Heavy Mineral Variability in the Yellow River Sediments as Determined by the Multiple-Window Strategy
Abstract
:1. Introduction
2. Regional Setting on Yellow River Sediment
3. Materials and Methods
4. Results
4.1. Sediment Particle Size Characteristics
4.2. Heavy Mineral Concentration of Different Grain Sizes
4.3. Heavy Mineral Species Distribution in Different Grain Sizes
4.4. Heavy Mineral Indices in Different Grain Size Fractions
4.5. Similarity Analysis of Heavy Mineral Characteristics in the Yellow River Sediments
5. Discussions
5.1. Heavy Mineral Distribution in the Yellow River Sediments
5.2. Variation of Heavy Mineral Distribution in Multiple-Window Grains
5.3. Heavy Mineral End-Members of Different Grain Sizes of the Yellow River
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ren, M.E.; Shi, Y.L. Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea. Cont. Shelf Res. 1986, 6, 785–810. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Allison, M.A. Large-river delta-front estuaries as natural “recorders” of global environmental change. Proc. Natl. Acad. Sci. USA 2009, 106, 8085–8092. [Google Scholar] [CrossRef] [PubMed]
- Milliman, J.D.; Beardsley, R.C.; Yang, Z.S.; Limeburner, R. Modern Huanghe derived muds on the outer shelf of the East China Sea: Identification and potential transport mechanisms. Cont. Shelf Res. 1985, 4, 175–188. [Google Scholar] [CrossRef]
- Yellow River Conservancy Commission, Ministry of Water Resources. Yellow River Sediment Bulletin; Yellow River Conservancy Commission, Ministry of Water Resources: Zhengzhou, China, 2017. (In Chinese)
- Hori, K.; Saito, Y.; Zhao, Q.; Cheng, X.; Wang, P.; Sato, Y.; Li, C. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China. Geomorphology 2001, 41, 233–248. [Google Scholar] [CrossRef]
- Yang, S.Y.; Youn, J.S. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments. Mar. Geol. 2007, 243, 229–241. [Google Scholar] [CrossRef]
- Liu, J.; Saito, Y.; Kong, X.; Wang, H.; Xiang, L.H.; Wen, C.; Nakashima, R. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last ~13,000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years. Quat. Sci. Rev. 2010, 29, 2424–2438. [Google Scholar] [CrossRef]
- Xing, F.; Wang, Y.P.; Wang, H.V. Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea. Mar. Geol. 2012, 291, 192–210. [Google Scholar] [CrossRef]
- Milliman, J.D.; Yang, Z.S. Chinese-U.S. sediment source-to-sink research in the east China and Yellow Seas: A brief history. Cont. Shelf Res. 2014, 90, 2–4. [Google Scholar] [CrossRef]
- Zhou, X.; Li, A.; Jiang, F.; Lu, J. Effects of grain size distribution on mineralogical and chemical compositions: A case study from size-fractional sediments of the Huanghe (Yellow River) and Changjiang (Yangtze River). Geol. J. 2015, 50, 414–433. [Google Scholar] [CrossRef]
- Yang, S.Y.; Jung, H.S.; Lim, D.; Li, C.X. A review on the provenance discrimination of sediments. Earth-Sci. Rev. 2003, 63, 93–120. [Google Scholar] [CrossRef]
