Entire Symmetric Functions on the Space of Essentially Bounded Integrable Functions on the Union of Lebesgue-Rohlin Spaces
Abstract
:1. Introduction
2. Preliminaries
2.1. Polynomials
2.2. Holomorphic Functions
2.3. Measure Spaces
- For every measurable set , there exists a set B such that B is identical with A modulo zero, and B is an element of the algebra generated by
- For every pair of points there exists a set such that either or
2.4. Symmetric Functions
2.5. Algebraic Combinations
2.6. Entire Symmetric Functions on
2.7. Entire Symmetric Functions on
3. The Main Result
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Nemirovskii, A.S.; Semenov, S.M. On polynomial approximation of functions on Hilbert space. Mat. USSR Sbornik 1973, 21, 255–277. [Google Scholar] [CrossRef]
- Weyl, H. The classical Groups: Their Invariants and Representations; Princeton University Press: Princenton, NJ, USA, 1973. [Google Scholar]
- van der Waerden, B.L. Modern Algebra; Ungar Publishing: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Macdonald, I.G. Symmetric Functions and Orthogonal Polynomials; University Lecture Series, 12; AMS: Providence, RI, USA, 1998. [Google Scholar]
- González, M.; Gonzalo, R.; Jaramillo, J.A. Symmetric polynomials on rearrangement invariant function spaces. J. Lond. Math. Soc. 1999, 59, 681–697. [Google Scholar] [CrossRef]
- Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces, Vol. I, Sequence Spaces; Springer: Berlin, Germany, 1977. [Google Scholar]
- Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces, Vol. II, Function Spaces; Springer: Berlin, Germany, 1979. [Google Scholar]
- Alencar, R.; Aron, R.; Galindo, P.; Zagorodnyuk, A. Algebras of symmetric holomorphic functions on ℓp. Bull. Lond. Math. Soc. 2003, 35, 55–64. [Google Scholar] [CrossRef]
- Chernega, I.; Holubchak, O.; Novosad, Z.; Zagorodnyuk, A. Continuity and hypercyclicity of composition operators on algebras of symmetric analytic functions on Banach spaces. Eur. J. Math. 2020, 6, 153–163. [Google Scholar] [CrossRef]
- Halushchak, S.I. Spectra of some algebras of entire functions of bounded type, generated by a sequence of polynomials. Carpatian Math. Publ. 2019, 11, 311–320. [Google Scholar] [CrossRef]
- Halushchak, S.I. Isomorphisms of some algebras of analytic functions of bounded type on Banach spaces. Mat. Stud. 2021, 56, 106–112. [Google Scholar] [CrossRef]
- Burtnyak, I.; Chernega, I.; Hladkyi, V.; Labachuk, O.; Novosad, Z. Application of symmetric analytic functions to spectra of linear operators. Carpathian Math. Publ. 2021, 13, 701–710. [Google Scholar] [CrossRef]
- Chernega, I.V. A semiring in the spectrum of the algebra of symmetric analytic functions in the space ℓ1. J. Math. Sci. 2016, 212, 38–45. [Google Scholar] [CrossRef]
- Chernega, I.V.; Fushtei, V.I.; Zagorodnyuk, A.V. Power operations and differentiations associated with supersymmetric polynomials on a Banach space. Carpathian Math. Publ. 2020, 12, 360–367. [Google Scholar] [CrossRef]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. Some algebras of symmetric analytic functions and their spectra. Proc. Edinb. Math. Soc. 2012, 55, 125–142. [Google Scholar] [CrossRef] [Green Version]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. The convolution operation on the spectra of algebras of symmetric analytic functions. J. Math. Anal. Appl. 2012, 395, 569–577. [Google Scholar] [CrossRef]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. A multiplicative convolution on the spectra of algebras of symmetric analytic functions, Rev. Mat. Complut. 2014, 27, 575–585. [Google Scholar] [CrossRef]
- Chernega, I.V.; Zagorodnyuk, A.V. Note on bases in algebras of analytic functions on Banach spaces. Carpathian Math. Publ. 2019, 11, 42–47. [Google Scholar] [CrossRef]
