Turbulent Free Convection and Thermal Radiation in an Air-Filled Cabinet with Partition on the Bottom Wall
Abstract
:1. Introduction
2. Governing Equations and Numerical Method
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Fk–i | view factor between k-th and i-th elements of a cavity |
L | size (m) |
g | gravity acceleration (m/s2) |
k | turbulence kinetic energy (m2/s2) |
h | partition heights (m) |
K | non-dimensional turbulent kinetic energy |
generation/destruction of buoyancy turbulent kinetic energy | |
E | non-dimensional dissipation rate of turbulent kinetic energy |
Rayleigh number | |
average convective Nusselt number | |
radiation parameter | |
Prandtl number | |
average radiative Nusselt number | |
shearing production | |
turbulent Prandtl number | |
Rk | non-dimensional radiosity of the k-th element of an enclosure |
Qrad | non-dimensional net radiative heat flux |
Th | temperature at the left border (K) |
t | time (s) |
Tc | temperature at the right border (K) |
T | temperature (K) |
Θf | non-dimensional temperature of fluid |
Θ | non-dimensional temperature |
u1, u2 | velocity components for x and y axis (m/s) |
U1, U2 | non-dimensional velocity components for X and Y axis |
Θw | non-dimensional temperature of walls |
X, Y | non-dimensional Cartesian coordinates |
ε | dissipation rate of turbulent kinetic energy (m2/s3) |
temperature parameter | |
β | factor of volumetric heat expansion (1/K) |
thermal diffusivity of the wall material (m2/s) | |
air thermal diffusivity (m2/s) | |
thermal diffusivity ratio | |
surface emissivity of inner surfaces | |
air heat conductivity (W/mK) | |
heat conductivity of the wall material (W/mK) | |
heat conductivity ratio | |
ν | kinematic viscosity (m2/s) |
ψ | stream function (m2/s) |
ω | vorticity (s−1) |
turbulent viscosity (m2/s) | |
Ψ | non-dimensional stream function |
new dimensionless independent variables | |
Ω | non-dimensional vorticity |
τ | non-dimensional time |
σ | Stefan–Boltzmann constant (W/m2K4) |
References
- Sharma, A.K.; Velusamy, K.; Balaji, C. Turbulent Natural Convection in an Enclosure with Localized Heating from Below. Int. J. Therm. Sci. 2007, 46, 1232–1241. [Google Scholar] [CrossRef]
- Dixit, H.N.; Babu, V. Simulation of High Rayleigh Number Natural Convection in a Square Cavity Using the Lattice Boltzmann Method. Int. J. Heat Mass Transf. 2006, 49, 727–739. [Google Scholar] [CrossRef]
- Zhuo, C.; Zhong, C. LES-Based Filter-Matrix Lattice Boltzmann Model for Simulating Turbulent Natural Convection in a Square Cavity. Int. J. Heat Fluid Flow 2013, 42, 10–22. [Google Scholar] [CrossRef]
- Miroshnichenko, I.V.; Sheremet, M.A.; Mohamad, A.A. The influence of surface radiation on the passive cooling of a heat-generating element. Energies 2019, 12, 980. [Google Scholar] [CrossRef] [Green Version]
- Baudoin, A.; Saury, D.; Boström, C. Optimized Distribution of a Large Number of Power Electronics Components Cooled by Conjugate Turbulent Natural Convection. Appl. Therm. Eng. 2017, 124, 975–985. [Google Scholar] [CrossRef]
- Ibrahim, A.; Saury, D.; Lemonnier, D. Coupling of Turbulent Natural Convection with Radiation in an Air-Filled Differentially-Heated Cavity at Ra = 1.5 × 109. Comput. Fluids 2013, 88, 115–125. [Google Scholar] [CrossRef]
- Shati, A.K.A.; Blakey, S.G.; Beck, S.B.M. A dimensionless solution to radiation and turbulent natural convection in square and rectangular enclosures. J. Eng. Sci. Technol. 2012, 7, 257–279. [Google Scholar]