- Bian, C.W.; Jiang, W.S.; Quan, Q.; Wang, T.; Greatbatch, R.J.; Li, W. Distributions of suspended sediment concentration in the Yellow Sea and the East China Sea based on field surveys during the four seasons of 2011. J. Mar. Syst. 2013, 121–122, 24–35. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, S.; Pan, S.; Yi, L.; Jiang, C. Sediment variability and transport in the littoral area of the abandoned Yellow River Delta, northern Jiangsu. J. Geogr. Sci. 2014, 24, 717–730. [Google Scholar] [CrossRef]
- Li, G.X.; Qiao, L.L.; Dong, P.; Ma, Y.Y.; Xu, J.S.; Liu, S.D.; Liu, Y.; Li, J.C.; Li, P.; Ding, D.; et al. Hydrodynamic condition and suspended sediment diffusion in the Yellow Sea and East China Sea. J. Geophys. Res. Oceans 2016, 121, 6204–6222. [Google Scholar] [CrossRef] [Green Version]
- Morton, A.C. Heavy minerals in provenance studies. In Provenance of Arenites; Zuffa, G.G., Ed.; NATO Science Series C; Reidel: Dordrecht, The Netherlands, 1985; pp. 249–277. [Google Scholar]
- Foucault, A.; Stanley, D.J. Late Quaternary palaeoclimatic oscillations in East Africa recorded by heavy minerals in the Nile delta. Nature 1989, 339, 44–46. [Google Scholar] [CrossRef]
- Vezzoli, G.; Garzanti, E.; Limonta, M.; Andò, S.; Yang, S. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets. Geomorphology 2016, 261, 177–192. [Google Scholar] [CrossRef]
- Andò, S.; Garzanti, E.; Padoan, M.; Limonta, M. Corrosion of heavy minerals during weathering and diagenesis: A catalogue for optical analysis. Sediment. Geol. 2012, 280, 165–178. [Google Scholar] [CrossRef]
- Garzanti, E. The maturity myth in sedimentology and provenance analysis. J. Sediment. Res. 2017, 87, 353–365. [Google Scholar] [CrossRef]
- Yue, W.; Jin, B.F.; Zhao, B.C. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: Implication for provenance evolution of the Yangtze Delta. Sediment. Geol. 2018, 364, 42–52. [Google Scholar] [CrossRef]
- Chen, L.R. Sedimentary Mineralogy of the China Sea; Maritime Press: Beijing, China, 2008; pp. 12–17, (In Chinese with English Abstract). [Google Scholar]
- Schuiling, R.D.; De Meijer, R.J.; Riezebos, H.J.; Scholten, M.J. Grain size distribution of different minerals in a sediment as a function of their specific density. Geol. Mijnb. 1985, 64, 199–203. [Google Scholar]
- Garzanti, E.; Andò, S.; Vezzoli, G. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth Planet. Sci. Lett. 2008, 273, 138–151. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S.; Vezzoli, G. Grain-size dependence of sediment compositionand environmental bias in provenance studies. Earth Planet. Sci. Lett. 2009, 277, 422–432. [Google Scholar] [CrossRef]
- Krippner, A.; Meinhold, G.; Morton, A.C.; Russell, E.; von Eynatten, H. Grain-size dependence of garnet composition revealed by provenance signatures of modern stream sediments from the Western Hohe Tauern (Austria). Sediment. Geol. 2015, 321, 25–38. [Google Scholar] [CrossRef]
- Lim, D.; Jung, H.S.; Choi, J.Y. REE partitioning in riverine sediments around the Yellow Sea and its importance in shelf sediment provenance. Mar. Geol. 2014, 357, 12–24. [Google Scholar] [CrossRef]
- Pan, B.T.; Pang, H.L.; Gao, H.S.; Garzanti, E.; Zou, Y.; Liu, X.P.; Li, F.Q.; Jia, Y.X. Heavy-mineral analysis and provenance of Yellow River sediments around the China Loess Plateau. J. Asian Earth Sci. 2016, 127, 1–11. [Google Scholar] [CrossRef]
