Nanocrystalline Principal Slip Zones and Their Role in Controlling Crustal Fault Rheology
Abstract
:1. Introduction
2. Fault Zones, Earthquakes, and the Seismogenic Zone
3. The Physical Properties of Nanophase Materials
4. Nanocrystalline Principal Slip Zones in Natural Faults and in Experiments
4.1. Nanocrystalline Principal Slip Zones in Exposures of Natural Faults
4.2. Nanocrystalline Principal Slip Zones Formed in Fault-Slip Experiments
Mirror-Slip Surfaces in Principal Slip Zones Developed in Calcite Gouge
5. Discussion
5.1. Formation of PSZ Nanostructures, Amorphous Materials, and CPO
5.2. MSS-Bearing PSZs as Indicators for Past Seismic Slip?
5.3. The Role of Nanocrystalline PSZs in Controlling Fault Stability
5.4. Implications for Natural Faulting in the Seismogenic Zone
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banfield, J.F.; Zhang, H.-Z. Nanoparticles in the environment. Rev. Mineral. Geochem. 2001, 44, 1–58. [Google Scholar] [CrossRef]
- Hochella, M.F., Jr. Nanoscience and technology the next revolution in the Earth sciences. Earth Planet. Sci. Lett. 2002, 203, 593–605. [Google Scholar] [CrossRef]
- Hochella, M.F., Jr.; Lower, S.K.; Maurice, P.A.; Penn, R.L.; Sahai, N.; Sparks, D.L.; Twining, B.S. Nanominerals, mineral nanoparticles, and Earth systems. Science 2008, 319, 1631–1635. [Google Scholar] [CrossRef] [PubMed]
- Hochella, M.F., Jr.; Mogk, D.W.; Ranville, J.; Allen, I.C.; Luther, G.W.; Marr, L.C.; McGrail, B.P.; Muruyama, M.; Qafoku, N.P.; Rosso, K.M.; et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 2019, 363, 10. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Huang, C.; Sun, Y.; Wan, Q.; Lu, X.; Lu, S.; He, H.; Wang, X.; Zou, C.; Wu, J.; et al. Nanogeosciences: Research History, Current Status, and Development Trends. J. Nanosci. Nanotechnol. 2017, 17, 5930–5965. [Google Scholar] [CrossRef]
- Wilson, B.; Dewers, T.; Reches, Z.; Brune, J. Particle size and energetics of gouge from earthquake rupture zones. Nature 2005, 434, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Chester, J.S.; Chester, F.M.; Kronenberg, A.K. Fracture surface energy of the Punchbowl fault, San Andreas system. Nature 2005, 437, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Tanaka, H.; Song, S.; Wang, C.; Hung, J.; Tsai, Y.; Mori, J.; Song, Y.; Yeh, E.; Soh, W.; et al. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature 2006, 444, 473–476. [Google Scholar] [CrossRef]
- Sibson, R.H. Earthquakes and rock deformation in crustal fault zones. Annu. Rev. Earth Planet. Sci. 1986, 14, 149–175. [Google Scholar] [CrossRef]
- Sibson, R.H. Thickness of the seismic slip zone. Bull. Seismol. Soc. Am. 2003, 93, 1169–1178. [Google Scholar] [CrossRef]
- Tjong, S.; Chen, H. Nanocrystalline materials and coatings. Mater. Sci. Eng. 2004, 45, 1–88. [Google Scholar] [CrossRef]
- Meyers, M.; Mishra, A.; Benson, D. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556. [Google Scholar] [CrossRef]
- Rogers, B.; Adams, J.; Pennathur, S. Nanotechnology: Understanding Small Systems, 3rd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2015; p. 407. [Google Scholar]
- Rutter, E.; Holdsworth, R.; Knipe, R.; Strachan, R.; Magloughlin, J. The nature and tectonic significance of fault-zone weakening: An introduction. Nat. Tecton. Signif. Fault Zone Weaken. 2001, 186, 1–11. [Google Scholar] [CrossRef]
- Holdsworth, R.E.; Stewart, M.; Imber, J.; Strachan, R.A. The strucure and rheological evolution of reactivated continental fault zones: A review and case study. In Continental Reactivation and Reworking; Miller, J., Holdsworth, R.E., Buick, I.S., Hand, M., Eds.; Geological Society: London, UK, 2001; Volume 184, pp. 115–137. [Google Scholar]
- Brace, W.F.; Kohlstedt, D.L. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res. 1980, 85, 6248–6252. [Google Scholar] [CrossRef]
- Kohlstedt, D.L.; Evans, B.; Mackwell, S.J. Strength of the lithosphere—Constraints imposed by laboratory experiments. J. Geophys. Res. Solid Earth 1995, 100, 17587–17602. [Google Scholar] [CrossRef]
- Sibson, R.H. Fault zone models, heat-flow, and the depth distribution of earthquakes in the continental crust of the united states. Bull. Seismol. Soc. Am. 1982, 72, 151–163. [Google Scholar]
- Sibson, R.H. Continental fault structure and the shallow earthquake source. J. Geol. Soc. 1983, 140, 741–767. [Google Scholar] [CrossRef]
- Sibson, R.H. Roughness at the base of the seismogenic zone—Contributing factors. J. Geophys. Res. 1984, 89, 5791–5799. [Google Scholar] [CrossRef]
- Meissner, R.; Strehlau, J. Limits of stresses in continental crusts and their relation to the depth-frequency distribution of shallow earthquakes. Tectonics 1982, 1, 73–89. [Google Scholar] [CrossRef]
- Scholz, C.H. The brittle-plastic transition and the depth of seismic faulting. Geol. Rundsch. 1988, 77, 319–328. [Google Scholar] [CrossRef]
- Shimamoto, T. The origin of S-C mylonites and a new fault-zone model. J. Struct. Geol. 1989, 11, 51–64. [Google Scholar] [CrossRef]
- Scholz, C.H. The Mechanics of Earthquakes and Faulting, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002; p. 471. [Google Scholar]
- Fagereng, Å.; Toy, V.G.; Rowland, J.V. Geology of the earthquake source: An introduction. Geol. Earthq. Sour. 2011, 359, 1–16. [Google Scholar] [CrossRef]
- Marone, C.; Scholz, C.H. The depth of seismic faulting and the upper transition from stable to unstable regimes. Geophys. Res. Lett. 1988, 15, 621–624. [Google Scholar] [CrossRef]
