analysis. Talanta 1966, 13, 1405–1430. [Google Scholar] [CrossRef]
- Musiał, W. Derywat—Data Acquisition System for Thermoanalysis. 2010. Available online: http://www.w-musial.home.pl (accessed on 1 May 2015).
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Carlton, Australia, 1985; pp. 1–312. [Google Scholar]
- Steinfink, H. The crystal structure of the zeolite phillipsite. Locality: Pelagic sediments of the Pacific Ocean. Acta Crystallogr. 1962, 15, 644–651. [Google Scholar] [CrossRef]
- Gualtieri, A.F. Study of NH4+ in the zeolite phillipsite by combined synchrotron powder diffraction and IR spectroscopy. Acta Crystallogr. 2000, 56, 584–593. [Google Scholar] [CrossRef]
- Borisov, S.V.; Klevtsova, R.F. Crystal Structure of Rare-Earth-Strontium-Apatite. Zhurnal Strukturnoi Khimii 1963, 4, 629–631. [Google Scholar]
- Fleet, M.E.; Liu, X. Accommodation of the carbonate ion in fluorapatite synthesized at high pressure. Am. Mineral. 2008, 93, 1460–1469. [Google Scholar] [CrossRef]
- Wenk, H.R.; Joswig, W.; Tagai, T.; Korekawa, M.; Smith, B.K. The average structure of An62–66 labradorite. Am. Mineral. 1980, 65, 81–95. [Google Scholar]
- FitzGerald, J.D.; Parise, J.B.; Mackinnon, I.D.R. Average structure of an An48 plagioclase from the Hogarth Ranges. Am. Mineral. 1986, 71, 1399–1408. [Google Scholar]
- Raudsepp, M.; Hawthorne, F.C.; Turnock, A.C. Crystal chemistry of synthetic pyroxenes on the join CaNiSi2O6-CaMgSi2O6 (diopside): A Rietveld refinement study. Am. Mineral. 1990, 75, 1274–1281. [Google Scholar]
- Gualtieri, A.F. Accuracy of XRPD QPA using the combined Rietveld-RIR method. J. Appl. Crystallogr. 2000, 33, 267–278. [Google Scholar] [CrossRef]
- Drits, V.A.; Zviagina, B.B.; McCarty, D.K.; Salyn, A.L. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite. Am. Mineral. 2010, 95, 348–361. [Google Scholar] [CrossRef]
- Ewart, A. The Mineralogy and Petrology of Tertiary-Recent Orogenic Volcanic Rocks: With a Special Reference to the Andesitic-Basaltic Compositional Range. In Andesites: Orogenic Andesites and Related Rocks; Thorpe, R.S., Ed.; Wiley: Chichester, UK, 1982; pp. 25–95. [Google Scholar]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Frost, B.R.; Frost, C.D. A geochemical classification for feldspathic igneous rocks. J. Petrol. 2008, 49, 1955–1969. [Google Scholar] [CrossRef]
- Pearce, J.A.; Gale, G.H. Identification of Ore-Deposition Environment from Trace-Element Geochemistry of Associated Igneous Host Rocks; Special Publications; Geological Society: London, UK, 1977; Volume 7, pp. 14–24. [Google Scholar]
- Pearce, J.A. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In Continental Basalts and Mantle Xenoliths; Hawkesworth, C.J., Norry, M.J., Eds.; Shiva: Nantwich, UK, 1983; pp. 230–249. [Google Scholar]
- Mullen, E.D. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet. Sci. Lett. 1983, 62, 53–62. [Google Scholar] [CrossRef]
- Földvári, M. Handbook of the thermogravimetric system of minerals and its use in geological practice. In Occasional Papers of the Geological Institute of Hungary; Geological Institute of Hungary: Budapest, Hungary, 2011; Volume 213, pp. 1–180. [Google Scholar]
- Tõnsuaadu, K.; Gross, K.A.; Plūduma, L.; Veiderma, M. A review on the thermal stability of calcium apatites. J. Therm. Anal. Calorim. 2012, 110, 647–659. [Google Scholar]
- Langier-Kuźniarowa, A. Thermograms of Clay Minerals; Wydawnictwa Geologiczne: Warszawa, Poland, 1967; p. 315. (In Polish)
