Predominantly Ferruginous Conditions in South China during the Marinoan Glaciation: Insight from REE Geochemistry of the Syn-glacial Dolostone from the Nantuo Formation in Guizhou Province, China
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Primary Deposit Evaluation
4.2. Evaluation of Contamination by Terrestrial Matter
4.3. The Influence of Diagenesis
4.4. Marine Redox Conditions during Nantuo Glaciation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoffman, P.F.; Kaufman, A.J.; Halverson, G.P.; Schrag, D.P. A Neoproterozoic snowball earth. Science 1998, 281, 1342–1346. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Knoll, A.H.; Yuan, X. Miaohe phyton, a possible brown alga from the terminal Proterozoic Doushantuo formation. China J. Paleontol. 1998, 72, 1072–1086. [Google Scholar] [CrossRef]
- Narbonne, G.M. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu. Rev. Earth Planet. Sci. 2005, 33, 421–442. [Google Scholar] [CrossRef]
- Knoll, A.H.; Javaux, E.J.; Hewitt, D.; Cohen, P. Eukaryotic organisms in Proterozoic oceans. Philosz. Trans. R. Soc. B 2006, 361, 1023–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Och, L.M.; Shields-Zhou, G.A. The neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth Sci. Rev. 2012, 110, 26–57. [Google Scholar] [CrossRef]
- Johnson, B.W.; Poulton, S.W.; Goldblatt, C. Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth. Nat. Commun. 2017, 8, 1316. [Google Scholar] [CrossRef] [PubMed]
- Corsetti, F.A.; Olcott, A.N.; Bakermans, C. The biotic response to Neoproterozoic Snowball Earth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 232, 114–130. [Google Scholar] [CrossRef]
- Parfrey, L.W.; Lahr, D.J.G.; Knoll, A.H.; Katz, L.A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl. Acad. Sci. USA 2011, 108, 13624–13629. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Tong, J.; Xiao, S.; Zhu, S.; An, Z.; Tian, L.; Hu, J. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth. Geology 2015, 43, 507–510. [Google Scholar] [CrossRef]
- Vincent, W.F.; Howard-Williams, C. Life on snowball Earth. Science 2000, 287, 2421. [Google Scholar] [CrossRef]
- Vincent, W.F.; Gibson, J.A.E.; Pienitz, V.V.; Broady, P.A.; Hamilton, P.B.; Howard-Williams, C. Ice shelf microbial ecosystems in the high Arctic and implications for life on Snowball Earth. Naturwissenschaften 2000, 87, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, P.F. Cryoconite pans on Snowball Earth: Supraglacial oases for Cryogenian eukaryotes? Geobiology 2016, 14, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Hawes, I.; Jungblut, A.D.; Matys, E.D.; Summons, R.E. The “Dirty Ice” of the McMurdo Ice Shelf: Analogues for biological oases during the Cryogenian. Geobiology 2018, 16, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Pierrehumbert, R.T.; Abbot, D.S.; Voigt, A.; Koll, D. Climate of the Neoproterozoic. Annu. Rev. Earth Planet. Sci. 2011, 39, 417–460. [Google Scholar] [CrossRef] [Green Version]