- Lin, X.T.; Li, W.R.; Shi, Z.B. Characteristics of mineralogy in the clastic sediments from the Yellow River provenance, China. Mar. Geol. Quat. Geol. 2003, 23, 17–21, (In Chinese with English Abstract). [Google Scholar]
- Ye, Q.C.; Lu, Z.C.; Yang, Y.F. River Topography in the Lower Yellow River; Science Press: Beijing, China, 1990; (In Chinese with English Abstract). [Google Scholar]
- Jin, B.F.; Yue, W.; Wang, K.S. Chemical composition of detrital amphibole in the sedimenta of the Huanghe River, Liao River and Yalu River, and its implication for sediment provenance. Acta Oceanol. Sin. 2014, 36, 11–21, (In Chinese with English Abstract). [Google Scholar]
- Bird, A.; Stevens, T.; Rittner, M.; Vermeesch, P.; Carter, A.; Andò, S.; Garzanti, E.; Lu, H.Y.; Nie, J.S.; Zeng, L.; et al. Quaternary dust source variation across the Chinese Loess Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 435, 254–264. [Google Scholar] [CrossRef]
- Nie, J.; Stevens, T.; Rittner, M.; Stockli, D.; Garzanti, E.; Limonta, M.; Lu, H. Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment. Nat. Commun. 2015, 6, 8511. [Google Scholar] [CrossRef]
- Peng, W.B.; Nie, J.S.; Wang, Z.; Stevens, T. A major change in precipitation gradient on the Chinese Loess Plateau at the Pliocene-Quaternary boundary. J. Asian Earth Sci. 2018, 155, 134–138. [Google Scholar] [CrossRef]
- Bloemsma, M.R.; Zabel, M.; Stuut, J.B.W.; Tjallingii, R.; Collins, J.A.; Weltje, G.J. Modelling the joint variability of grain size and chemical composition in sediments. Sediment. Geol. 2012, 280, 135–148. [Google Scholar] [CrossRef]
- Von Eynatten, H.; Tolosana-Delgado, R.; Karius, V.; Bachmann, K.; Caracciolo, L. Sediment generation in humid Mediterranean setting: Grain-size and source-rock control on sediment geochemistry and mineralogy (Sila Massif, Calabria). Sediment. Geol. 2016, 336, 68–80. [Google Scholar] [CrossRef]
- Wang, Z.B.; Yang, S.Y.; Li, R.H.; Zhang, Z.X.; Li, J.; Bai, F.L.; Li, C. Detrital mineral composition of the sediments from Huanghe and its hydrodynamic environmental constrains. Mar. Geol. Quat. Geol. 2010, 30, 73–85, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Gao, W.H.; Gao, S.; Wang, D.D.; Zhao, Y.Y.; Zhu, D.; Xu, Z. Sediment Source Information of Different Catchments in the Sedimentary Records of the Abandoned Yellow River: Heavy Mineral and Geochemical Analyses. Sci. Geogr. Sin. 2015, 12, 18. [Google Scholar]
- Pang, H.L.; Pan, B.T.; Garzanti, E.; Gao, H.S.; Zhao, X.; Chen, D.B. Mineralogy and geochemistry of modern Yellow River sediments: Implications for weathering and provenance. Chem. Geol. 2018, 488, 76–86. [Google Scholar] [CrossRef]
- Garzanti, E.; Vezzoli, G. A classification of metamorphic grains in sands based on their composition and grade. J. Sediment. Res. 2003, 73, 830–837. [Google Scholar] [CrossRef]
- Mange, M.A.; Maurer, H.F.W. Heavy Minerals in Colour; Chapman and Hall: London, UK, 1992. [Google Scholar]
- Jin, B.F. Influencing Factors and Significance of the Skewness Coefficient in Grain Size Analysis. Mar. Sci. 2012, 36, 129–135, (In Chinese with English Abstract). [Google Scholar]