- Chester, F.M.; Higgs, N.G. Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions. J. Geophys. Res.-Solid Earth 1992, 97, 1859–1870. [Google Scholar] [CrossRef]
- Reinen, L.A.; Tullis, T.E.; Weeks, J.D. Two-mechanism model for frictional sliding of serpentinite. Geophys. Res. Lett. 1992, 19, 1535–1538. [Google Scholar] [CrossRef]
- Chester, F.M. Effects of temperature on friction—Constitutive equations and experiments with quartz gouge. J. Geophys. Res.-Solid Earth 1994, 99, 7247–7261. [Google Scholar] [CrossRef]
- Stewart, M.; Holdsworth, R.; Strachan, R. Deformation processes and weakening mechanisms within the frictional-viscous transition zone of major crustal-scale faults: Insights from the Great Glen Fault Zone, Scotland. J. Struct. Geol. 2000, 22, 543–560. [Google Scholar] [CrossRef]
- Bos, B.; Spiers, C. Fluid-assisted healing processes in gouge-bearing faults: Insights from experiments on a rock analogue system. Pure Appl. Geophys. 2002, 159, 2537–2566. [Google Scholar] [CrossRef]
- Bos, B.; Spiers, C. Frictional-viscous flow of phyllosilicate-bearing fault rock: Microphysical model and implications for crustal strength profiles. J. Geophys. Res.-Solid Earth 2002, 107. [Google Scholar] [CrossRef]
- Niemeijer, A.; Spiers, C. Velocity dependence of strength and healing behaviour in simulated phyllosilicate-bearing fault gouge. Tectonophysics 2006, 427, 231–253. [Google Scholar] [CrossRef]
- Imber, J.; Holdsworth, R.E.; Smith, S.A.F.; Jefferies, S.P.; Collettini, C. Frictional-viscous flow, seismicity and the geology of weak faults: A review and future directions. In Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties; Wibberley, C.A.J., Kurz, W., Imber, J., Holdsworth, R.E., Collettini, C., Eds.; Geological Society: London, UK, 2008; Volume 299, pp. 151–173. [Google Scholar]
- Noda, H.; Shimamoto, T. A rate- and state-dependent ductile flow law of polycrystalline halite under large shear strain and implications for transition to brittle deformation. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Noda, H.; Shimamoto, T. Transient behavior and stability analyses of halite shear zones with an empirical rate-and-state friction to flow law. J. Struct. Geol. 2012, 38, 234–242. [Google Scholar] [CrossRef]
- Nicolas, A.; Fortin, J.; Regnet, J.B.; Verberne, B.A.; Plumper, O.; Dimanov, A.; Spiers, C.J.; Gueguen, Y. Brittle and semibrittle creep of Tavel limestone deformed at room temperature. J. Geophys. Res. Solid Earth 2017, 122, 4436–4459. [Google Scholar] [CrossRef]
- Brace, W.F.; Byerlee, J.D. Stick-slip as a mechanism for earthquakes. Science 1966, 153, 990–992. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, J.H. Time-dependent friction and mechanics of stick-slip. Pure Appl. Geophys. 1978, 116, 790–806. [Google Scholar] [CrossRef]
- Dieterich, J.H. Modeling of rock friction 1. Experimental results and constitutive equations. J. Geophys. Res. 1979, 84, 2161–2168. [Google Scholar] [CrossRef]
- Ruina, A.L. Slip stability and state variable friction laws. J. Geophys. Res. 1983, 88, 359–370. [Google Scholar] [CrossRef]
- Baumberger, T.; Heslot, F.; Perrin, B. Crossover from creep to inertial motion in friction dynamics. Nature 1994, 367, 544–546. [Google Scholar] [CrossRef]
- Rice, J.R.; Ruina, A.L. Stability of steady frictional slipping. J. Appl. Mech. 1983, 50, 343–349. [Google Scholar] [CrossRef]
- Scholz, C.H. Earthquakes and friction laws. Nature 1998, 391, 37–42. [Google Scholar] [CrossRef]
- Sibson, R.H. Fault rocks and fault mechanisms. J. Geol. Soc. 1977, 133, 191–213. [Google Scholar] [CrossRef]
- Chester, F.M.; Chester, J.S. Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California. Tectonophysics 1998, 295, 199–221. [Google Scholar] [CrossRef]
- Mitchell, T.; Faulkner, D. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. J. Struct. Geol. 2009, 31, 802–816. [Google Scholar] [CrossRef]
- Smith, S.A.F.; Billi, A.; Di Toro, G.; Spiess, R. Principal Slip Zones in Limestone: Microstructural Characterization and Implications for the Seismic Cycle (Tre Monti Fault, Central Apennines, Italy). Pure Appl. Geophys. 2011, 168, 2365–2393. [Google Scholar] [CrossRef]
- Barth, N.; Boulton, C.; Carpenter, B.; Batt, G.; Toy, V. Slip localization on the southern Alpine Fault, New Zealand. Tectonics 2013, 32, 620–640. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Xu, Z.; Si, J.; Pei, J.; Li, T.; Huang, Y.; Song, S.; Kuo, L.; Sun, Z.; et al. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics 2013, 584, 23–42. [Google Scholar] [CrossRef]
- Kuo, L.; Hsiao, H.; Song, S.; Sheu, H.; Suppe, J. Coseismic thickness of principal slip zone from the Taiwan Chelungpu fault Drilling Project-A (TCDP-A) and correlated fracture energy. Tectonophysics 2014, 619, 29–35. [Google Scholar] [CrossRef]
- Shigematsu, N.; Kametaka, M.; Inada, N.; Miyawaki, M.; Miyakawa, A.; Kameda, J.; Togo, T.; Fujimoto, K. Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation. Tectonophysics 2017, 696, 52–69. [Google Scholar] [CrossRef]
- Shipton, Z.; Evans, J.; Abercrombie, R.; Brodsky, E.; Abercrombie, R.; McGarr, A.; DiToro, G.; Kanamori, H. The missing sinks: Slip localization in faults, damage zones, and the seismic energy budget. Earthq. Radiat. Energy Phys. Fault. 2006, 170, 217. [Google Scholar] [CrossRef]