- Tian, Y.S.; Karayiannis, T.G. Low turbulence natural convection in an air filled square cavity Part I: The thermal and fluid flow fields. Int. J. Heat Mass Transf. 2000, 43, 849–866. [Google Scholar] [CrossRef]
- Tian, Y.S.; Karayiannis, T.G. Low turbulence natural cosnvection in an air filled square cavity Part II: The turbulence quantities. Int. J. Heat Mass Transf. 2000, 43, 867–884. [Google Scholar] [CrossRef]
- Zhang, X.; Su, G.; Yu, J.; Yao, Z.; He, F. PIV measurement and simulation of turbulent thermal free convection over a small heat source in a large enclosed cavity. Build. Environ. 2015, 90, 105–113. [Google Scholar] [CrossRef]
- Altac, Z.; Ugurlubilek, N. Assessment of turbulence models in natural convection from two- and three-dimensional rectangular enclosures. Int. J. Therm. Sci. 2016, 107, 237–246. [Google Scholar] [CrossRef]
- Shati, A.K.A.; Blakey, S.G.; Beck, S.B.M. An empirical solution to turbulent natural convection and radiation heat transfer in square and rectangular enclosures. Appl. Therm. Eng. 2013, 51, 364–370. [Google Scholar] [CrossRef]
- Miroshnichenko, I.V.; Toilibayev, A.A.; Sheremet, M.A. Simulation of Thermal Radiation and Turbulent Free Convection in an Enclosure with a Glass Wall and a Local Heater. Fluids 2021, 6, 91. [Google Scholar] [CrossRef]
- Cui, H.; An, H.; Wang, W.; Han, Z.; Hu, B.; Xu, F.; Liu, Q.; Saha, S.C. Numerical Study of Mixed Convection and Heat Transfer in Arc-Shaped Cavity with Inner Heat Sources. Appl. Sci. 2023, 13, 1029. [Google Scholar] [CrossRef]
- Serrano-Arellano, J.M.; Belman-Flores, J.; Xamán, J.; M. Aguilar-Castro, K.; V. Macías-Melo, E. Numerical Study of the Double Diffusion Natural Convection inside a Closed Cavity with Heat and Pollutant Sources Placed near the Bottom Wall. Energies 2020, 13, 3085. [Google Scholar] [CrossRef]
- Balam, N.B.; Alam, T.; Gupta, A.; Blecich, P. Higher Order Accurate Transient Numerical Model to Evaluate the Natural Convection Heat Transfer in Flat Plate Solar Collector. Processes 2021, 9, 1508. [Google Scholar] [CrossRef]
- Yao, J.; Yao, Y. Unsteady Flow Oscillations in a 3-D Ventilated Model Room with Convective Heat Transfer. Fluids 2022, 7, 192. [Google Scholar] [CrossRef]
- Ovando-Chacon, G.E.; Rodríguez-León, A.; Ovando-Chacon, S.L.; Hernández-Ordoñez, M.; Díaz-González, M.; Pozos-Texon, F.d.J. Computational Study of Thermal Comfort and Reduction of CO2 Levels inside a Classroom. Int. J. Environ. Res. Public Health 2022, 19, 2956. [Google Scholar] [CrossRef]
- Miroshnichenko, I.V.; Sheremet, M.A. Turbulent Natural Convection Heat Transfer in Rectangular Enclosures Using Experimental and Numerical Approaches: A Review. Renew. Sustain. Energy Rev. 2018, 82, 40–59. [Google Scholar] [CrossRef]
- Qaddah, B.; Soucasse, L.; Doumenc, F.; Mergui, S.; Riviиre, P.; Soufiani, A. Influence of turbulent natural convection on heat transfer in shallow caves. Int. J. Therm. Sci. 2022, 177, 107524. [Google Scholar] [CrossRef]
- Chai, X.; Li, W.; Chen, B.; Liu, X.; Xiong, J.; Cheng, X. Numerical simulation of turbulent natural convection in an enclosure with a curved surface heated from below. Prog. Nucl. Energy 2020, 126, 103392. [Google Scholar] [CrossRef]
- Benyahia, N.; Aksouh, M.; Mataoui, A.; Oztop, H.F. Coupling turbulent natural convection-radiation-conduction in differentially heated cavity with high aspect ratio. Int. J. Therm. Sci. 2020, 158, 106518. [Google Scholar] [CrossRef]