- Frimmel, H.E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem. Geol. 2009, 258, 338–353. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Zheng, Y.F.; Chen, F.K. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chem. Geol. 2009, 265, 345–362. [Google Scholar] [CrossRef]
- Nothdurft, L.D.; Webb, G.E.; Kamber, B.S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of seawater REE proxy in ancient limestones. Geochim. Cosmochim. Acta 2004, 68, 263–283. [Google Scholar] [CrossRef]
- Shields, G.A.; Webb, G.E. Has the REE composition of seawater changed over geological time? Chem. Geol. 2004, 204, 103–107. [Google Scholar] [CrossRef]
- De Baar, H.J.W.; Schjif, J.; Byrne, R.H. Solution chemistry of the rare earth elements in seawater. Eur. J. Solid State Inorg. Chem. 1991, 28, 357–373. [Google Scholar]
- Bau, M.; Dulski, P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem. Geol. 1999, 155, 77–90. [Google Scholar] [CrossRef]
- Kamber, B.S.; Webb, G.E. The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history. Geochim. Cosmochim. Acta 2001, 65, 2509–2525. [Google Scholar] [CrossRef]
- Wallace, M.W.; Hood, S.; Shuster, A.; Noah, A.G.; Planavsky, J.; Ree, C.P. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth Planet. Sci. Lett. 2017, 466, 12–19. [Google Scholar] [CrossRef]
- Condon, D.; Zhu, M.; Bowring, S.A.; Wang, W.; Yang, A.; Jin, Y. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 2005, 308, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jiang, G.; Han, Y. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova 2008, 20, 289–294. [Google Scholar] [CrossRef]
- Zhang, Q.R.; Chu, X.L.; Feng, L.J. Neoproterozoic glacial records in the Yangtze region, China. In The Geological Record of Neoproterozoic Glaciations; Arnaud, E., Halverson, G.P., Shields-Zhou, G., Eds.; The Geological Society Publishing House: Bath, UK, 2011; pp. 357–366. [Google Scholar]
- Jiang, G.; Shi, X.; Zhang, S.; Wang, Y.; Xiao, S. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551Ma) in South China. Gondwana Res. 2011, 19, 831–849. [Google Scholar] [CrossRef]
- Lang, X.; Chen, J.; Cui, H.; Man, L.; Huang, K.J.; Fu, Y.; Zhou, C.; Shen, B. Cyclic cold climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China. Precambrian Res. 2018, 310, 243–255. [Google Scholar] [CrossRef]
- McLennan, S.M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In Reviews in Mineralogy; Lipin, B.R., McKay, G.A., Eds.; Mineralogical Society of America: Washington, DC, USA, 1989; pp. 170–200. [Google Scholar]
- Lawrence, M.G.; Kamber, B.S. The behavior of the rare earth elements during estuarine mixing revisited. Mar. Chem. 2006, 100, 147–161. [Google Scholar] [CrossRef]
- Tostevin, R.; Shields, G.A.; Tarbuck, G.M.; He, T.; Clarkson, M.O.; Wood, R.A. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem. Geol. 2016, 438, 146–162. [Google Scholar] [CrossRef] [Green Version]