- Lockner, D.A.; Byerlee, J.D.; Kuksenko, V.; Ponomarev, A.; Sidorin, A. Quasi-static fault growth and shear fracture energy in granite. Nature 1991, 350, 39–42. [Google Scholar] [CrossRef]
- Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 1998, 26, 643–696. [Google Scholar] [CrossRef]
- Ikari, M.J. Principal slip zones: Precursors but not recorders of earthquake slip. Geology 2015, 43, 955–958. [Google Scholar] [CrossRef] [Green Version]
- Rice, J. Heating and weakening of faults during earthquake slip. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Han, R.; Shimamoto, T.; Hirose, T.; Ree, J.; Ando, J. Ultralow friction of carbonate faults caused by thermal decomposition. Science 2007, 316, 878–881. [Google Scholar] [CrossRef] [PubMed]
- De Paola, N.; Hirose, T.; Mitchell, T.; Di Toro, G.; Viti, C.; Shimamoto, T. Fault lubrication and earthquake propagation in thermally unstable rocks. Geology 2011, 39, 35–38. [Google Scholar] [CrossRef]
- Di Toro, G.; Hirose, T.; Nielsen, S.; Pennacchioni, G.; Shimamoto, T. Natural and experimental evidence of melt lubrication of faults during earthquakes. Science 2006, 311, 647–649. [Google Scholar] [CrossRef] [PubMed]
- Di Toro, G.; Han, R.; Hirose, T.; De Paola, N.; Nielsen, S.; Mizoguchi, K.; Ferri, F.; Cocco, M.; Shimamoto, T. Fault lubrication during earthquakes. Nature 2011, 471, 494–498. [Google Scholar] [CrossRef]
- Platt, J.; Brantut, N.; Rice, J. Strain localization driven by thermal decomposition during seismic shear. J. Geophys. Res. Solid Earth 2015, 120, 4405–4433. [Google Scholar] [CrossRef]
- Chen, J.; Niemeijer, A.; Fokker, P. Vaporization of fault water during seismic slip. J. Geophys. Res. Solid Earth 2017, 122, 4237–4276. [Google Scholar] [CrossRef] [Green Version]
- Couchman, P.R.; Jesser, W.A. Thermodynamic theory of size dependence of melting temperature in metals. Nature 1977, 269, 481–483. [Google Scholar] [CrossRef]
- Fecht, H.J. Defect-induced melting and solid-state amorphization. Nature 1992, 356, 133–135. [Google Scholar] [CrossRef]
- Qi, W.; Wang, M. Size effect on the cohesive energy of nanoparticle. J. Mater. Sci. Lett. 2002, 21, 1743–1745. [Google Scholar] [CrossRef]
- Buffat, P.; Borel, J.P. Size effect on melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287–2298. [Google Scholar] [CrossRef]
- Wang, S.; Cui, Z.; Xia, X.; Xue, Y. Size-dependent decomposition temperature of nanoparticles: A theoretical and experimental study. Physica B 2014, 454, 175–178. [Google Scholar] [CrossRef]
- Wurschum, R.; Herth, S.; Brossmann, U. Diffusion in nanocrystalline metals and alloys—A status report. Adv. Eng. Mater. 2003, 5, 365–372. [Google Scholar] [CrossRef]
- Coble, R.L. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 1963, 34, 1679–1682. [Google Scholar] [CrossRef]
- Ashby, M.F.; Verrall, R.A. Diffusion-accommodated flow and superplasticity. Acta Metall. Mater. 1973, 21, 149–163. [Google Scholar] [CrossRef]
- Rutter, E.H. Kinetics of rock deformation by pressure solution. Philos. Trans. R. Soc. A 1976, 283, 203–219. [Google Scholar] [CrossRef]
- Lu, L.; Sui, M.; Lu, K. Superplastic extensibility of nanocrystalline copper at room temperature. Science 2000, 287, 1463–1466. [Google Scholar] [CrossRef]
- Mohamed, F.; Li, Y. Creep and superplasticity in nanocrystalline materials: Current understanding and future prospects. Mater. Sci. Eng. A Struct. 2001, 298, 1–15. [Google Scholar] [CrossRef]
- Mohamed, F. Deformation mechanism maps for micro-grained, ultrafine-grained, and nano-grained materials. Mater. Sci. Eng. A Struct. 2011, 528, 1431–1435. [Google Scholar] [CrossRef]
- Hall, E.O. The deformation and ageing of mild steel 3. Discussion of results. Proc. Phys. Soc. Lond. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Petch, N.J. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Louchet, F.; Weiss, J.; Richeton, T. Hall-Petch law revisited in terms of collective dislocation dynamics. Phys. Rev. Lett. 2006, 97. [Google Scholar] [CrossRef] [PubMed]
- Carlton, C.E.; Ferreira, P.J. What is behind the inverse Hall-Petch effect in nanocrystalline materials? Acta Mater. 2007, 55, 3749–3756. [Google Scholar] [CrossRef]
- Ma, E. Watching the nanograins roll. Science 2004, 305, 623–624. [Google Scholar] [CrossRef]
- Shan, Z.; Stach, E.; Wiezorek, J.; Knapp, J.; Follstaedt, D.; Mao, S. Grain boundary-mediated plasticity in nanocrystalline nickel. Science 2004, 305, 654–657. [Google Scholar] [CrossRef]
- Carlton, C.E.; Ferreira, P.J. Dislocation motion-induced strain in nanocrystalline materials: Overlooked considerations. Mater. Sci. Eng. A Struct. 2008, 486, 672–674. [Google Scholar] [CrossRef]
- Power, W.L.; Tullis, T.E. The relationship between slickenside surfaces in fine-grained quartz and the seismic cycle. J. Struct. Geol. 1989, 11, 879–893. [Google Scholar] [CrossRef]
- Chester, J.S.; Goldsby, D.L. Microscale Characterization of Natural and Experimental Slip Surfaces Relevant to Earthquake Mechanics; South California Earthquake Center: Los Angeles, CA, USA, 2003. [Google Scholar]
- Kuo, L.; Song, S.; Suppe, J.; Yeh, E. Fault mirrors in seismically active fault zones: A fossil of small earthquakes at shallow depths. Geophys. Res. Lett. 2016, 43, 1950–1959. [Google Scholar] [CrossRef] [Green Version]