- Fabregat, A.; Pallarès, J. Heat transfer and boundary layer analyses of laminar and turbulent natural convection in a cubical cavity with differently heated opposed walls. Int. J. Heat Mass Transf. 2020, 151, 119409. [Google Scholar] [CrossRef]
- Ampofo, F. Turbulent natural convection of air in a non-partitioned or partitioned cavity with differentially heated vertical and conducting horizontal walls. Exp. Therm. Fluid Sci. 2005, 29, 137–157. [Google Scholar] [CrossRef]
- Priam, S.S.; Ikram, M.M.; Saha, S.; Saha, S.C. Conjugate natural convection in a vertically divided square enclosure by a corrugated solid partition into air and water regions. Therm. Sci. Eng. Prog. 2021, 25, 101036. [Google Scholar] [CrossRef]
- Saha, S.C.; Gu, Y.T. Transient air flow and heat transfer in a triangular enclosure with a conducting partition. Appl. Math. Model. 2014, 38, 3879–3887. [Google Scholar] [CrossRef] [Green Version]
- Kandaswamy, P.; Lee, J.; Hakeem, A.K.A.; Saravanan, S. Effect of baffle–cavity ratios on buoyancy convection in a cavity with mutually orthogonal heated baffles. Int. J. Heat Mass Transf. 2008, 51, 1830–1837. [Google Scholar] [CrossRef]
- Ramesh, N.; Venkateshan, S.P. Effect of surface radiation on natural convection in a square enclosure. J. Thermophys. Heat Transf. 1999, 13, 299–301. [Google Scholar] [CrossRef]
- Balaji, C.; Venkateshan, S.P. Correlations for free convection and surface radiation in a square cavity. Int. J. Heat Fluid Flow 1994, 15, 249–251. [Google Scholar] [CrossRef]
- Boukendil, M.; Abdelbaki, A.; Zrikem, Z. Detailed numerical simulation of coupled heat transfer by conduction, natural convection and radiation through double honeycomb walls. Build. Simul. 2012, 5, 337–344. [Google Scholar] [CrossRef]
- Khatamifar, M.; Lin, W.; Dong, L. Transient conjugate natural convection heat transfer in a differentially-heated square cavity with a partition of finite thickness and thermal conductivity. Case Stud. Therm. Eng. 2021, 25, 100952. [Google Scholar] [CrossRef]
- Wu, W.; Ching, C.Y. Laminar natural convection in an air-filled square cavity with partitions on the top wall. Int. J. Heat Mass Transf. 2010, 53, 1759–1772. [Google Scholar] [CrossRef]
- Costa, V.A.F. Natural convection in partially divided square enclosures: Effects of thermal boundary conditions and thermal conductivity of the partitions. Int. J. Heat Mass Transf. 2012, 55, 7812–7822. [Google Scholar] [CrossRef]
- Said, S.A.M.; Habib, M.A.; Khan, M.A.R. Turbulent natural convection flow in partitioned enclosure. Comput. Fluids 1997, 26, 541–563. [Google Scholar] [CrossRef]
- Xu, F. Unsteady coupled thermal boundary layers induced by a fin on the partition of a differentially heated cavity. Int. Commun. Heat Mass Transf. 2015, 67, 59–65. [Google Scholar] [CrossRef]
- Famouri, M.; Hooman, K. Entropy generation for natural convection by heated partitions in a cavity. Int. Commun. Heat Mass Transf. 2008, 35, 492–502. [Google Scholar] [CrossRef] [Green Version]
- Khatamifara, M.; Lina, W.; Armfieldc, S.W.; Holmesa, D.; Kirkpatrickc, M.P. Conjugate natural convection heat transfer in a partitioned differentially-heated square cavity. Int. Commun. Heat Mass Transf. 2017, 81, 92–103. [Google Scholar] [CrossRef]