- Morton, A.; Hurst, A. Correlation of sandstones using heavy minerals: An example from the Statfjord Formation of the Snorre Field, northern North Sea. Geol. Soc. Lond. Spec. Publ. 1995, 89, 3–22. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S. Heavy mineral concentration in modern sands: Implications for provenance interpretation. Dev. Sedimentol. 2007, 58, 517–545. [Google Scholar]
- Morton, A.C.; Hallsworth, C.R. Processes controlling the composition of heavy mineral assemblages in the sandstones. Sediment. Geol. 1999, 121, 3–29. [Google Scholar] [CrossRef]
- Deng, G.N. The similarity measure in clustering. J. Northeast Dianli Univ. 2013, 33, 156–161, (In Chinese with English Abstract). [Google Scholar]
- Yang, S.Y.; Li, C.X.; Jung, H.S.; Lee, H.J. Discrimination of geochemical compositions between the Changjiang and the Huanghe sediments and its application for the identification of sediment source in the Jiangsu coastal plain, China. Mar. Geol. 2002, 186, 229–241. [Google Scholar] [CrossRef]
- Garzanti, E.; Vezzoli, G.; Andò, S.; France-Lanord, C.; Singh, S.K.; Foster, G. Sand petrology and focused erosion in collision orogens: The Brahmaputra case. Earth Planet. Sci. Lett. 2004, 220, 157–174. [Google Scholar] [CrossRef]
- Garzanti, E.; Vezzoli, G.; Ando, S.; Paparella, P.; Clift, P.D. Petrology of Indus River sands: A key to interpret erosion history of the Western Himalayan Syntaxis. Earth Planet. Sci. Lett. 2005, 229, 287–302. [Google Scholar] [CrossRef]
- Garzanti, E.; Resentini, A.; Andò, S.; Vezzoli, G.; Pereira, A.; Vermeesch, P. Physical controls on sand composition and relative durability of detrital minerals during long-distance littoral and eolian transport (coastal Namibia). Sedimentology 2015, 62, 971–996. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X.; Wang, Y. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities. Glob. Planet. Chang. 2007, 57, 331–354. [Google Scholar] [CrossRef]
- Sun, B.Y. Detrital mineral assemblages in the Huanghe, Changjiang and Zhujiang River delta sediments. Mar. Geol. Quat. Geol. 1990, 10, 23–34, (In Chinese with English Abstract). [Google Scholar]
- Bateman, R.M.; Catt, J.A. Provenance and palaeoenvironmental interpretation of superficial deposits, with particular reference to post-depositional modification of heavy mineral assemblages. Dev. Sedimentol. 2007, 58, 151–188. [Google Scholar]
- Malusà, M.G.; Resentin, A.; Garzanti, E. Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res. 2016, 31, 1–19. [Google Scholar] [CrossRef]
- Komar, P.D.; Reimers, C.E. Grain shape effects on settling rates. J. Geol. 1978, 86, 193–209. [Google Scholar] [CrossRef]
- Krippner, A.; Meinhold, G.; Morton, A.C.; Schönig, J.; von Eynatten, H. Heavy minerals and garnet geochemistry of stream sediments andbedrocks from the Almklovdalen area, Western Gneiss Region, SW Norway: Implications for provenance analysis. Sediment. Geol. 2016, 336, 96–105. [Google Scholar] [CrossRef]
- Jin, B.F.; Zhang, Y.J.; Song, J. Characteristics of Mineral Chemistry and Formation of the Micro-nodules in the First Stiff Clay Layer in the Yangtze River Delta. Mar. Geol. Quat. Geol. 2007, 27, 9–15, (In Chinese with English Abstract). [Google Scholar]