- Janssen, C.; Wirth, R.; Rybacki, E.; Naumann, R.; Kemnitz, H.; Wenk, H.; Dresen, G. Amorphous material in SAFOD core samples (San Andreas Fault): Evidence for crush-origin pseudotachylytes? Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Siman-Tov, S.; Aharonov, E.; Sagy, A.; Emmanuel, S. Nanograins form carbonate fault mirrors. Geology 2013, 41, 703–706. [Google Scholar] [CrossRef]
- Kirkpatrick, J.; Rowe, C.; White, J.; Brodsky, E. Silica gel formation during fault slip: Evidence from the rock record. Geology 2013, 41, 1015–1018. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.; Prante, M.; Janecke, S.; Ault, A.; Newell, D. Hot faults: Iridescent slip surfaces with metallic luster document high-temperature ancient seismicity in the Wasatch fault zone, Utah, USA. Geology 2014, 42, 623–626. [Google Scholar] [CrossRef]
- Viti, C.; Brogi, A.; Liotta, D.; Mugnaioli, E.; Spiess, R.; Dini, A.; Zucchi, M.; Vannuccini, G. Seismic slip recorded in tourmaline fault mirrors from Elba Island (Italy). J. Struct. Geol. 2016, 86, 1–12. [Google Scholar] [CrossRef]
- Beckmann, P.; Spizzichino, A. The Scattering of Electromagnetic Waves from Rough Surfaces; Pergamon Press: Oxford, UK, 1963; Volume 4. [Google Scholar]
- Ozawa, K.; Takizawa, S. Amorphous material formed by the mechanochemical effect in natural pseudotachylyte of crushing origin: A case study of the Iida-Matsukawa Fault, Nagano Prefecture, Central Japan. J. Struct. Geol. 2007, 29, 1855–1869. [Google Scholar] [CrossRef]
- De Paola, N.; Holdsworth, R.; Viti, C.; Collettini, C.; Bullock, R. Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation? Earth Planet. Sci. Lett. 2015, 431, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Viti, C. Exploring fault rocks at the nanoscale. J. Struct. Geol. 2011, 33, 1715–1727. [Google Scholar] [CrossRef]
- Sibson, R.H. Generation of pseudotachylyte by ancient seismic faulting. Geophys. J. Int. 1975, 43, 775–794. [Google Scholar] [CrossRef]
- Spray, J.G. Pseudotachylyte controversy—Fact or friction? Geology 1995, 23, 1119–1122. [Google Scholar] [CrossRef]
- Cowan, D. Do faults preserve a record of seismic slip? A field geologist’s opinion. J. Struct. Geol. 1999, 21, 995–1001. [Google Scholar] [CrossRef]
- Rowe, C.; Griffith, W. Do faults preserve a record of seismic slip: A second opinion. J. Struct. Geol. 2015, 78, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Wenk, H.R. Are pseudotachylytes products of fracture or fusion? Geology 1978, 6, 507–511. [Google Scholar] [CrossRef]
- Keulen, N.; Heilbronner, R.; Stünitz, H.; Boullier, A.; Ito, H. Grain size distributions of fault rocks: A comparison between experimentally and naturally deformed granitoids. J. Struct. Geol. 2007, 29, 1282–1300. [Google Scholar] [CrossRef] [Green Version]
- Bullock, R.; De Paola, N.; Holdsworth, R.; Trabucho-Alexandre, J. Lithological controls on the deformation mechanisms operating within carbonate-hosted faults during the seismic cycle. J. Struct. Geol. 2014, 58, 22–42. [Google Scholar] [CrossRef] [Green Version]
- Collettini, C.; Carpenter, B.; Viti, C.; Cruciani, F.; Mollo, S.; Tesei, T.; Trippetta, F.; Valoroso, L.; Chiaraluce, L. Fault structure and slip localization in carbonate-bearing normal faults: An example from the Northern Apennines of Italy. J. Struct. Geol. 2014, 67, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Demurtas, M.; Fondriest, M.; Balsamo, F.; Clemenzi, L.; Storti, F.; Bistacchi, A.; Di Toro, G. Structure of a normal seismogenic fault zone in carbonates: The Vado di Como Fault, Campo Imperatore, Central Apennines (Italy). J. Struct. Geol. 2016, 90, 185–206. [Google Scholar] [CrossRef]
- Siman-Tov, S.; Stock, G.; Brodsky, E.; White, J. The coating layer of glacial polish. Geology 2017, 45, 987–990. [Google Scholar] [CrossRef]
- Smeraglia, L.; Billi, A.; Carminati, E.; Cavallo, A.; Doglioni, C. Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy. Tectonophysics 2017, 712, 156–169. [Google Scholar] [CrossRef]
- Tullis, T.E.; Tullis, J. Experimental rock deformation techniques. In Mineral and Rock Deformation: Laboratory Studies, 36th ed.; Hobbs, B.E., Heard, H.C., Eds.; AGU: Washington, DC, USA, 1986; pp. 297–324. [Google Scholar]
- Niemeijer, A.; Di Toro, G.; Griffith, W.; Bistacchi, A.; Smith, S.; Nielsen, S. Inferring earthquake physics and chemistry using an integrated field and laboratory approach. J. Struct. Geol. 2012, 39, 2–36. [Google Scholar] [CrossRef]
- Ma, S.; Shimamoto, T.; Lu, Y.; Togo, T.; Kitajima, H. A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates. Earthq. Sci. 2014, 27, 469–497. [Google Scholar] [CrossRef] [Green Version]
- Logan, J.M.; Friedman, M.; Higgs, N.; Dengo, C.A.; Shimamoto, T. Experimental studies of simulated gouge and their application to studies of natural fault zones. In Proceedings of the Conference VIII—Analysis of Actual Fault Zones in Bedrock, Menlo Park, CA, USA, 1–5 April 1979; pp. 305–343. [Google Scholar]
- Logan, J.M.; Dengo, C.A.; Higgs, N.G.; Wang, Z.Z. Fabrics of experimental fault zones: Their development and relationship to mechanical behavior. In Fault Mechanics and TRANSPORT Properties in Rocks; Evans, B., Wong, T.-F., Eds.; Academic Press: London, UK, 1992; pp. 33–68. [Google Scholar]
- Yund, R.A.; Blanpied, M.L.; Tullis, T.E.; Weeks, J.D. Amorphous material in high-strain experimental fault gouges. J. Geophys. Res. 1990, 95, 15589–15602. [Google Scholar] [CrossRef]
- Han, R.; Shimamoto, T.; Ando, J.; Ree, J. Seismic slip record in carbonate-bearing fault zones: An insight from high-velocity friction experiments on siderite gouge. Geology 2007, 35, 1131–1134. [Google Scholar] [CrossRef]
