Joint MT and Gravity Inversion Using Structural Constraints: A Case Study from the Linjiang Copper Mining Area, Jilin, China
Abstract
:1. Introduction
2. Joint Inversion Methodology
3. Regularization Inversion Methodology
3.1. L2 Norm Regularization
3.2. L1 Norm Regularization
3.3. Focusing Regularization
3.4. Total Variation Regularization
3.5. Elastic-Net Regularization
4. Synthetic Example
4.1. Comparison Regularization Methods
4.2. Comparison Separate and Joint Inversion
4.3. Noise Effect and Sensitivity Analysis of Elastic-Net Joint Inversion
5. Field Example
5.1. Geologic Background of the Survey Area
5.2. Data Acquisition
5.3. Inversion Models of CSAMT and Gravity Data
5.4. Geological Interpretation of the Mining Area
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Engl, H.W.; Ramlau, R. Regularization of Inverse Problems; Springer: Berlin, Germany, 2015. [Google Scholar]
- Honerkamp, J.; Weese, J. Tikhonovs regularization method for ill-posed problems. A comparison of different methods for the determination of the regularization parameter. Contin. Mech. Thermodyn. 1990, 2, 17–30. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Dsh, B.; Griogolava, I.V. Interaction of ubisemiquinone with the high-potential iron-sulfur center of submitochondrial particle succinate dehydrogenase. EPR study at 240 and 12 degrees K. Biofizika 1977, 22, 734. [Google Scholar] [PubMed]
- Li, Y.G.; Oldenburg, D.W. 3D inversion of magnetic data. Geophysics 1996, 61, 394–408. [Google Scholar] [CrossRef]
- Li, Y.G.; Oldenburg, D.W. Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophys. J. Int. 2003, 152, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Pilkington, M. 3D magnetic imaging using conjugate gradients. Geophysics 1997, 62, 1132–1142. [Google Scholar] [CrossRef]
- Cella, F.; Fedi, M. Inversion of potential field data using the structural index as weighting function rate decay. Geophys. Prospect. 2012, 60, 313–336. [Google Scholar] [CrossRef]
- Paoletti, V.; Ialongo, S.; Florio, G.; Fedi, M.; Cella, F. Self-constrained inversion of potential fields. Geophys. J. Int. 2013, 195, 854–869. [Google Scholar] [CrossRef] [Green Version]
- Chopra, A.; Lian, H. Total variation, adaptive total variation and nonconvex smoothly clipped absolute deviation penalty for denoising blocky images. Pattern Recognit. 2010, 43, 2609–2619. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, M.A.T.; Dias, J.B.; Oliveira, J.P.; Nowak, R.D. On total variation denoising: A new majorization-minimization algorithm and an experimental comparison with wavalet denoising. In Proceedings of the IEEE International Conference on Image Processing (ICIP 2006), Atlanta, GA, USA, 8–11 October 2006; pp. 2633–2636. [Google Scholar]
- Li, Q.; Micchelli, C.A.; Shen, L. A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models. Inverse Probl. 2012, 28, 095003. [Google Scholar] [CrossRef]
- Guitton, A. Blocky regularization schemes for full waveform inversion. Geophys. Prospect. 2012, 60, 870–884. [Google Scholar] [CrossRef]
- Strong, D.; Chan, T. Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 2003, 19, 165–187. [Google Scholar] [CrossRef]
- Daubechies, I.; DeVore, R.; Fornasier, M. Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 2010, 63, 1–38. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Jin, B.T.; Maass, P. Sparsity Regularization for Parameter Identification Problems. Inverse Probl. 2012, 28, 123001. [Google Scholar] [CrossRef]