- Andò, S.; Vignola, P.; Garzanti, E. Raman counting: A new method to determine provenance of silt. Rendiconti Lincei 2011, 22, 327–347. [Google Scholar] [CrossRef]
- Fielding, L.; Najman, Y.; Millar, I.; Butterworth, P.; Garzanti, E.; Vezzoli, G.; Kneller, B. The initiation and evolution of the River Nile. Earth Planet. Sci. Lett. 2018, 489, 166–178. [Google Scholar] [CrossRef]
Grain Size Parameter | HBZ11 | HBZ12 | HLJ2 | HH6 | HKL5 | HKZ9 | HHK1 | HHK2 |
---|---|---|---|---|---|---|---|---|
Mean grain size/Φ | 3.49 | 4.60 | 4.16 | 4.39 | 3.84 | 4.16 | 6.15 | 5.67 |
Standard deviation/σ1 | 0.39 | 0.72 | 0.34 | 0.83 | 0.75 | 0.28 | 1.25 | 0.99 |
Skewness/SKI | 0.02 | 0.46 | 0.12 | 0.5 | 0.37 | 0.20 | 0.43 | 0.52 |
Kurtosis/KG | 1.37 | 1.57 | 1.50 | 2.19 | 2.30 | 2.05 | 1.11 | 1.21 |
Samples | Grain Size/Φ | GSC | HMC | Amp | Ep | Micas | SM | FeM | HMS |
---|---|---|---|---|---|---|---|---|---|
HBZ11 | WG(1.5–6.0) | 98.45 | 4.32 | 1.94/44.97 | 0.55/12.62 | 0.08/1.93 | 0.70/16.26 | 0.88/20.39 | 21 |
MG(3.0–3.5) | 63.62 | 2.53 | 55.88 | 13.07 | 0.98 | 11.44 | 16.34 | 14 | |
SG(3.5–4.0) | 19.85 | 7.13 | 52.65 | 15.23 | 0.99 | 16.89 | 11.26 | 14 | |
CG(3.0–4.0) | 83.46 | 4.62 | 54.37 | 14.08 | 0.99 | 13.99 | 13.96 | 14 | |
HBZ12 | WG(1.5–6.0) | 89.06 | 1.49 | 0.48/32.20 | 0.23/15.29 | 0.03/1.82 | 0.26/17.79 | 0.44/29.33 | 24 |
MG(3.5–4.0) | 36.7 | 0.66 | 41.22 | 18.05 | 2.93 | 16.1 | 20.24 | 17 | |
SG(4.0–4.5) | 30.42 | 0.63 | 25.78 | 14.06 | 0.26 | 19.79 | 35.68 | 20 | |
CG(3.0–4.0) | 39.52 | 1.24 | 41.45 | 17.71 | 3.55 | 15.78 | 20.02 | 19 | |
HH6 | WG(1.5–6.0) | 91.16 | 3.3 | 1.86/50.36 | 0.61/16.52 | 0.10/2.66 | 0.21/9.72 | 0.58/15.57 | 25 |
MG(4.0–4.5) | 44.67 | 5.71 | 52.21 | 17.81 | 0.3 | 5.94 | 14.46 | 20 | |
SG(3.5–4.0) | 39.01 | 1.51 | 61.65 | 8.94 | 10.35 | 2.12 | 13.88 | 14 | |
CG(3.0–4.0) | 41.58 | 1.42 | 58.91 | 8.49 | 13.97 | 2.92 | 13.63 | 17 | |
HLJ2 | WG(2.5–6.0) | 98.51 | 0.75 | 0.21/28.14 | 0.13/17.04 | 0.03/3.64 | 0.13/16.79 | 0.21/28.11 | 27 |
MG(4.0–4.5) | 49.1 | 0.85 | 26.88 | 18.01 | 0.81 | 18.28 | 31.18 | 22 | |
SG(3.5–4.0) | 38.86 | 0.44 | 39.09 | 13.68 | 9.21 | 12.9 | 20.08 | 24 | |
CG(3.0–4.0) | 40.16 | 0.42 | 38.84 | 13.33 | 10.44 | 12.6 | 19.85 | 24 | |
HKL5 | WG(2.5–6.0) | 96.98 | 6.57 | 2.08/31.70 | 1.27/19.28 | 0.05/0.72 | 1.15/17.63 | 0.84/25.07 | 27 |
MG(3.0–3.5) | 36.43 | 1.89 | 53.27 | 17.17 | 1.23 | 8.17 | 15.94 | 18 | |
SG(3.5–4.0) | 35.92 | 7.81 | 36.09 | 23.4 | 0.23 | 19.32 | 10.83 | 18 | |
CG(3.0–4.0) | 72.35 | 4.89 | 39.47 | 22.17 | 0.43 | 17.13 | 17.28 | 21 | |
HKZ9 | WG(2.5–6.0) | 99.05 | 0.95 | 0.43/45.61 | 0.11/11.55 | 0.07/6.95 | 0.10/10.51 | 0.18/19.14 | 28 |
MG(4.0–4.5) | 59.85 | 1.17 | 48.11 | 11.08 | 3.02 | 11.46 | 19.77 | 20 | |
SG(3.5–4.0) | 30.2 | 0.63 | 47.86 | 10.61 | 10.61 | 7.26 | 17.88 | 22 | |
CG(3.0–4.0) | 30.54 | 0.69 | 45.63 | 10.13 | 14.75 | 6.9 | 17.1 | 22 | |
HHK1 | WG(1.5–6.0) | 63.67 | 0.21 | 0.05/24.68 | 0.03/14.27 | 0.01/5.46 | 0.03/15.52 | 0.07/33.93 | 25 |
MG(5.0–6.0) | 39.52 | 0.25 | 23.63 | 16.74 | 2.66 | 15.34 | 32.55 | 23 | |
SG(4.0–4.5) | 13.3 | 0.24 | 29.91 | 13.55 | 2.56 | 18.66 | 30.43 | 21 | |
CG(3.0–4.0) | 2.14 | 1.13 | 28.5 | 8.15 | 29.39 | 6.87 | 24.45 | 20 | |