- Verberne, B.A.; de Bresser, J.H.P.; Niemeijer, A.R.; Spiers, C.J.; de Winter, D.A.M.; Plumper, O. Nanocrystalline slip zones in calcite fault gouge show intense crystallographic preferred orientation: Crystal plasticity at sub-seismic slip rates at 18–150 °C. Geology 2013, 41, 863–866. [Google Scholar] [CrossRef]
- Verberne, B.A.; Spiers, C.J.; Niemeijer, A.R.; De Bresser, J.H.P.; De Winter, D.A.M.; Plumper, O. Frictional Properties and Microstructure of Calcite-Rich Fault Gouges Sheared at Sub-Seismic Sliding Velocities. Pure Appl. Geophys. 2014, 171, 2617–2640. [Google Scholar] [CrossRef]
- Spagnuolo, E.; Plumper, O.; Violay, M.; Cavallo, A.; Di Toro, G. Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes. Sci. Rep. 2015, 5, 16112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, H.; Shi, F.; Bozhilov, K.; Xia, G.; Reches, Z. Phase transformation and nanometric flow cause extreme weakening during fault slip. Nat. Geosci. 2015, 8, U484–U491. [Google Scholar] [CrossRef]
- Siman-Tov, S.; Aharonov, E.; Boneh, Y.; Reches, Z. Fault mirrors along carbonate faults: Formation and destruction during shear experiments. Earth Planet. Sci. Lett. 2015, 430, 367–376. [Google Scholar] [CrossRef]
- Delle Piane, C.; Piazolo, S.; Timms, N.; Luzin, V.; Saunders, M.; Bourdet, J.; Giwelli, A.; Ben Clennell, M.; Kong, C.; Rickard, W.; et al. Generation of amorphous carbon and crystallographic texture during low-temperature subseismic slip in calcite fault gouge. Geology 2018, 46, 163–166. [Google Scholar] [CrossRef]
- Mercuri, M.; Scuderi, M.; Tesei, T.; Carminati, E.; Collettini, C. Strength evolution of simulated carbonate-bearing faults: The role of normal stress and slip velocity. J. Struct. Geol. 2018, 109, 1–9. [Google Scholar] [CrossRef]
- Toy, V.; Mitchell, T.; Druiventak, A.; Wirth, R. Crystallographic preferred orientations may develop in nanocrystalline materials on fault planes due to surface energy interactions. Geochem. Geophys. Geosys. 2015, 16, 2549–2563. [Google Scholar] [CrossRef] [Green Version]
- Prior, D.; Boyle, A.; Brenker, F.; Cheadle, M.; Day, A.; Lopez, G.; Peruzzo, L.; Potts, G.; Reddy, S.; Spiess, R.; et al. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am. Mineral. 1999, 84, 1741–1759. [Google Scholar] [CrossRef]
- Verberne, B.A.; Chen, J.; Niemeijer, A.R.; de Bresser, J.H.P.; Pennock, G.M.; Drury, M.R.; Spiers, C.J. Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, G.; De Paola, N.; Holdsworth, R.; Bowen, L.; Nielsen, S.; Dempsey, E. Coseismic ultramylonites: An investigation of nanoscale viscous flow and fault weakening during seismic slip. Earth Planet. Sci. Lett. 2019, 516, 164–175. [Google Scholar] [CrossRef]
- Verberne, B.A.; He, C.; Spiers, C.J. Frictional Properties of Sedimentary Rocks and Natural Fault Gouge from the Longmen Shan Fault Zone, Sichuan, China. Bull. Seismol. Soc. Am. 2010, 100, 2767–2790. [Google Scholar] [CrossRef]
- Engelder, J.T. Quartz Fault Gouge: Its Generation and Effect on the Frictional Properties of Sandstone. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 1973. [Google Scholar]
- Viti, C.; Hirose, T. Thermal decomposition of serpentine during coseismic faulting: Nanostructures and mineral reactions. J. Struct. Geol. 2010, 32, 1476–1484. [Google Scholar] [CrossRef]
- Pec, M.; Stünitz, H.; Heilbronner, R.; Drury, M.; de Capitani, C. Origin of pseudotachylites in slow creep experiments. Earth Planet. Sci. Lett. 2012, 355, 299–310. [Google Scholar] [CrossRef]
- Pec, M.; Stünitz, H.; Heilbronner, R.; Drury, M. Semi-brittle flow of granitoid fault rocks in experiments. J. Geophys. Res. Solid Earth 2016, 121, 1677–1705. [Google Scholar] [CrossRef] [Green Version]
- Hadizadeh, J.; Tullis, T.; White, J.; Konkachbaev, A. Shear localization, velocity weakening behavior, and development of cataclastic foliation in experimental granite gouge. J. Struct. Geol. 2015, 71, 86–99. [Google Scholar] [CrossRef]
- Kuo, L.; Song, Y.; Yang, C.; Song, S.; Wang, C.; Dong, J.; Suppe, J.; Shimamoto, T. Ultrafine spherical quartz formation during seismic fault slip: Natural and experimental evidence and its implications. Tectonophysics 2015, 664, 98–108. [Google Scholar] [CrossRef]
- Hayward, K.; Cox, S.; Gerald, J.; Slagmolen, B.; Shaddock, D.; Forsyth, P.; Salmon, M.; Hawkins, R. Mechanical amorphization, flash heating, and frictional melting: Dramatic changes to fault surfaces during the first millisecond of earthquake slip. Geology 2016, 44, 1043–1046. [Google Scholar] [CrossRef]
- Aretusini, S.; Mittempergher, S.; Plumper, O.; Spagnuolo, E.; Gualtieri, A.; Di Toro, G. Production of nanoparticles during experimental deformation of smectite and implications for seismic slip. Earth Planet. Sci. Lett. 2017, 463, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Niemeijer, A. Velocity-dependent slip weakening by the combined operation of pressure solution and foliation development. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Rowe, C.; Lamothe, K.; Rempe, M.; Andrews, M.; Mitchell, T.; Di Toro, G.; White, J.; Aretusini, S. Earthquake lubrication and healing explained by amorphous nanosilica. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Fondriest, M.; Smith, S.; Candela, T.; Nielsen, S.; Mair, K.; Di Toro, G. Mirror-like faults and power dissipation during earthquakes. Geology 2013, 41, 1175–1178. [Google Scholar] [CrossRef] [Green Version]
