The Darboux Transformation and N-Soliton Solutions of Gerdjikov–Ivanov Equation on a Time–Space Scale
Abstract
:1. Introduction
2. GI Equation on a Time–Space Scale
3. DT of GI Equation on a Time–Space Scale
3.1. Construction of DT on a Time–Space Scale
3.2. Soliton Solutions of the GI Equation on a Time–Space Scale
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilger, S. Analysis on Measure Chains-A Unified Approach to Continuous and Discrete Calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on a Time Scale; Birkhauser: Boston, MA, USA, 2003. [Google Scholar]
- Bohner, M.; Peterson, A. Dynamic Equations on a Time Scale: An Introduction with Applications; Springer Science and Business Media: Berlin, Germany, 2012. [Google Scholar]
- Meng, H.; Wang, L. Multiple periodic solutions in shifts δ ± for an impulsive functional dynamic equation on time scales. Adv. Differ. Equ. 2014, 152, 1–52. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Peterson, A. Dynamic equations on time scales: A survey. J. Comput. Appl. Math. 2002, 141, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Saker, S.H. Oscillation of nonlinear dynamic equations on time scales. Appl. Math. Comput. 2004, 148, 81–91. [Google Scholar] [CrossRef]
- Kosmatov, N. Multi-point boundary value problems on time scales at resonance. J. Math. Anal. Appl. 2006, 323, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.R. Eigenvalue intervals for a two-point boundary value problem on a measure chain. J. Comput. Appl. Math. 2002, 141, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, F.B.; Fenchel, T.M. Theories of Populations in Biological Communities, volume 20 of Lecture Notes in Ecological Studies; Springer: Berlin, Germany, 1997. [Google Scholar]
- Andreasen, V. Multiple Time Scales in the Dynamics of Infectious Diseases; Springer: Berlin/Heidelberg, Germany, 1978. [Google Scholar]
- Bowman, C.; Gumel, A.B.; Dricssche, P. A mathematical model for assessing control strategies against West Nile virus. Bull. Math. Biol. 2005, 67, 1107–1133. [Google Scholar] [CrossRef] [PubMed]
- Atici, F.M.; Biles, D.C.; Lebedinsky, A. An application of time scales to economics. Math. Comput. Model. 2006, 43, 718–726. [Google Scholar] [CrossRef]
- Dryl, M.; Torres, D. A General Delta-Nabla Calculus of Variations on Time Scales with Application to Economics. Int. J. Dyn. Syst. Differ. 2014, 5, 42–71. [Google Scholar] [CrossRef]
- Hovhannisyan, G. Ablowitz–Ladik hierarchy of integrable equations on a time–space scale. J. Appl. Phys. 2014, 55, 102701. [Google Scholar] [CrossRef] [Green Version]
- Hovhannisyan, G.; Bonecutter, L.; Mizer, A. On Burgers equation on a time–space scale. Adv. Differ. Equ. 2015, 289, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Cieslinski, J.L.; Nikiciuk, T.; Wakiewicz, K. The sine-Gordon equation on time scales. J. Math. Anal. Appl. 2015, 423, 1219–1230. [Google Scholar] [CrossRef]
- Cieslinski, J.L. Pseudospherical surfaces on time scales: A geometric definition and the spectral approach. J. Phys. A-Math. Theor. 2007, 40, 12525–12538. [Google Scholar] [CrossRef] [Green Version]
- Cieslinski, J.L. New definitions of exponential, hyperbolic and trigonometric functions on time scales. J. Math. Anal. Appl. 2012, 388, 8–22. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, P.A.; Tuszynski, J.A. Exact solutions of the multidimensional derivative nonlinear Schrodinger equation for many-body systems of criticality. J. Phys. A 1990, 23, 4269. [Google Scholar] [CrossRef]
- Hisakado, M.; Wadati, M. Integrable MultiComponent Hybrid Nonlinear Schrödinger Equations. J. Phys. Soc. Jap. 1995, 64, 408–413. [Google Scholar] [CrossRef]
- Kaup, D.J.; Newell, A.C. An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 1978, 19, 798–801. [Google Scholar] [CrossRef]