- Elderfield, H.; Upstillgoddard, R.; Sholkovitz, E.R. The rare-earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim. Cosmochim. Acta 1990, 54, 971–991. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Zhou, X. Origin of middle rare earth element enrichments in acid waters of a Canadian High Arctic lake. Geochim. Cosmochim. Acta 1999, 63, 153–165. [Google Scholar] [CrossRef]
- Bolhar, R.; Kamber, B.S.; Moorbath, S.; Fedo, C.M.; Whitehouse, M.J. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett. 2004, 222, 43–60. [Google Scholar] [CrossRef]
- Jansen, M.F.; Nadeau, L.P. The effect of Southern Ocean surface buoyancy loss on the deep-ocean circulation and stratification. J. Phys. Oceanogr. 2016, 46, 3455–3470. [Google Scholar] [CrossRef]
- Gernon, T.M.; Hincks, T.K.; Tyrrell, T.; Rohling, E.J.; Palmer, M.R. Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup. Nat. Geosci. 2016, 9, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, Z. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Res. 2003, 122, 141–158. [Google Scholar] [CrossRef]
- Yu, W.; Algeo, T.J.; Du, Y.; Zhou, Q.; Wang, P.; Xu, Y.; Yuan, L.; Pan, W. Newly discovered Sturtian cap carbonate in the Nanhua Basin, South China. Precambrian Res. 2017, 293, 112–130. [Google Scholar] [CrossRef]
- Goldstein, S.J.; Jacobsen, S.B. Rare-earth elements in river waters. Earth Planet. Sci. Lett. 1988, 89, 35–47. [Google Scholar] [CrossRef]
- Sholkovitz, E.R. The geochemistry of rare earth elements in the Amazon River estuary. Geochim. Cosmochim. Acta 1993, 57, 2181–2190. [Google Scholar] [CrossRef]
- Sholkovitz, E.R. The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat. Geochem. 1995, 1, 1–34. [Google Scholar] [CrossRef]
- Gaillardet, J.; Viers, J.; Dupré, B. Trace elements in river water. In Treatise on Geochemistry; Drever, J.I., Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 5, pp. 225–272. [Google Scholar]
- Poulton, S.W.; Raiswell, R. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments. Chem. Geol. 2005, 218, 203–221. [Google Scholar] [CrossRef]
- Bhatia, M.P.; Kujawinski, E.B.; Das, S.B.; Breier, C.F.; Henderson, P.B.; Charette, M.A. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat. Geosci. 2013, 6, 274–278. [Google Scholar] [CrossRef]
- Tepe, N.; Bau, M. Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: Evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland. Sci. Total Environ. 2014, 488–489, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Tepe, N.; Bau, M. Distribution of rare earth elements and other high field strength elements in glacial meltwaters and sediments from the western Greenland Ice Sheet: Evidence for different sources of particles and nanoparticles. Chem. Geol. 2015, 412, 59–68. [Google Scholar] [CrossRef]
- Zhong, S.; Mucci, A. Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25 °C and 1 atm, and high dissolved REE concentrations. Geochim. Cosmochim. Acta 1995, 59, 443–453. [Google Scholar] [CrossRef]