- Jawad, F.; Karpenko, H.; Zagorodnyuk, A. Algebras generated by special symmetric polynomials on ℓ1. Carpathian Math. Publ. 2019, 11, 335–344. [Google Scholar] [CrossRef]
- Jawad, F.; Zagorodnyuk, A. Supersymmetric polynomials on the space of absolutely convergent series. Symmetry 2019, 11, 1111. [Google Scholar] [CrossRef]
- Holubchak, O.M.; Zagorodnyuk, A.V. Topological and algebraic structures on a set of multisets. J. Math. Sci. 2021, 258, 446–454. [Google Scholar] [CrossRef]
- Novosad, Z.; Zagorodnyuk, A. Analytic automorphisms and transitivity of analytic mappings. Mathematics 2020, 8, 2179. [Google Scholar] [CrossRef]
- Holubchak, O.M. Hilbert space of symmetric functions on ℓ1. J. Math. Sci. 2012, 185, 809–814. [Google Scholar] [CrossRef]
- Novosad, Z.; Zagorodnyuk, A. Polynomial automorphisms and hypercyclic operators on spaces of analytic functions. Archiv. Math. 2007, 89, 157–166. [Google Scholar] [CrossRef]
- Martsinkiv, M.; Zagorodnyuk, A. Approximations of symmetric functions on Banach spaces with symmetric bases. Symmetry 2021, 13, 2318. [Google Scholar] [CrossRef]
- Aron, R.; Gonzalo, R.; Zagorodnyuk, A. Zeros of real polynomials. Linearand Multilinear Algebra 2000, 48, 107–115. [Google Scholar] [CrossRef]
- Jawad, F. Note on separately symmetric polynomials on the Cartesian product of ℓ1. Mat. Stud. 2018, 50, 204–210. [Google Scholar] [CrossRef]
- Kravtsiv, V. The analogue of Newton’s formula for block-symmetric polynomials. Int. J. Math. Anal. 2016, 10, 323–327. [Google Scholar] [CrossRef]
- Kravtsiv, V.V. Algebraic basis of the algebra of block-symmetric polynomials on ℓ1⊗ℓ∞. Carpathian Math. Publ. 2019, 11, 89–95. [Google Scholar] [CrossRef]
- Kravtsiv, V.V. Analogues of the Newton formulas for the block-symmetric polynomials. Carpathian Math. Publ. 2020, 12, 17–22. [Google Scholar] [CrossRef]
- Kravtsiv, V.V. Zeros of block-symmetric polynomials on Banach spaces. Mat. Stud. 2020, 53, 206–211. [Google Scholar] [CrossRef]
- Kravtsiv, V.V.; Zagorodnyuk, A.V. Multiplicative convolution on the algebra of block-symmetric analytic functions. J. Math. Sci. 2020, 246, 245–255. [Google Scholar] [CrossRef]
- Kravtsiv, V.; Vasylyshyn, T.; Zagorodnyuk, A. On algebraic basis of the algebra of symmetric polynomials on ℓp(Cn). J. Funct. Spaces 2017, 2017, 4947925. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Symmetric functions on spaces ℓp(Rn) and ℓp(Cn). Carpathian Math. Publ. 2020, 12, 5–16. [Google Scholar] [CrossRef]
- Chernega, I. Symmetric polynomials and holomorphic functions on infinite dimensional spaces. J. Vasyl Stefanyk Precarpathian Natl. Univ. 2015, 2, 23–49. [Google Scholar] [CrossRef] [Green Version]
- Chernega, I.; Zagorodnyuk, A. Unbounded symmetric analytic functions on ℓ1. Math. Scand. 2018, 122, 84–90. [Google Scholar] [CrossRef]
- Hihliuk, A.; Zagorodnyuk, A. Entire analytic functions of unbounded type on Banach spaces and their lineability. Axioms 2021, 10, 150. [Google Scholar] [CrossRef]
- Hihliuk, A.; Zagorodnyuk, A. Algebras of entire functions containing functions of unbounded type on a Banach space. Carpathian Math. Publ. 2021, 13, 426–432. [Google Scholar] [CrossRef]
- Hihliuk, A.; Zagorodnyuk, A. Classes of entire analytic functions of unbounded type on Banach spaces. Axioms 2020, 9, 133. [Google Scholar] [CrossRef]
- Galindo, P.; Vasylyshyn, T.; Zagorodnyuk, A. Symmetric and finitely symmetric polynomials on the spaces ℓ∞ and L∞[0,+∞). Math. Nachr. 2018, 291, 1712–1726. [Google Scholar] [CrossRef]
- Galindo, P.; Vasylyshyn, T.; Zagorodnyuk, A. The algebra of symmetric analytic functions on L∞. Proc. Roy. Soc. Edinburgh Sect. A 2017, 147, 743–761. [Google Scholar] [CrossRef]
- Galindo, P.; Vasylyshyn, T.; Zagorodnyuk, A. Analytic structure on the spectrum of the algebra of symmetric analytic functions on L∞. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2020, 114, 56. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Symmetric polynomials on (Lp)n. Eur. J. Math. 2020, 6, 164–178. [Google Scholar] [CrossRef]