- Xu, S.; He, J.; Wang, L. The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A 2011, 44, 6629–6636. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.H.; Lee, Y.C.; Liu, C.S. Integrability of Nonlinear Hamiltonian Systems by Inverse Scattering Method. Phys. Scr. 2007, 20, 490. [Google Scholar] [CrossRef]
- Ren, H.Y.; Li, D.S. Self-adjointness and Conservation Laws of Chen-Lee-Liu Equation. J. Pingdingshan Univ. 2013, 28, 14–17. [Google Scholar]
- Gerdjikov, V.S.; Ivanov, M.I. The quadratic bundle of general form and the nonlinear evolution equations. Bulg. J. Phys. 1983, 10, 35. [Google Scholar]
- Fan, E.G. Darboux transformation and soliton-like solutions for the Gerdjikov–Ivanov equation. J. Phys. A 2000, 33, 6925. [Google Scholar] [CrossRef]
- Gerdjikov, V.S.; Ivanov, M.I. A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures. Bulg. J. Phys. 1983, 10, 130–143. [Google Scholar]
- Pei, L.; Li, B. The Darboux transformation of the Gerdjikov–Ivanov equation from non-zero seed. In Proceedings of the 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 16–18 April 2011; pp. 5320–5323. [Google Scholar]
- Guo, L.; Zhang, Y.; Xu, S. The higher order Rogu’e Wave solutions of the Gerdjikov–Ivanov equation. Phys. Scr. 2014, 89, 240. [Google Scholar] [CrossRef]
- Dai, H.H.; Fan, E.G. Variable separation and algebro-geometric solutions of the Gerdjikov–Ivanov equation. Chaos Soliton. Fract. 2004, 22, 93–101. [Google Scholar] [CrossRef]
- Arshed, S. Two Reliable Techniques for the Soliton Solutions of Perturbed Gerdjikov–Ivanov Equation. Optik 2018, 33, 6925. [Google Scholar] [CrossRef]
- Nematollah, K.; Hossein, J. Analytical solutions of the Gerdjikov–Ivanov equation by using exp(ϕ(ξ))-expansion method. Optik 2017, 139, 72–76. [Google Scholar]
- Cao, C.; Geng, X.; Wang, H. Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable. J. Math. Phys. 2002, 43, 621–643. [Google Scholar] [CrossRef]
- Saburo, K.; Tetsuya, K. Solutions of a derivative nonlinear schrödinger hierarchy and its similarity reduction. Glasgow Math. J. 2005, 47, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Fan, E.G. Integrable evolution systems based on Gerdjikov–Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation. J. Math. Phys. 2000, 41, 7769–7782. [Google Scholar] [CrossRef]
- Fan, E.G. Bi-Hamiltonian Structure and Liouville Integrability for a Gerdjikov–Ivanov Equation Hierarchy. Chinese Phys. Lett. 2001, 18, 1. [Google Scholar]
- Cherniha, R. Galilean-invariant Nonlinear PDEs and their Exact Solutions. J. Nonlinear Math. Phys. 1995, 2, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Calogero, F.; Lillo, S.D. The Eckhaus PDE iψt + ψxx + 2(|ψ|2)xψ + |ψ|4ψ = 0. Inverse Probl. 1999, 3, 633. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Huang, X.; Zhang, Y.; Liu, M.; Fang, Y. The Darboux Transformation and N-Soliton Solutions of Gerdjikov–Ivanov Equation on a Time–Space Scale. Axioms 2021, 10, 294. https://doi.org/10.3390/axioms10040294
Dong H, Huang X, Zhang Y, Liu M, Fang Y. The Darboux Transformation and N-Soliton Solutions of Gerdjikov–Ivanov Equation on a Time–Space Scale. Axioms. 2021; 10(4):294. https://doi.org/10.3390/axioms10040294
Chicago/Turabian StyleDong, Huanhe, Xiaoqian Huang, Yong Zhang, Mingshuo Liu, and Yong Fang. 2021. "The Darboux Transformation and N-Soliton Solutions of Gerdjikov–Ivanov Equation on a Time–Space Scale" Axioms 10, no. 4: 294. https://doi.org/10.3390/axioms10040294
APA StyleDong, H., Huang, X., Zhang, Y., Liu, M., & Fang, Y. (2021). The Darboux Transformation and N-Soliton Solutions of Gerdjikov–Ivanov Equation on a Time–Space Scale. Axioms, 10(4), 294. https://doi.org/10.3390/axioms10040294