- Loris, I.; Nolet, G.; Daubechies, I.; Dahlen, F.A. Tomographic inversion using ℓ1-norm regularization of wavelet coefficients. Geophys. J. Int. 2007, 170, 359–370. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Cao, J. On Tikhonov regularization and compressive sensing for seismic signal processing. Math. Models Meth. Appl. Sci. 2012, 22, 1150008. [Google Scholar] [CrossRef]
- Farquharson, C.G.; Oldenburg, D.W.; Routh, P.S. Simultaneous 1D inversion of loop-loop electromagnetic data for magnetic susceptibility and electrical conductivity. Geophysics 2003, 68, 1857–1869. [Google Scholar] [CrossRef]
- Farquharson, C.G. Constructing piecewise-constant models in multidimensional minimum-structure inversions. Geophysics 2008, 73, K1–K9. [Google Scholar] [CrossRef]
- Loke, M.H.; Acworth, I.; Dahlin, T. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor. Geophys. 2003, 34, 182–187. [Google Scholar] [CrossRef]
- Van Zon, T.; Roy-Chowdhury, K. Structural inversion of gravity data using linear programming. Geophysics 2006, 71, J41–J50. [Google Scholar] [CrossRef]
- Anbari, M.E.; Mkhadri, A. Penalized regression combining the L1 norm and a correlation based penalty. Sankhya B 2014, 76, 82–102. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Jin, B.; Lorenz, D.; Schiffler, S. Elastic-net regularization: error estimates and active set methods. Inverse Probl. 2009, 25, 1595–1610. [Google Scholar] [CrossRef]
- Mol, C.D.; Vito, E.D.; Rosasco, L. Elastic-net regularization in learning theory. J. Complex. 2009, 25, 201–230. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Han, B.; Wang, W. Elastic-net regularization for nonlinear electrical impedance tomography with a splitting approach. Appl. Anal. 2018, 2017, 1–17. [Google Scholar] [CrossRef]
- Zhdanov, M.S.; Alfouzan, F.A.; Cox, L.; Alotaibi, A.; Alyousif, M.; Sunwall, D.; Endo, M. Large-Scale 3D Modeling and Inversion of Multiphysics Airborne Geophysical Data: A Case Study from the Arabian Shield, Saudi Arabia. Minerals 2018, 8, 271. [Google Scholar] [CrossRef]
- Tillmann, A.; Stöcker, T. A new approach for the joint inversion of seismic and geoelectric data. In Proceedings of the 63rd EAGE Conference and Technical Exhibition, Amsterdam, The Netherlands, 11–15 June 2000. [Google Scholar]
- Jones, A.G.; Fishwick, S.; Evans, R.L.; Spratt, J.E. Correlation of lithospheric velocity and electrical conductivity for Southern Africa. 2009. Available online: https://www.researchgate.net/publication/252588025_Correlation_of_lithospheric_velocity_and_electrical_conductivity_for_Southern_Africa (accessed on 2 July 2019).
- Hoversten, G.M.; Cassassuce, F.; Gasperikova, E.; Newman, G.A.; Chen, J.; Rubin, Y.; Hou, Z.; Vasco, D. Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data. Geophysics 2006, 71, C1–C13. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.; MacGregor, L. Determination of reservoir properties from the integration of CSEM, seismic, and well-log data. First Break 2006, 25, 53–59. [Google Scholar]
- Gallardo, L.A.; Meju, M.A. Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys. Res. Lett. 2003, 30, 1658. [Google Scholar] [CrossRef]
- Gallardo, L.A.; Meju, M.A. Joint two-dimensional DC resistivity and seismic traveltime inversion with crossgradients constraints. J. Geophys. Res. Solid Earth 2004, 109, 3311–3315. [Google Scholar] [CrossRef]