- Webb, G.E.; Kamber, B.S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochim. Cosmochim. Acta 2000, 64, 1557–1565. [Google Scholar] [CrossRef]
- Kamber, B.S.; Webb, G.E.; Gallagher, M. The rare earth element signal in Archaean microbial carbonate: Information on ocean redox and biogenicity. J. Geol. Soc. Lond. 2014, 171, 745–763. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Zheng, Y.F. Marine carbonate records of terrigenous input into Paleotethyan seawater: Geochemical constraints from Carboniferous limestones. Geochim. Cosmochim. Acta 2014, 141, 508–531. [Google Scholar] [CrossRef]
- Della Porta, G.; Webb, G.E.; McDonald, I. REE patterns of microbial carbonate and cements from Sinemurian (Lower Jurassic) siliceous sponge mounds (Djebel Bou Dahar, High Atlas, Morocco). Chem. Geol. 2015, 400, 65–86. [Google Scholar] [CrossRef]
- Banner, J.L.; Hanson, G.N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochim. Cosmochim. Acta 1990, 54, 3123–3137. [Google Scholar] [CrossRef]
- Webb, G.E.; Nothdurft, L.D.; Kamber, B.S.; Kloprogge, J.T.; Zhao, J.X. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite. Sedimentology 2009, 56, 1433–1463. [Google Scholar] [CrossRef]
- Liu, X.M.; Hardisty, D.S.; Lyons, T.W.; Swart, P.K. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank. Geochim. Cosmochim. Acta 2019, 248, 25–42. [Google Scholar] [CrossRef]
- Bau, M.; Möller, P. Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere lithosphere system. Geochim. Cosmochim. Acta 1993, 57, 2239–2249. [Google Scholar] [CrossRef]
- Haley, B.A.; Klinkhammer, G.P.; McManus, J. Rare earth elements in pore waters of marine sediments. Geochim. Cosmochim. Acta 2004, 68, 1265–1279. [Google Scholar] [CrossRef]
- Auer, G.; Reuter, G.; Hauzenberger, C.A.; Piller, W.E. The impact of transport processes on rare earth element patterns in marine authigenic and biogenic phosphates. Geochim. Cosmochim. Acta 2017, 235, 140–156. [Google Scholar] [CrossRef]
- Bau, M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Hood, A.V.S.; Wallace, M.W. Marine cements reveal the structure of an anoxic, ferruginous Neoproterozoic ocean. J. Geol. Soc. 2014, 171, 741–744. [Google Scholar] [CrossRef]
- Lechte, M.; Wallace, M. Sub-ice shelf ironstone deposition during the Neoproterozoic Sturtian glaciation. Geology 2016, 44, 891–894. [Google Scholar] [CrossRef]
- Hood, A.V.S.; Wallace, M.W. Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of Southern Australia. Precambrian Res. 2015, 261, 96–111. [Google Scholar] [CrossRef]
- Verdel, C.; Phelps, B.; Welsh, K. Rare earth element and 87Sr/86Sr step-leaching geochemistry of central Australian Neoproterozoic carbonate. Precambrian Res. 2018, 310, 229–242. [Google Scholar] [CrossRef]
- Hohl, S.V.; Becker, H.; Jiang, S.Y.; Ling, H.F.; Guo, Q.; Struck, U. Geochemistry of Ediacaran cap dolostones across the Yangtze Platform, South China: Implications for diagenetic modification and seawater chemistry in the aftermath of the Marinoan glaciation. J. Geol. Soc. 2017, 174, 893–912. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Planavsky, N.J.; Jiang, G.; Kendall, B.; Owens, J.D.; Wang, X.; Shi, X.; Anbar, A.D.; Lyons, T.W. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology 2016, 14, 457–468. [Google Scholar] [CrossRef]