- Vasylyshyn, T.V. Symmetric polynomials on the Cartesian power of Lp on the semi-axis. Mat. Stud. 2018, 50, 93–104. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Algebras of symmetric analytic functions on Cartesian powers of Lebesgue integrable in a power p∈[1,+∞) functions. Carpathian Math. Publ. 2021, 13, 340–351. [Google Scholar] [CrossRef]
- Vasylyshyn, T.V. The algebra of symmetric polynomials on (L∞)n. Mat. Stud. 2019, 52, 71–85. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Symmetric analytic functions on the Cartesian power of the complex Banach space of Lebesgue measurable essentially bounded functions on [0,1]. J. Math. Anal. Appl. 2022, 509, 125977. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Symmetric polynomials on the space of bounded integrable functions on the semi-axis. Int. J. Pure Appl. Math. 2017, 117, 425–430. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Algebras of entire symmetric functions on spaces of Lebesgue measurable essentially bounded functions. J. Math. Sci. 2020, 246, 264–276. [Google Scholar] [CrossRef]
- Aron, R.M.; Falcó, J.; García, D.; Maestre, M. Algebras of symmetric holomorphic functions of several complex variables. Rev. Mat. Complut. 2018, 31, 651–672. [Google Scholar] [CrossRef]
- Aron, R.M.; Falcó, J.; Maestre, M. Separation theorems for group invariant polynomials. J. Geom. Anal. 2018, 28, 393–404. [Google Scholar] [CrossRef]
- Choi, Y.S.; Falcó, J.; García, D.; Jung, M.; Maestre, M. Group invariant separating polynomials on a Banach space. Publ. Mat. 2022, 66, 207–233. [Google Scholar]
- Aron, R.; Galindo, P.; Pinasco, D.; Zalduendo, I. Group-symmetric holomorphic functions on a Banach space. Bull. Lond. Math. Soc. 2016, 48, 779–796. [Google Scholar] [CrossRef]
- García, D.; Maestre, M.; Zalduendo, I. The spectra of algebras of group-symmetric functions. Proc. Edinb. Math. Soc. 2019, 62, 609–623. [Google Scholar] [CrossRef]
- Michael, E. Locally Multiplicatively Convex Topological Algebras; American Mathematical Society: Providence, RI, USA, 1952; Volume 11, 82p. [Google Scholar] [CrossRef]
- Dineen, S. Complex Analysis in Locally Convex Spaces; North-Holland: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1981. [Google Scholar]
- Mujica, J. Complex Analysis in Banach Spaces; North Holland: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Dineen, S. Complex Analysis on Infinite Dimensional Spaces, Monographs in Mathematics; Springer: New York, NY, USA, 1999. [Google Scholar]
- Rohlin, V.A. On the fundamental ideas of measure theory. Am. Math. Soc. Transl. 1952, 71, 1–54. [Google Scholar]
- Bennett, C.; Sharpley, R. Interpolation of Operators; Academic Press: Boston, MA, USA, 1981. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasylyshyn, T.; Zhyhallo, K. Entire Symmetric Functions on the Space of Essentially Bounded Integrable Functions on the Union of Lebesgue-Rohlin Spaces. Axioms 2022, 11, 460. https://doi.org/10.3390/axioms11090460
Vasylyshyn T, Zhyhallo K. Entire Symmetric Functions on the Space of Essentially Bounded Integrable Functions on the Union of Lebesgue-Rohlin Spaces. Axioms. 2022; 11(9):460. https://doi.org/10.3390/axioms11090460
Chicago/Turabian StyleVasylyshyn, Taras, and Kostiantyn Zhyhallo. 2022. "Entire Symmetric Functions on the Space of Essentially Bounded Integrable Functions on the Union of Lebesgue-Rohlin Spaces" Axioms 11, no. 9: 460. https://doi.org/10.3390/axioms11090460
APA StyleVasylyshyn, T., & Zhyhallo, K. (2022). Entire Symmetric Functions on the Space of Essentially Bounded Integrable Functions on the Union of Lebesgue-Rohlin Spaces. Axioms, 11(9), 460. https://doi.org/10.3390/axioms11090460