- Colombo, D.; De Stefano, M. Geophysical modeling via simultaneous joint inversion of seismic, gravity, and electromagnetic data: Application to prestack depth imaging. Lead. Edge 2007, 26, 326–331. [Google Scholar] [CrossRef]
- Hamdan, H.A.; Vafidis, A. Joint inversion of 2D resistivity and seismic travel time data to image saltwater intrusion over karstic areas. Environ. Earth Sci. 2013, 68, 1877–1885. [Google Scholar] [CrossRef]
- Bennington, N.L.; Zhang, H.; Thurber, C.H. Joint inversion of seismic and magnetotelluric data in the park field region of california using the normalized cross-gradient constraint pure and applied. Geophysics 2015, 172, 1033–1052. [Google Scholar]
- Li, T.L.; Zhang, R.Z.; Pak, Y.C. Joint Inversion of magnetotelluric and first-arrival wave seismic traveltime with cross-gradient constraints. J. Jilin Univ. Earth Sci. Ed. 2015, 45, 952–961. [Google Scholar]
- Li, T.L.; Zhang, R.Z.; Pak, Y.C. Multiple joint inversion of geophysical data with sub-region cross-gradient constraints. Chin. J. Geophys. 2016, 59, 2979–2988. [Google Scholar]
- Zhang, R.Z.; Li, T.L.; Deng, H. 2D joint inversion of MT, gravity, magnetic and seismic first-arrival traveltime with cross-gradient constraints. Chin. J. Geophys. 2019, 62, 2139–2149. [Google Scholar]
- Moorkamp, M.; Heincke, B.; Jegen, M.; Roberts, A.W.; Hobbs, R.W. A framework for 3D joint inversion of MT, gravity and seismic refraction data. Geophys. J. Int. 2011, 184, 477–493. [Google Scholar] [CrossRef]
- Gallardo, L.A.; Fontes, S.L.; Meju, M.A.; Buonora, M.P.; de Lugao, P.P. Robust geophysical integration through structure-coupled joint inversion and multispectral fusion of seismic reflection, magnetotelluric, magnetic, and gravity images: Example from Santos Basin, offshore Brazil. Geophysics 2012, 77, B237–B251. [Google Scholar] [CrossRef]
- Linde, N.; Binley, A.; Tryggvason, A.; Pedersen, L.B.; Revil, A. Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar travel-time data. Water Resour. Res. 2006, 42, W12404. [Google Scholar] [CrossRef]
- Linde, N.; Tryggvason, A.; Peterson, J.E.; Hubbard, S.S. Joint inversion of crosshole radar and seismic traveltimes acquired at the South Oyster Bacterial Transport Site. Geophysics 2008, 73, G29–G37. [Google Scholar] [CrossRef] [Green Version]
- Zhdanov, M.S.; Gribenko, A.; Wilson, G. Generalized joint inversion of multimodal geophysical data using Gramian constraints. Geophys. Res. Lett. 2012, 39, L09301. [Google Scholar] [CrossRef]
- Haber, E.; Holtzman Gazit, M. Model Fusion and Joint Inversion. Surv. Geophys. 2013, 34, 675–695. [Google Scholar] [CrossRef]
- deGroot-Hedlin, C.D.; Constable, S.C. Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 1990, 55, 1613–1624. [Google Scholar] [CrossRef]
- Wannamaker, P.E.; Stodt, J.A.; Rijo, L. A stable finite element solution for two-dimensional magnetotelluric modeling. Geophys. J. Int. 1987, 88, 277–296. [Google Scholar] [CrossRef]
- Singh, B. Simultaneous computation of gravity and magnetic anomalies resulting from a 2D object. Geophysics 2002, 67, 801–806. [Google Scholar] [CrossRef]
- Tarantola, A. Inversion problem theory: Methods for data fitting and model parameter estimation. Phys. Earth Planet. Inter. 1987, 57, 350–351. [Google Scholar]
- Byrd, R.H.; Payne, D.A. Convergence of the Iteratively Re-Weighted Least Squares Algorithm for Robust Regression; Johns Hopkins University: Baltimore, MD, USA, 1979. [Google Scholar]