Sample No. | Stratigraphic Height (m) | Th | Mn | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | TREE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZK201-1 | 0.07 | 0.389 | 2476 | 2.180 | 5.412 | 0.722 | 3.335 | 0.750 | 0.230 | 1.230 | 0.160 | 0.814 | 0.145 | 0.391 | 0.037 | 0.236 | 0.031 | 15.67 |
ZK201-2 | 0.14 | 0.531 | 3081 | 2.768 | 6.881 | 1.005 | 4.730 | 1.088 | 0.300 | 1.728 | 0.212 | 1.098 | 0.199 | 0.530 | 0.062 | 0.324 | 0.047 | 20.97 |
ZK201-3 | 0.22 | 0.130 | 3054 | 0.957 | 2.219 | 0.289 | 1.219 | 0.184 | 0.130 | 0.416 | 0.044 | 0.258 | 0.043 | 0.110 | 0.013 | 0.091 | 0.011 | 5.98 |
ZK201-4 | 0.37 | 0.357 | 4577 | 1.326 | 3.093 | 0.373 | 1.582 | 0.217 | 0.149 | 0.467 | 0.055 | 0.292 | 0.053 | 0.120 | 0.017 | 0.093 | 0.012 | 7.85 |
ZK201-5 | 0.47 | 0.795 | 6025 | 2.597 | 5.636 | 0.805 | 3.856 | 0.803 | 0.229 | 1.321 | 0.172 | 0.958 | 0.179 | 0.517 | 0.063 | 0.380 | 0.053 | 17.57 |
ZK201-6 | 0.52 | 0.170 | 1774 | 0.536 | 1.246 | 0.154 | 0.697 | 0.071 | 0.043 | 0.241 | 0.024 | 0.143 | 0.025 | 0.059 | 0.007 | 0.044 | 0.006 | 3.30 |
ZK201-7 | 0.55 | 0.485 | 7507 | 2.673 | 5.134 | 0.586 | 2.414 | 0.396 | 0.158 | 0.697 | 0.085 | 0.482 | 0.100 | 0.266 | 0.029 | 0.176 | 0.024 | 13.22 |
ZK201-8 | 0.59 | 0.364 | 7367 | 1.568 | 3.371 | 0.369 | 1.546 | 0.221 | 0.176 | 0.525 | 0.059 | 0.365 | 0.072 | 0.219 | 0.026 | 0.154 | 0.025 | 8.70 |
ZK201-9 | 0.63 | 0.576 | 10890 | 3.736 | 7.690 | 1.025 | 4.774 | 0.980 | 0.530 | 1.502 | 0.200 | 1.027 | 0.219 | 0.642 | 0.074 | 0.415 | 0.056 | 22.87 |
ZK201-10 | 0.72 | 0.236 | 2052 | 1.078 | 2.993 | 0.488 | 2.769 | 0.862 | 0.223 | 1.256 | 0.162 | 0.921 | 0.165 | 0.442 | 0.054 | 0.344 | 0.047 | 11.80 |
ZK201-11 | 0.80 | 2.032 | 1010 | 5.637 | 8.626 | 1.610 | 7.398 | 1.617 | 0.395 | 2.027 | 0.241 | 1.176 | 0.185 | 0.462 | 0.057 | 0.295 | 0.039 | 29.77 |
ZK201-12 | 0.87 | 1.167 | 906 | 5.029 | 5.017 | 1.200 | 5.216 | 0.905 | 0.271 | 1.292 | 0.144 | 0.770 | 0.121 | 0.319 | 0.039 | 0.208 | 0.028 | 20.56 |
ZK201-13 | 0.95 | 0.571 | 3146 | 4.914 | 6.988 | 1.135 | 5.027 | 0.862 | 0.186 | 1.033 | 0.123 | 0.649 | 0.123 | 0.307 | 0.031 | 0.200 | 0.028 | 21.60 |
ZK201-14 | 1.01 | 0.398 | 2548 | 1.795 | 2.962 | 0.439 | 2.061 | 0.378 | 0.155 | 0.768 | 0.088 | 0.432 | 0.079 | 0.215 | 0.027 | 0.182 | 0.023 | 9.60 |
ZK201-15 | 1.07 | 0.098 | 345 | 0.767 | 1.670 | 0.219 | 0.850 | 0.098 | 0.062 | 0.259 | 0.027 | 0.157 | 0.024 | 0.060 | 0.007 | 0.067 | 0.007 | 4.27 |
ZK201-16 | 1.16 | 0.201 | 482 | 1.688 | 3.631 | 0.517 | 2.181 | 0.332 | 0.158 | 0.640 | 0.071 | 0.394 | 0.061 | 0.141 | 0.019 | 0.104 | 0.013 | 9.95 |
ZK201-17 | 1.23 | 0.319 | 4421 | 1.700 | 4.488 | 0.514 | 2.646 | 0.709 | 0.291 | 1.279 | 0.157 | 0.976 | 0.179 | 0.502 | 0.067 | 0.402 | 0.054 | 13.97 |