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, J.; Aoki, K.; Gottardi, G. Nomenclature of Pyroxenes. Mineral. Mag. 1988, 52, 535–550. [Google Scholar] [CrossRef]
- Wen, X.; De Carlo, E.H.; Li, Y.H. Interelement relationships in ferromanganese crusts from the central Pacific ocean: Their implications for crust genesis. Mar. Geol. 1997, 136, 277–297. [Google Scholar] [CrossRef]
- Manceau, A.; Marcus, M.A.; Grangeon, S. Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. Am. Mineral. 2012, 97, 816–827. [Google Scholar] [CrossRef]
- Dubinin, A.V.; Sval’nov, V.N.; Uspenskaya, T.Y. Geochemistry of the Authigenic Ferromanganese Ore Formation in Sediments of the Northeast Pacific Basin. Lithol. Miner. Resour. 2008, 43, 91–110. [Google Scholar] [CrossRef]
- Bolewski, A.; Osika, R.; Smakowski, T. World Mineral Resources. Nickel-Ni, Cobalt-Co; Wydawnictwa Geologiczne: Warszawa, Poland, 1984. (In Polish)
- Varentsov, I.M.; Drits, V.A.; Gorschkov, A.I. Mineralogy, Geochemistry and Genesis of Manganese—Iron Crusts on the Bezymiannaya Seamount 640, Cape Verde Plate, Atlantic. In Sediment-Hosted Mineral Deposits: Proceedings of a Symposium Held in Beijing, People’s Republic of China, 30 July–4 August 1988; Parnell, J., Lianjun, Y., Changming, C., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 1990. [Google Scholar] [CrossRef]
- Koschinsky, A.; Hein, J.R. Uptake of elements from seawater by ferromanganese crusts: Solid phase association and seawater speciation. Mar. Geol. 2003, 98, 331–351. [Google Scholar] [CrossRef]
- Novikov, G.V.; Melnikov, M.E.; Bogdanova, O.Y.; Vikentev, I.V. Nature of Co-bearing ferromanganese crusts of the Magellan Seamounts (Pacific Ocean): Communication 1. Geology, mineralogy, and geochemistry. Lithol. Miner. Resour. 2014, 49, 3–25. [Google Scholar] [CrossRef]
- Ostwald, J. Ferruginous vernadite in an Indian Ocean ferromanganese nodule. Geol. Mag. 1984, 121, 483–488. [Google Scholar] [CrossRef]
- Wegorzewski, A.V.; Kuhn, T.; Dohrmann, R.; Wirth, R.; Grangeon, S. Mineralogical characterization of individual growth structures of Mn-nodules with different Ni + Cu content from the central Pacific Ocean. Am. Mineral. 2015, 100, 2497–2508. [Google Scholar] [CrossRef]
- Burns, R.G.; Burns, V.M. Manganese oxides. In Marine Minerals; Burns, R.G., Ed.; Reviews of Mineralogy; Mineralogical Society of America: Washington, DC, USA, 1979; Volume 6, pp. 1–46. [Google Scholar]
- Chukhrov, F.V.; Gorshkov, A.I.; Rudnitskaya, E.S.; Bierezovskaya, W.W.; Sivcov, A.W. Manganese minerals in clays: A review. Clay Clay Miner. 1980, 28, 346–354. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.V. Mineralogy and Geochemistry of Manganese: A Review of Publications. Eurasian Soil Sci. 2009, 42, 1170–1178. [Google Scholar] [CrossRef]
- Grangeon, S.; Warmont, F.; Tournassat, C.; Lanson, B.; Lanson, M.; Elkaïm, E.; Claret, F. Nucleation and growth of feitknechtite from nanocrystalline vernadite precursor. Eur. J. Mineral. 2017, 29, 769–778. [Google Scholar] [CrossRef]
- Manceau, A.; Lanson, M.; Takahashi, Y. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule. Am. Mineral. 2014, 99, 2068–2083. [Google Scholar] [CrossRef]
- Hochella, M.F.; Kasama, T.; Putnis, A.; Putnis, C.V.; Moore, J.N. Environmentally important, poorly crystalline Fe/Mn hydrous oxides: Ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex. Am. Mineral. 2005, 90, 718–724. [Google Scholar] [CrossRef]