- Tisato, N.; Di Toro, G.; De Rossi, N.; Quaresimin, M.; Candela, T. Experimental investigation of flash weakening in limestone. J. Struct. Geol. 2012, 38, 183–199. [Google Scholar] [CrossRef]
- Chen, X.; Madden, A.; Bickmore, B.; Reches, Z. Dynamic weakening by nanoscale smoothing during high-velocity fault slip. Geology 2013, 41, 739–742. [Google Scholar] [CrossRef]
- Boneh, Y.; Sagy, A.; Reches, Z. Frictional strength and wear-rate of carbonate faults during high-velocity, steady-state sliding. Earth Planet. Sci. Lett. 2013, 381, 127–137. [Google Scholar] [CrossRef]
- Pozzi, G.; De Paola, N.; Nielsen, S.; Holdsworth, R.; Bowen, L. A new interpretation for the nature and significance of mirror-like surfaces in experimental carbonate-hosted seismic faults. Geology 2018, 46, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Verberne, B.A.; Plumper, O.; de Winter, D.A.M.; Spiers, C.J. Superplastic nanofibrous slip zones control seismogenic fault friction. Science 2014, 346, 1342–1344. [Google Scholar] [CrossRef]
- Engelder, J.T. Cataclasis and generation of fault gouge. Geol. Soc. Am. Bull. 1974, 85, 1515–1522. [Google Scholar] [CrossRef]
- Marone, C.; Scholz, C.H. Particle-size distribution and microstructures within simulated fault gouge. J. Struct. Geol. 1989, 11, 799–814. [Google Scholar] [CrossRef]
- Stünitz, H.; Keulen, N.; Hirose, T.; Heilbronner, R. Grain size distribution and microstructures of experimentally sheared granitoid gouge at coseismic slip rates—Criteria to distinguish seismic and aseismic faults? J. Struct. Geol. 2010, 32, 59–69. [Google Scholar] [CrossRef]
- Kendall, K. The impossibility of communiting small particles by compression. Nature 1978, 272, 710–711. [Google Scholar] [CrossRef]
- Karihaloo, B.L. The impossibility of communiting small particles by compression. Nature 1979, 279, 169–170. [Google Scholar] [CrossRef]
- Griffith, A. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. 1921, 61, 163–198. [Google Scholar] [CrossRef]
- Sammis, C.; Ben-Zion, Y. Mechanics of grain-size reduction in fault zones. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Tao, N.; Wang, Z.; Tong, W.; Sui, M.; Lu, J.; Lu, K. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 2002, 50, 4603–4616. [Google Scholar] [CrossRef]
- Yang, D.; Cizek, P.; Hodgson, P.; Wen, C. Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium. Acta Mater. 2010, 58, 4536–4548. [Google Scholar] [CrossRef]
- Kennedy, L.; White, J. Low-temperature recrystallization in calcite: Mechanisms and consequences. Geology 2001, 29, 1027–1030. [Google Scholar] [CrossRef]
- De Bresser, J.H.P.; Evans, B.; Renner, J. On estimating the strength of calcite rocks under natural conditions. In Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives; De Meer, S., Drury, M.R., de Bresser, J.H.P., Pennock, G.M., Eds.; Geological Society: London, UK, 2002; Volume 200, pp. 309–329. [Google Scholar]
- De Bresser, J.H.P.; Spiers, C.J. Strength characteristics of the r, f, and c slip systems in calcite. Tectonophysics 1997, 272, 1–23. [Google Scholar] [CrossRef]
- Wolf, D.; Okamoto, P.R.; Yip, S.; Lutsko, J.F.; Kluge, M. Thermodynamic parallels between solid-state amorphization and melting. J. Mater. Res. 1990, 5, 286–301. [Google Scholar] [CrossRef]
- Oohashi, K.; Hirose, T.; Kobayashi, K.; Shimamoto, T. The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: Origins and implications for fault creep. J. Struct. Geol. 2012, 38, 39–50. [Google Scholar] [CrossRef]
- Collettini, C.; Viti, C.; Tesei, T.; Mollo, S. Thermal decomposition along natural carbonate faults during earthquakes. Geology 2013, 41, 927–930. [Google Scholar] [CrossRef]
- Ohl, M.; Plümper, O.; Chatzaras, V.; Wallis, D.; Vollmer, C.; Drury, M. Mechanisms of fault mirror formation in carbonate rocks. EarthArXiv 2019. [Google Scholar] [CrossRef]
- Oohashi, K.; Han, R.; Hirose, T.; Shimamoto, T.; Omura, K.; Matsuda, T. Carbon-forming reactions under a reducing atmosphere during seismic fault slip. Geology 2014, 42, 787–790. [Google Scholar] [CrossRef] [Green Version]
- Luque, F.; Pasteris, J.; Wopenka, B.; Rodas, M.; Barrenechea, J. Natural fluid-deposited graphite: Mineralogical characteristics and mechanisms of formation. Am. J. Sci. 1998, 298, 471–498. [Google Scholar] [CrossRef]
- Gao, G.; Mikulski, P.; Harrison, J. Molecular-scale tribology of amorphous carbon coatings: Effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 2002, 124, 7202–7209. [Google Scholar] [CrossRef]
- Penn, R.; Banfield, J. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969–971. [Google Scholar] [CrossRef]
- Niederberger, M.; Colfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287. [Google Scholar] [CrossRef]
- De Yoreo, J.; Gilbert, P.; Sommerdijk, N.; Penn, R.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J.; Navrotsky, A.; Banfield, J.; et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, N.; Colfen, H.; Pinna, N.; Antonietti, M.; Nassif, N. Superstructures of calcium carbonate crystals by oriented attachment. Cryst. Growth Des. 2005, 5, 1317–1319. [Google Scholar] [CrossRef]
- Zhang, H.; Banfield, J. Energy Calculations Predict Nanoparticle Attachment Orientations and Asymmetric Crystal Formation. J. Phys. Chem. Lett. 2012, 3, 2882–2886. [Google Scholar] [CrossRef]
- Zhang, H.; Banfield, J. Interatomic Coulombic interactions as the driving force for oriented attachment. Crystengcomm 2014, 16, 1568–1578. [Google Scholar] [CrossRef]