ZK201-18 | 1.33 | 0.205 | 1116 | 0.705 | 1.646 | 0.215 | 1.005 | 0.181 | 0.096 | 0.357 | 0.049 | 0.291 | 0.054 | 0.181 | 0.021 | 0.139 | 0.018 | 4.96 |
Sample No. | La/La* | Ce/Ce* | Pr/Pr* | Eu/Eu* | BSI | (Dy/Sm)N | (Nd/Yb)N | (Pr/Yb)N | (Pr/Tb)N | (Tb/Yb)N |
---|---|---|---|---|---|---|---|---|---|---|
ZK201-1 | 1.01 | 1.00 | 0.98 | 1.37 | 2.06 | 1.29 | 1.18 | 0.98 | 0.39 | 2.48 |
ZK201-2 | 0.96 | 0.93 | 1.01 | 1.27 | 2.05 | 1.20 | 1.21 | 0.99 | 0.41 | 2.39 |
ZK201-3 | 0.93 | 0.94 | 1.02 | 3.02 | 1.81 | 1.66 | 1.11 | 1.01 | 0.57 | 1.78 |
ZK201-4 | 1.01 | 1.02 | 0.99 | 2.89 | 1.66 | 1.60 | 1.41 | 1.28 | 0.59 | 2.16 |
ZK201-5 | 1.16 | 0.97 | 0.99 | 1.27 | 1.72 | 1.42 | 0.84 | 0.68 | 0.41 | 1.65 |
ZK201-6 | 1.13 | 1.07 | 0.96 | 2.31 | 1.75 | 2.39 | 1.32 | 1.12 | 0.56 | 1.99 |
ZK201-7 | 1.22 | 1.04 | 0.98 | 1.77 | 1.48 | 1.44 | 1.14 | 1.06 | 0.60 | 1.76 |
ZK201-8 | 1.17 | 1.11 | 0.95 | 3.28 | 1.43 | 1.96 | 0.84 | 0.77 | 0.55 | 1.40 |
ZK201-9 | 1.24 | 1.01 | 0.98 | 2.44 | 1.60 | 1.24 | 0.96 | 0.79 | 0.45 | 1.77 |
ZK201-10 | 1.11 | 1.01 | 0.93 | 1.20 | 2.16 | 1.27 | 0.67 | 0.45 | 0.26 | 1.73 |
ZK201-11 | 1.16 | 0.71 | 1.12 | 1.22 | 2.04 | 0.86 | 2.08 | 1.74 | 0.58 | 2.99 |
ZK201-12 | 1.24 | 0.53 | 1.25 | 1.47 | 1.72 | 1.01 | 2.09 | 1.85 | 0.73 | 2.53 |
ZK201-13 | 1.33 | 0.79 | 1.09 | 1.10 | 1.54 | 0.89 | 2.09 | 1.81 | 0.81 | 2.25 |
ZK201-14 | 1.41 | 0.91 | 1.02 | 1.77 | 1.80 | 1.35 | 0.94 | 0.77 | 0.44 | 1.77 |
ZK201-15 | 0.82 | 0.85 | 1.08 | 2.59 | 1.63 | 1.89 | 1.05 | 1.04 | 0.71 | 1.48 |
ZK201-16 | 0.91 | 0.86 | 1.06 | 2.10 | 1.87 | 1.41 | 1.75 | 1.59 | 0.63 | 2.52 |
ZK201-17 | 1.37 | 1.30 | 0.87 | 1.80 | 1.87 | 1.63 | 0.55 | 0.41 | 0.28 | 1.43 |
ZK201-18 | 1.13 | 1.04 | 0.97 | 2.16 | 1.50 | 1.91 | 0.60 | 0.49 | 0.38 | 1.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, S.; Fu, Y.; Long, J. Predominantly Ferruginous Conditions in South China during the Marinoan Glaciation: Insight from REE Geochemistry of the Syn-glacial Dolostone from the Nantuo Formation in Guizhou Province, China. Minerals 2019, 9, 348. https://doi.org/10.3390/min9060348
Gu S, Fu Y, Long J. Predominantly Ferruginous Conditions in South China during the Marinoan Glaciation: Insight from REE Geochemistry of the Syn-glacial Dolostone from the Nantuo Formation in Guizhou Province, China. Minerals. 2019; 9(6):348. https://doi.org/10.3390/min9060348
Chicago/Turabian StyleGu, Shangyi, Yong Fu, and Jianxi Long. 2019. "Predominantly Ferruginous Conditions in South China during the Marinoan Glaciation: Insight from REE Geochemistry of the Syn-glacial Dolostone from the Nantuo Formation in Guizhou Province, China" Minerals 9, no. 6: 348. https://doi.org/10.3390/min9060348
APA StyleGu, S., Fu, Y., & Long, J. (2019). Predominantly Ferruginous Conditions in South China during the Marinoan Glaciation: Insight from REE Geochemistry of the Syn-glacial Dolostone from the Nantuo Formation in Guizhou Province, China. Minerals, 9(6), 348. https://doi.org/10.3390/min9060348