- Novikov, G.V.; Melnikov, M.E.; Bogdanova, O.Y.; Drozdova, A.N.; Lobus, N.V. Mineralogy and Geochemistry of Co-bearing Manganese Crusts from the Govorov and Volcanologist Guyots of the Magellan Seamounts (Pacific Ocean). Oceanology 2017, 57, 716–722. [Google Scholar] [CrossRef]
- Baturin, G.N.; Dubinchuk, V.T. Mineralogy and chemistry of ferromanganese crusts from the Atlantic Ocean. Geochem. Int. 2011, 49, 578–593. [Google Scholar] [CrossRef]
- Muiños, S.B.; Hein, J.R.; Frank, M.; Monteiro, J.H.; Gaspar, L.; Conrad, T.; Pereira, H.G.; Abrantes, F. Deep-sea Fe-Mn Crusts from the Northeast Atlantic Ocean: Composition and Resource Considerations. Mar. Georesources Geotechnol. 2013, 31, 40–70. [Google Scholar] [CrossRef]
- Chukhrov, F.V. Crystallochemical nature of Co-Ni asbolane. Int. Geol. Rev. 1982, 24, 598–604. [Google Scholar] [CrossRef]
- Manceau, A.; Gorshkov, A.I.; Drits, V.A. Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part II. Information from EXAFS spectroscopy and electron and X-ray diffraction. Am. Mineral. 1992, 77, 1144–1157. [Google Scholar]
- Dubinin, A.V.; Uspenskaya, T.Y.; Gavrilenko, G.M.; Rashidov, V.A. Geochemistry and Genesis of Fe–Mn Mineralization in Island Arcs in the West Pacific Ocean. Geochem. Int. 2008, 46, 1206–1227. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.V. Iron Hydroxides in Soils: A Review of Publications. Eurasian Soil Sci. 2010, 43, 1244–1254. [Google Scholar] [CrossRef]
- Carlson, L.; Schwertmann, U. Natural occurrence of feroxyhite (δ-FeOOH). Clays Clay Miner. 1980, 28, 272–280. [Google Scholar] [CrossRef]
- Burns, R.G.; Burns, V.M. Authigenic oxides. In The Sea; Emiliani, C., Ed.; J. Wiley & Sons, Inc.: Hoboken, NJ, USA, 1981; Volume 7, pp. 875–914. [Google Scholar]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003. [Google Scholar] [CrossRef]
- Drits, V.A.; Sakharov, B.A.; Salyn, A.L.; Manceau, A. Structural model for ferrihydrite. Clay Miner. 1993, 28, 185–207. [Google Scholar] [CrossRef]
- Taitel-Goldman, N.; Singer, A. High-resolution transmission electron microscopy study of newly formed sediments in the Atlantis II Deep Red Sea. Clays Clay Miner. 2001, 49, 174–182. [Google Scholar] [CrossRef]
- Bogdanov, Y.A.; Vikent’ev, I.V.; Lein, A.Y.; Bogdanova, O.Y.; Sagalevich, A.M.; Sivtsov, A.V. Low-Temperature Hydrothermal Deposits in the Rift Zone of the Mid-Atlantic Ridge. Geol. Ore Depos. 2008, 50, 135–152. [Google Scholar] [CrossRef]
- Buckley, H.A.; Bevan, J.C.; Brown, K.M.; Johnson, L.R.; Farmer, V.C. Glauconite and celadonite: Two separate mineral series. Mineral. Mag. 1978, 42, 373–382. [Google Scholar] [CrossRef]
- Aspandiar, M.F.; Eggleton, R.A. Weathering of chlorite; II, Reactions and products in microsystems controlled by solution avenues. Clays Clay Miner. 2002, 50, 699–709. [Google Scholar] [CrossRef]
- Palin, E.J.; Dove, M.T.; Hernández-Laguna, A.; Sainz-Díaz, C.I. A computational investigation of the Al/Fe/Mg order-disorder behavior in the dioctahedral sheet of phyllosilicates. Am. Mineral. 2004, 89, 164–175. [Google Scholar] [CrossRef]
- Seyfried, W.E.; Shanks, W.C. Alteration of the upper oceanic crust at low temperatures. In Hydrogeology of the Oceanic Lithosphere; Davis, E., Elderfield, H., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 451–494. [Google Scholar]