- Al-Farhany, K.; Al-Muhja, B.; Ali, F.; Khan, U.; Zaib, A.; Raizah, Z.; Galal, A.M. The Baffle Length Effects on the Natural Convection in Nanofluid-Filled Square Enclosure with Sinusoidal Temperature. Molecules 2022, 27, 4445. [Google Scholar] [CrossRef] [PubMed]
- Kublbeck, K.; Merker, G.P.; Straub, J. Advanced numerical computation of two-dimensional time-dependent free convection in cavities. Int. J. Heat Mass Transf. 1980, 23, 203–217. [Google Scholar] [CrossRef]
- Howell, J.R.; Menguc, M.P.; Siegel, R. Thermal Radiation Heat Transfer, 6th ed.; CRC Press: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Ampofo, F.; Karayiannis, T.G. Experimental benchmark data for turbulent natural convection in an air filled square cavity. Int. J. Heat Mass Transf. 2003, 46, 3551–3572. [Google Scholar] [CrossRef]
- Kogawa, T.; Okajima, J.; Sakurai, A.; Komiya, A.; Maruyama, S. Influence of radiation effect on turbulent natural convection in cubic cavity at normal temperature atmospheric gas. Int. J. Heat Mass Transf. 2017, 104, 456–466. [Google Scholar] [CrossRef]
- Martyushev, S.G.; Sheremet, M.A. Conjugate natural convection combined with surface thermal radiation in an air filled cavity with internal heat source. Int. J. Therm. Sci. 2014, 76, 51–67. [Google Scholar] [CrossRef]
- Miroshnichenko, I.V.; Gibanov, N.S.; Sheremet, M.A. Numerical Analysis of Heat Transfer through Hollow Brick Using Finite-Difference Method. Axioms 2022, 11, 37. [Google Scholar] [CrossRef]
Authors | Number of Partitions | Flow Regime | Aspect Ratio | Medium |
---|---|---|---|---|
Ampofo [24] | 5 | Turbulent | 2 | Air |
Priam et at. [25] | 1 | Laminar | 1 | Air and water |
Saha and Gu [26] | 1 | Laminar | 0.2, 0.5, 1 | Air |
Kandaswamy et al. [27] | 2 | Laminar | 1 | Air |
Khatamifar et al. [31] | 1 | Laminar | 1 | Air |
Wu and Ching [32] | 2 | Laminar | 0.6–0.1 | Air |
Costa [33] | 2 | Laminar | 1 | Air |
Said et al. [34] | 1 | Turbulent | 10 | Air |
Xu [35] | 1 | Laminar | 1 | Water |
Famouri and Hooman [36] | 1 | Laminar | 1 | Air |
Khatamifar et al. [37] | 1 | Laminar | 1 | Air |
Al-Farhany et al. [38] | 1 | Laminar | 1 | Nanofluid |
Physical Properties | Symbol | Value |
---|---|---|
Thermal expansion coefficient | 3.67 × 10–3 K−1 | |
Kinematic viscosity | 14.61 × 10–6 m2∙s−1 | |
Thermal diffusivity | 20.72 × 10–6 m2∙s−1 | |
Density | 1.226 kg∙m−3 |
at internal solid-fluid interfaces |
Surface Emissivity Value | ||
---|---|---|
0.011325 | 56.02 | |
0.011316 | 55.99 | |
0.011301 | 55.96 | |
0.011292 | 55.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miroshnichenko, I.V.; Sheremet, M.A. Turbulent Free Convection and Thermal Radiation in an Air-Filled Cabinet with Partition on the Bottom Wall. Axioms 2023, 12, 213. https://doi.org/10.3390/axioms12020213
Miroshnichenko IV, Sheremet MA. Turbulent Free Convection and Thermal Radiation in an Air-Filled Cabinet with Partition on the Bottom Wall. Axioms. 2023; 12(2):213. https://doi.org/10.3390/axioms12020213
Chicago/Turabian StyleMiroshnichenko, Igor V., and Mikhail A. Sheremet. 2023. "Turbulent Free Convection and Thermal Radiation in an Air-Filled Cabinet with Partition on the Bottom Wall" Axioms 12, no. 2: 213. https://doi.org/10.3390/axioms12020213
APA StyleMiroshnichenko, I. V., & Sheremet, M. A. (2023). Turbulent Free Convection and Thermal Radiation in an Air-Filled Cabinet with Partition on the Bottom Wall. Axioms, 12(2), 213. https://doi.org/10.3390/axioms12020213