- De Leeuw, N.; Parker, S. Atomistic simulation of the effect of molecular adsorption of water on the surface structure and energies of calcite surfaces. J. Chem. Soc. Faraday Trans. 1997, 93, 467–475. [Google Scholar] [CrossRef]
- Smith, S.A.F.; Di Toro, G.; Kim, S.; Ree, J.; Nielsen, S.; Billi, A.; Spiess, R. Coseismic recrystallization during shallow earthquake slip. Geology 2013, 41, 63–66. [Google Scholar] [CrossRef]
- Verberne, B.A.; Niemeijer, A.R.; De Bresser, J.H.P.; Spiers, C.J. Mechanical behavior and microstructure of simulated calcite fault gouge sheared at 20–600 °C: Implications for natural faults in limestones. J. Geophys. Res. Solid Earth 2015, 120, 8169–8196. [Google Scholar] [CrossRef]
- Smith, S.A.F.; Nielsen, S.; Di Toro, G. Strain localization and the onset of dynamic weakening in calcite fault gouge. Earth Planet. Sci. Lett. 2015, 413, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Ree, J.; Ando, J.; Han, R.; Shimamoto, T. Coseismic microstructures of experimental fault zones in Carrara marble. J. Struct. Geol. 2014, 66, 75–83. [Google Scholar] [CrossRef]
- Niemeijer, A.; Spiers, C. A microphysical model for strong velocity weakening in phyllosilicate-bearing fault gouges. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Hunfeld, L.; Niemeijer, A.; Spiers, C. Frictional Properties of Simulated Fault Gouges from the Seismogenic Groningen Gas Field Under In Situ P-T -Chemical Conditions. J. Geophys. Res. Solid Earth 2017, 122, 8969–8989. [Google Scholar] [CrossRef]
- Den Hartog, S.; Spiers, C. Influence of subduction zone conditions and gouge composition on frictional slip stability of megathrust faults. Tectonophysics 2013, 600, 75–90. [Google Scholar] [CrossRef]
- Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res. Solid Earth 1995, 100, 13045–13064. [Google Scholar] [CrossRef]
- Chen, J.; Spiers, C. Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model. J. Geophys. Res. Solid Earth 2016, 121, 8642–8665. [Google Scholar] [CrossRef]
- Chen, J.; Niemeijer, A.; Spiers, C. Microphysically Derived Expressions for Rate-and-State Friction Parameters, a, b, and D-c. J. Geophys. Res. Solid Earth 2017, 122, 9627–9657. [Google Scholar] [CrossRef]
- Chen, J.; Niemeijer, A. Seismogenic Potential of a Gouge-filled Fault and the Criterion for Its Slip Stability: Constraints FRom a Microphysical Model. J. Geophys. Res. Solid Earth 2017, 122, 9658–9688. [Google Scholar] [CrossRef]
- Van den Ende, M.P.A.; Chen, J.; Ampuero, J.P.; Niemeijer, A.R. A comparison between rate-and-state friction and microphysical models, based on numerical simulations of fault slip. Tectonophysics 2018, 733, 273–295. [Google Scholar] [CrossRef]
- Zhang, X.; Spiers, C.; Peach, C. Compaction creep of wet granular calcite by pressure solution at 28 °C to 150 °C. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef]
- Pluymakers, A.M.H.; Spiers, C.J. Compaction creep of simulated anhydrite fault gouge by pressure solution: Theory v. experiments and implications for fault sealing. In Rock Deformation from Field, Experiments and Theory: A Volume in Honour of Ernie Rutter; Faulkner, D.R., Mariani, E., Mecklenburgh, J., Eds.; Geological Society, Special Publications: London, UK, 2014; Volume 409. [Google Scholar]
- Nakashima, S. Diffusivity of ions in pore water as a quantitative basis for rock deformation estimates. Tectonophysics 1995, 245, 185–203. [Google Scholar] [CrossRef]
- Plummer, L.N.; Busenberg, E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 °C and 90 °C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim. Cosmochim. Acta 1982, 46, 1011–1040. [Google Scholar] [CrossRef]
- Farver, J.; Yund, R. Volume and grain boundary diffusion of calcium in natural and hot-pressed calcite aggregates. Contrib. Mineral. Petrol. 1996, 123, 77–91. [Google Scholar] [CrossRef]
- Chen, J.; Verberne, B.; Spiers, C. Effects of healing on the seismogenic potential of carbonate fault rocks: Experiments on samples from the Longmenshan Fault, Sichuan, China. J. Geophys. Res. 2015, 120, 5479–5506. [Google Scholar] [CrossRef]
- Chen, J.; Verberne, B.; Spiers, C. Interseismic re-strengthening and stabilization of carbonate faults by “non-Dieterich” healing under hydrothermal conditions. Earth Planet. Sci. Lett. 2015, 423, 1–12. [Google Scholar] [CrossRef]
- Schubnel, A.; Brunet, F.; Hilairet, N.; Gasc, J.; Wang, Y.; Green, H. Deep-Focus Earthquake Analogs Recorded at High Pressure and Temperature in the Laboratory. Science 2013, 341, 1377–1380. [Google Scholar] [CrossRef] [PubMed]
- Bernard, P.; Lyon-Caen, H.; Briole, P.; Deschamps, A.; Boudin, F.; Makropoulos, K.; Papadimitriou, P.; Lemeille, F.; Patau, G.; Billiris, H.; et al. Seismicity, deformation and seismic hazard in the western rift of Corinth: New insights from the Corinth Rift Laboratory (CRL). Tectonophysics 2006, 426, 7–30. [Google Scholar] [CrossRef]
- Valoroso, L.; Chiaraluce, L.; Piccinini, D.; Di Stefano, R.; Schaff, D.; Waldhauser, F. Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L’Aquila (central Italy) case study. J. Geophys. Res. -Solid Earth 2013, 118, 1156–1176. [Google Scholar] [CrossRef]
- Chiarabba, C.; De Gori, P.; Mele, F. Recent seismicity of Italy: Active tectonics of the central Mediterranean region and seismicity rate changes after the Mw 6.3 L’Aquila earthquake. Tectonophysics 2015, 638, 82–93. [Google Scholar] [CrossRef]