- Obasi, C.C.; Terry, D.O., Jr.; Myer, G.H.; Grandstaff, D.E. Glauconite Composition and Morphology, Shocked Quartz, and the Origin of the Cretaceous(?) Main Fossiliferous Layer (MFL) in Southern New Jersey, U.S.A. J. Sediment. Res. 2011, 81, 479–494. [Google Scholar] [CrossRef]
- Baldermann, A.; Dietzel, M.; Mavromatis, V.; Mittermayr, F.; Warr, L.N.; Wemmer, K. The role of Fe on the formation and diagenesis of interstratified glauconite-smectite and illite-smectite: A case study of Upper Cretaceous shallow-water carbonates. Chem. Geol. 2017, 453, 21–34. [Google Scholar] [CrossRef]
- Margeta, K.; Logar, N.Z.; Šiljeg, M.; Farkas, A. Natural Zeolites in Water Treatment—How Effective is Their Use. In Water Treatment; Elshorbagy, W., Ed.; InTech: London, UK, 2013. [Google Scholar] [CrossRef]
- Ijima, A.; Harada, K. Authigenic zeolites in zeolitic palagonite tuffs on Oahu, Hawaii. Am. Mineral. 1969, 54, 182–197. [Google Scholar]
- Ciciszwili, G.W.; Andronikaszwili, T.G.; Kirkow, G.N.; Filizowa, Ł.D. Natural Zeolites; WNT: Warszawa, Poland, 1990. (In Polish) [Google Scholar]
- Dubinin, A.V. Geochemistry of rare earth elements in oceanic phillipsites. Lithol. Miner. Resour. 2000, 35, 101–108. [Google Scholar] [CrossRef]
- Stonecipher, S. Natural Zeolites: Occurrence, Properities, Use; Pergamon Press: Oxford, UK, 1978; pp. 221–234. [Google Scholar]
- Neuhoff, P.S.; Rogers, K.L.; Stannius, L.S.; Bird, D.K.; Pederson, A.K. Regional very low-grade metamorphism of basaltic lavas, Disko-Nuussuaq region, West Greenland. Lithos 2006, 92, 33–54. [Google Scholar] [CrossRef]
- Voudouris, P.; Psimis, I.; Mavrogonatos, C.; Kanellopoulos, C.; Kati, M.; Chlekou, E. Amethyst occurrences in Tertiary volcanic rocks of Greece: Mineralogical and genetic implications. Bull. Geol. Soc. Greece 2013, 47, 477–486. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Miller, L. Zeolite minerals from the North Shore of the Minas Basin, Nova Scotia. Atl. Geol. 2002, 38, 11–28. [Google Scholar] [CrossRef]
- Hughes, J.M.; Rakovan, J.F. Structurally robust, chemically diverse: Apatite and apatite supergroup minerals. Elements 2015, 11, 165–170. [Google Scholar] [CrossRef]
- Bouzari, F.; Hart, C.J.R.; Bissig, T.; Barker, S. Hydrothermal Alteration Revealed by Apatite Luminescence and Chemistry: A Potential Indicator Mineral for Exploring Covered Porphyry Copper Deposits. Econ. Geol. 2016, 111, 1397–1410. [Google Scholar] [CrossRef] [Green Version]
- Marino, E.; González, F.J.; Somoza, L.; Lunar, R.; Ortega, L.; Vázquez, J.T.; Reyes, J.; Bellido, E. Strategic and rare elements in Cretaceous-Cenozoic cobalt-rich ferromanganese crusts from seamounts in the Canary Island Seamount Province (northeastern tropical Atlantic). Ore Geol. Rev. 2017, 87, 41–61. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A.; Mikesell, M.; Mizell, K.; Glenn, C.R.; Wood, R. Marine Phosphorites as Potential Resources for Heavy Rare Earth Elements and Yttrium. Minerals 2016, 6, 88. [Google Scholar] [CrossRef]
- Sha, L.K.; Chappell, B.W. Apatite chemical composition determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochim. Cosmochim. Acta 1999, 63, 3861–3881. [Google Scholar] [CrossRef]
- Guptha, M.V.; Banerjee, R.; Mergulhao, L. On the nature of the calcareous substrate of ferromanganese crust from the Vityaz Fracture Zone, Central Indian Ridge: Inferences on paleoceanography. Geo-Mar. Lett. 2002, 22, 12–18. [Google Scholar] [CrossRef]