HHK2 | WG(1.5–6.0) | 75.95 | 0.57 | 0.22/39.44 | 0.11/19.07 | 0.02/3.71 | 0.07/12.14 | 0.12/21.84 | 22 |
MG(5.0–6.0) | 37.72 | 0.47 | 27.42 | 17.53 | 0.62 | 17.94 | 30.31 | 20 | |
SG(4.0–4.5) | 19.26 | 1.07 | 53.28 | 18.03 | 3.55 | 8.2 | 15.57 | 16 | |
CG(3.0–4.0) | 4.04 | 1.25 | 45.53 | 7.6 | 22.93 | 3.31 | 18.99 | 17 |
Samples | Grain Size/Φ | SM/UM | GZi | ZTR |
---|---|---|---|---|
HBZ11 | 2.0–2.5 | 0 | — | 0 |
2.5–3.0 | 0.02 | 100 | 0 | |
3.0–3.5 | 0.21 | 100 | 0 | |
3.5–4.0 | 0.32 | 100 | 0 | |
4.0–4.5 | 1.27 | 80.39 | 4.30 | |
4.5–5.0 | 0.61 | 67.44 | 4.73 | |
5.0–6.0 | 1.26 | 41.67 | 9.77 | |
(2.0–6.0) | 0.27 | 95.23 | 0.41 | |
HLJ2 | 2.5–3.0 | 0.01 | 100 | 0.32 |
3.0–3.5 | 0.03 | 100 | 0.45 | |
3.5–4.0 | 0.27 | 94.05 | 1.07 | |
4.0–4.5 | 0.66 | 87.88 | 2.15 | |
4.5–5.0 | 0.82 | 88.14 | 1.27 | |
5.0–6.0 | 0.36 | 76.00 | 2.05 | |
(2.5–6.0) | 0.49 | 88.93 | 1.61 | |
HHK1 | <2.0 | 0.02 | 100 | 0 |
2.0–2.5 | 0.14 | 0 | 0.28 | |
2.5–3.0 | 0.05 | 100 | 0 | |
3.0–3.5 | 0.03 | 100 | 0.28 | |
3.5–4.0 | 0.17 | 100 | 0.85 | |
4.0–4.5 | 0.58 | 95.35 | 0.51 | |
4.5–5.0 | 0.66 | 78.46 | 2.61 | |
5.0–6.0 | 0.58 | 70.69 | 3.13 | |
(2.0–6.0) | 0.37 | 48.76 | 1.64 |
Samples/WG(Φ) | MG(Φ) | SG(Φ) | CG(Φ) |
---|---|---|---|
HBZ11/(1.5–6.0) | (3.0–3.5)/0.982 | (3.5–4.0)/0.986 | (3.0–4.0)/0.988 |
HBZ12/(1.5–6.0) | (3.5–4.0)/0.961 | (4.0–4.5)/0.962 | (3.0–4.0)/0.960 |
HLJ2/(2.5–6.0) | (4.0–4.5)/0.995 | (3.5–4.0)/0.937 | (3.0–4.0)/0.932 |
HH6/(1.5–6.0) | (4.0–4.5)/0.914 | (3.5–4.0)/0.895 | (3.0–4.0)/0.900 |
HKL5/(2.5–6.0) | (3.0–3.5)/0.898 | (3.5–4.0)/0.974 | (3.0–4.0)/0.968 |
HKZ9/(2.5–6.0) | (4.0–4.5)/0.995 | (3.5–4.0)/0.978 | (3.0–4.0)/0.991 |
HHK1/(1.5–6.0) | (5.0–6.0)/0.990 | (4.0–4.5)/0.961 | (3.0–4.0)/0.862 |
HHK2/(1.5–6.0) | (5.0–6.0)/0.935 | (4.0–4.5)/0.964 | (3.0–4.0)/0.919 |
Samples | HBZ11 | HKL5 | HLJ2 | HKZ9 | HH6 | HBZ12 | HHK2 | HHK1 |
---|---|---|---|---|---|---|---|---|
HBZ11 | 1.000 | 0.942 | 0.901 | 0.957 | 0.978 | 0.966 | 0.973 | 0.852 |
HKL5 | 1.000 | 0.950 | 0.887 | 0.897 | 0.972 | 0.951 | 0.870 | |
HLJ2 | 1.000 | 0.916 | 0.880 | 0.969 | 0.951 | 0.959 | ||
HKZ9 | 1.000 | 0.977 | 0.932 | 0.974 | 0.885 | |||
HH6 | 1.000 | 0.930 | 0.974 | 0.838 | ||||
HBZ12 | 1.000 | 0.973 | 0.941 | |||||
HHK2 | 1.000 | 0.906 | ||||||
HHK1 | 1.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, B.; Wang, M.; Yue, W.; Zhang, L.; Wang, Y. Heavy Mineral Variability in the Yellow River Sediments as Determined by the Multiple-Window Strategy. Minerals 2019, 9, 85. https://doi.org/10.3390/min9020085
Jin B, Wang M, Yue W, Zhang L, Wang Y. Heavy Mineral Variability in the Yellow River Sediments as Determined by the Multiple-Window Strategy. Minerals. 2019; 9(2):85. https://doi.org/10.3390/min9020085
Chicago/Turabian StyleJin, Bingfu, Mengyao Wang, Wei Yue, Lina Zhang, and Yanjun Wang. 2019. "Heavy Mineral Variability in the Yellow River Sediments as Determined by the Multiple-Window Strategy" Minerals 9, no. 2: 85. https://doi.org/10.3390/min9020085
APA StyleJin, B., Wang, M., Yue, W., Zhang, L., & Wang, Y. (2019). Heavy Mineral Variability in the Yellow River Sediments as Determined by the Multiple-Window Strategy. Minerals, 9(2), 85. https://doi.org/10.3390/min9020085