- Fagereng, Å.; Biggs, J. New perspectives on ‘geological strain rates’ calculated from both naturally deformed and actively deforming rocks. J. Struct. Geol. 2018, in press. [Google Scholar] [CrossRef]
- Pfiffner, O.; Ramsay, J. Constraints on geological strain rates—Arguments from finite strain states of naturally deformed rocks. J. Geophys. Res. 1982, 87, 311–321. [Google Scholar] [CrossRef]
- De Bresser, J.H.P.; Ter Heege, J.H.; Spiers, C.J. Grain size reduction by dynamic recrystallization: Can it result in major theological weakening? Int. J. Earth Sci. 2001, 90, 28–45. [Google Scholar] [CrossRef]
Location | Dominant Host Rock Mineralogy | d (nm) | CPO? | Glossy Surface? | Amorphous Material? | Source |
---|---|---|---|---|---|---|
Dixie Valley Thrust, USA | quartz | 10 | √ | √ | Power & Tullis [83] | |
Punchbowl Fault, USA | quartz, feldspar, clays | 4 | √ | Chester & Goldsby [84] | ||
Chelungpu Fault (TCDP borehole C) | quartz, clays | 50 | Ma et al. [8] | |||
Nojima Fault Zone, Japan | quartz, feldspar | 30 | Keulen et al. [100] | |||
Iida-Matsukawa Fault, Japan | quartz, feldspar | 20 | √ | Ozawa & Takizawa [92] | ||
San Andreas Fault (SAFOD main hole) | clays, quartz, feldspar | 50 | √ | √ | Janssen et al. [86] | |
Kfar Gladi Fault, Israel | calcite | 50 | √ | Siman-Tov et al. [87] | ||
Corona Heights Fault, USA | silica, quartz | 10 | √ | √ | √ | Kirkpatrick et al. [88] |
Gubbio Fault, Italy | calcite, clays | 50 | √ | Bullock et al. [101] | ||
Mt. Maggio fault, Italy | calcite | 100 | Collettini et al. [102] | |||
Vado di Corno fault, Italy | calcite, dolomite | 50 | √ | Demurtas et al. [103] | ||
Capolivieri-Porto Azurro shear zone, Italy | tourmaline | 10–100 † | √ | Viti et al. [90] | ||
Hsiaotungshi fault system (borehole), Taiwan | quartz, clays | 50–100 | √ | √ | Kuo et al. [85] | |
Maclure Glacier, USA | feldspar, quartz | 10–100 | √ | √ | Siman-Tov et al. [104] | |
Mt. Vettore Fault, Italy | calcite, clays | 50 | √ | Smeraglia et al. [105] |
Dominant Sample Mineralogy | vmax (m/s) | σn (MPa) | ∑x (m) | d (nm) | CPO? | Glossy Surface(s)? | Amorphous Material? | Source |
---|---|---|---|---|---|---|---|---|
quartz | 10−5 | ~135 | 10−5 | 90 | √ † | Engelder [125] | ||
quartz | 10−2.5 | 7–50 | 10−1 | 10–15 | √ | Yund et al. [111] | ||
quartz, feldspar | 10−2.5–10−6 | 50–75 | 10−2–10−1 | 10–15 | √ | Yund et al. [111] | ||
calcite | 10−2.5 | 15 | 10−2 | ~50 | Yund et al. [111] | |||
dolomite | 10−2.5 | 75 | 10−1 | ~50 | Yund et al. [111] | |||
calcite | 10−2–100 | 1.1–13.4 | 100–101 | 10 | √ | Han et al. [58] | ||
siderite, magnetite | 100 | 0.6–1.3 | 101 | 20–30 | √ | Han et al. [112] | ||
antigorite | 100 | 24.5 | 100 | ~50 | √ | Viti & Hirose [126] | ||
quartz, feldspar | 10−7–10−8 | >103 | 10−3 | 8 | √ | √ | Pec et al. [127,128] | |
calcite | 10−7–10−5 | 50 | 10−3 | 5 | √ | √ | √ †† | Verberne et al. [113,114] |
dolomite | 100 | 28.4 | 10−1 | 10 | √ | Green II et al. [116] | ||
quartz, feldspar | 10−6–10−5 | 25 | 10−2–10−1 | 15–50 | √ | Hadizadeh et al. [129] | ||
quartz, clays | 100 | 1 | 101 | 10–50 | √ | Kuo et al. [130] | ||
quartz, silica | 10−6 | >103 † | 10−3 | 5 | √ | √ | Toy et al. [120] | |
calcite | 10−1–100 | 10 | 10−3–101 | 5–10 | √ | √ | Spagnuolo et al. [115] | |
calcite | 10−1 | 0.47–1.57 | 101 | 45 | √ | Siman−Tov et al. [117] | ||
quartz | 10−7–10−3 ‡ | 92–287 | 10−3 | 10 | √ | √ | Hayward et al. [131] | |
quartz, smectite | 10−4–100 | 5 | 100 | 10–50 | √ | Aretusini et al. [132] | ||
quartz, muscovite | 10−8–10−5 | 120 | 10−4 | 10 | √ | Niemeijer [133] | ||
quartz, muscovite | 10−4 | 120 | 10−4 | 10 | √ | Niemeijer [133] | ||
calcite | 10−7–10−5 | 20–100 | 10−3–10−4 | 10 | Mercuri et al. [119] | |||
calcite | 10−6–10−5 | 45 | 10−1–10−2 | 50 | √ | √ | Delle Piane et al. [118] | |
quartz | 10−4–10−1 | 2.5–5 | 100–101 | 10 | √ | √ | Rowe et al. [134] |
Term | Formula/Value | Source |
---|---|---|
A | 576/3π ≈ 61 | Pluymakers & Spiers [180] |
σ | 50 × 106 Pa | Verberne et al. [140] |
d | 1 × 10−7 m | Figure 6 |
T | 291 to 423 K | Verberne et al. [140] |
Ω | 3.69 × 10−5 m3 mol−1 | Zhang et al. [179] |
f(ϕ) | f(ϕ) ≈ 2ϕ/(1−2ϕ)2 ≈ 1.1 | Pluymakers & Spiers [180] |
Water-assisted diffusive mass transfer: | ||
D | D = 1 × 10−10 m2∙s−1 at T = 298 K Q = 1.5 × 104 J∙mol−1 | Nakashima [181] |
C | Plummer & Busenberg [182] | |
S | 1 to 2 × 10−9 m | Verberne et al. [140] |
Solid-state grain boundary diffusion: | ||
DS | (DS)0 = 1.5 × 10−9 m3∙s−1 Qd = 2.67 × 105 J∙mol−1 | Farver & Yund [183] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verberne, B.A.; Plümper, O.; Spiers, C.J. Nanocrystalline Principal Slip Zones and Their Role in Controlling Crustal Fault Rheology. Minerals 2019, 9, 328. https://doi.org/10.3390/min9060328
Verberne BA, Plümper O, Spiers CJ. Nanocrystalline Principal Slip Zones and Their Role in Controlling Crustal Fault Rheology. Minerals. 2019; 9(6):328. https://doi.org/10.3390/min9060328
Chicago/Turabian StyleVerberne, Berend A., Oliver Plümper, and Christopher J. Spiers. 2019. "Nanocrystalline Principal Slip Zones and Their Role in Controlling Crustal Fault Rheology" Minerals 9, no. 6: 328. https://doi.org/10.3390/min9060328
APA StyleVerberne, B. A., Plümper, O., & Spiers, C. J. (2019). Nanocrystalline Principal Slip Zones and Their Role in Controlling Crustal Fault Rheology. Minerals, 9(6), 328. https://doi.org/10.3390/min9060328