- Nishi, K.; Usui, A.; Nakasato, Y.; Yasuda, H. Formation age of the dual structure and environmental change recorded in hydrogenetic ferromanganese crusts from Northwest and Central Pacific seamounts. Ore Geol. Rev. 2017, 87, 62–70. [Google Scholar] [CrossRef]
Id | Description |
---|---|
DR6-9 | slightly weathered and crushed Fe-Mn crust; thickness up to 10 mm |
DR6-9/2 | yellowish-white mineral layer within the basalt-crust border zone; thickness up to 3 mm |
DR6-9/3 | medium weathered basalt |
DR6-10/1 | black-brownish minerals separated from the interior part of the thick (~45 mm) crust |
DR6-10/2 | highly weathered and slightly phosphatized basalt |
DR6-10 | black-brownish mineral mixture from the interior part of the crust |
DR6-10/4 | black-brownish mineral mixture from the interior part of the crust |
DR6-11/1 | black minerals (~2 mm thick) with a small white-yellowish dendrite-like forms (zeolites) separated from the upper part of the thick (~40 mm) crust |
DR6-11/2 | yellowish-brown phosphatized mineral mixture from the down part of the crust |
DR6-11/3 | black-brownish mineral mixture from the bottom part of the thick crust sample |
Sample Description | Unit | DR6-9/3 | DR6-10/2 | DR6-9/2 | DR6-11/2 |
---|---|---|---|---|---|
Medium Weathered Basalt | Highly Weathered and Slightly Phosphatized Basalt | Yellowish-White Zeolitized Mineral Mixture Basalt-Crust Border Zone | Yellowish-Brown Phosphatized Mineral Mixture Crusts Interior | ||
SiO2 | [wt. %] | 43.25 | 38.14 | 44.66 | 25.91 |
Al2O3 | 15.00 | 12.64 | 12.00 | 8.89 | |
FeOt 1 | 18.91 | 18.35 | 17.60 | 17.64 | |
MnO | 0.43 | 0.51 | 5.61 | 11.30 | |
TiO2 | 2.00 | 2.10 | 0.95 | 2.17 | |
Cr2O3 | 0.12 | 0.10 | 0.01 | - | |
CaO | 13.23 | 17.06 | 7.61 | 21.20 | |
Na2O | 1.17 | 0.88 | 1.83 | 0.75 | |
K2O | 1.32 | 4.78 | 4.50 | 1.97 | |
MgO | 3.90 | 1.29 | 2.28 | 2.51 | |
P2O5 | 0.22 | 3.50 | 1.73 | 5.19 | |
S | 0.02 | 0.11 | 0.19 | 0.40 | |
Cl− | 0.06 | 0.06 | 0.06 | 0.28 | |
Sr | [ppm] | 292 | 608 | 371 | 1150 |
Ba | 437 | - | 124 | 890 | |
Ni | 438 | 304 | 4522 | 7061 | |
Cu | 292 | 456 | 2708 | 1911 | |
Zn | 263 | 304 | 731 | 1054 | |
Pb | 73 | 76 | 166 | 489 | |
V | 101 | 101 | 134 | 202 | |
As | 0 | 23 | - | 40 | |
Rb | 27 | 55 | 27 | 25 | |
Zr | 81 | 96 | 110 | 235 | |
Y | 314 | 181 | 31 | 1220 | |
Nb | 7 | 10 | - | - | |
Nb/Y | 0.022 | 0.055 | - | - | |
Zr/Y | 0.26 | 0.54 | 3.55 | 0.19 | |
Ti/Y | 38.09 | 69.64 | 184.26 | 10.65 | |
Zr/Ti | 0.007 | 0.008 | 0.019 | 0.018 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciąg, Ł.; Zawadzki, D.; Kozub-Budzyń, G.A.; Piestrzyński, A.; Kotliński, R.A.; Wróbel, R.J. Mineralogy of Cobalt-Rich Ferromanganese Crusts from the Perth Abyssal Plain (E Indian Ocean). Minerals 2019, 9, 84. https://doi.org/10.3390/min9020084
Maciąg Ł, Zawadzki D, Kozub-Budzyń GA, Piestrzyński A, Kotliński RA, Wróbel RJ. Mineralogy of Cobalt-Rich Ferromanganese Crusts from the Perth Abyssal Plain (E Indian Ocean). Minerals. 2019; 9(2):84. https://doi.org/10.3390/min9020084
Chicago/Turabian StyleMaciąg, Łukasz, Dominik Zawadzki, Gabriela A. Kozub-Budzyń, Adam Piestrzyński, Ryszard A. Kotliński, and Rafał J. Wróbel. 2019. "Mineralogy of Cobalt-Rich Ferromanganese Crusts from the Perth Abyssal Plain (E Indian Ocean)" Minerals 9, no. 2: 84. https://doi.org/10.3390/min9020084
APA StyleMaciąg, Ł., Zawadzki, D., Kozub-Budzyń, G. A., Piestrzyński, A., Kotliński, R. A., & Wróbel, R. J. (2019). Mineralogy of Cobalt-Rich Ferromanganese Crusts from the Perth Abyssal Plain (E Indian Ocean). Minerals, 9(2), 84. https://doi.org/10.3390/min9020084