- Wolke, R.; Schwetlick, H. Iteratively reweighted least squares: Algorithms, convergence analysis, and numerical comparisons. SIAM J. Sci. Comput. 1988, 9, 907–921. [Google Scholar] [CrossRef]
- Chartrand, R.; Yin, W. Iteratively reweighted algorithms for compressive sensing. In Proceedings of the 33rd International Conference on Acoustics, Speech, and Signal Processing, Las Vegas, NV, USA, 28 March–4 April 2008; pp. 3869–3872. [Google Scholar]
- Last, B.J.; Kubik, K. Compact gravity inversion. Geophysics 1983, 48, 713–721. [Google Scholar] [CrossRef]
- Zhdanov, M.S. Geophysical Inverse Theory and Regularization Problems; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Rudin, L.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D 1992, 60, 259–268. [Google Scholar] [CrossRef]
Unit | Resistivity Model | Residual Density Model |
---|---|---|
A | 1000 Ω·m | −1000 kg/m3 |
B | 10 Ω·m | 1000 kg/m3 |
C | 100 Ω·m | 0 kg/m3 |
Unit | Resistivity Model | Residual Density Model |
---|---|---|
A | 1000 Ω·m | 700 kg/m3 |
B | 10 Ω·m | 1000 kg/m3 |
C | 100 Ω·m | 0 kg/m3 |
Unit | Resistivity Model | Residual Density Model | Size | |
---|---|---|---|---|
A | 10 Ω·m | 1000 kg/m3 | 1 × 1 km2 | Model 1 |
B | 10 Ω·m | 1000 kg/m3 | 1 × 1 km2 | |
C | 100 Ω·m | 0 kg/m3 | - | |
A | 10 Ω·m | 1000 kg/m3 | 0.5 × 0.5 km2 | Model 2 |
B | 10 Ω·m | 1000 kg/m3 | 0.5 × 0.5 km2 | |
C | 100 Ω·m | 0 kg/m3 | - | |
A | 10 Ω·m | 1000 kg/m3 | 0.2 × 0.2 km2 | Model 3 |
B | 10 Ω·m | 1000 kg/m3 | 0.2 × 0.2 km2 | |
C | 100 Ω·m | 0 kg/m3 | - |
Geological Time | Lithostratigraphic Units | Lithology | Density | Resistivity | Unit | |
---|---|---|---|---|---|---|
Era | Period | Formation | Average (g/cm3) | Average (Ω·m) | ||
Cenozoic | Neogene | Junjianshan (N2j) | Basalt | 2.55 | 500 | B |
Chuandishan (N1c) | Basalt | 2.55 | 506 | B | ||
Tumenzi (N1t) | Basalt | 2.57 | 404 | B | ||
Mesozoic | Triassic | Changbai (T3c) | Tuff | 2.6 | 274 | B |
Paleozoic | Ordovician | Majiagou (Q2m) | Limestone | 2.75 | 3386 | |
Liangjiashan (Q1l) | Micrite | 2.65 | 524 | |||
Cambrian | Caomidian (Є3c) | Limestone | 2.70 | 2975 | ||
Gushan (Є3g) | Schist | 2.69 | 2666 | |||
Proterozoic | Sinian | Wanlong (Z1w) | Limestone | 2.72 | 6244 | |
Qingbaikouan | Diaoyutai (Nhd) | Feldspathic quartz sandstone | 2.62 | 3227 | G | |
Paleoproterozoic | Dalizi (Pt1dl) | Eryun schist with marble | 2.75 | 1140 | E | |
Huashan (Pt1h) | Cloud schist | 2.80 | 1957 | A | ||
Zhenzhumen (Pt1z) | Dolomitic marble | 2.78 | 2615 | A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Li, T.; Zhou, S.; Deng, X. Joint MT and Gravity Inversion Using Structural Constraints: A Case Study from the Linjiang Copper Mining Area, Jilin, China. Minerals 2019, 9, 407. https://doi.org/10.3390/min9070407
Zhang R, Li T, Zhou S, Deng X. Joint MT and Gravity Inversion Using Structural Constraints: A Case Study from the Linjiang Copper Mining Area, Jilin, China. Minerals. 2019; 9(7):407. https://doi.org/10.3390/min9070407
Chicago/Turabian StyleZhang, Rongzhe, Tonglin Li, Shuai Zhou, and Xinhui Deng. 2019. "Joint MT and Gravity Inversion Using Structural Constraints: A Case Study from the Linjiang Copper Mining Area, Jilin, China" Minerals 9, no. 7: 407. https://doi.org/10.3390/min9070407
APA StyleZhang, R., Li, T., Zhou, S., & Deng, X. (2019). Joint MT and Gravity Inversion Using Structural Constraints: A Case Study from the Linjiang Copper Mining Area, Jilin, China. Minerals, 9(7), 407. https://doi.org/10.3390/min9070407