Application of the Optimal Homotopy Asymptotic Approach for Solving Two-Point Fuzzy Ordinary Differential Equations of Fractional Order Arising in Physics
Abstract
:1. Introduction
2. Mathematical Background
3. Fuzzification and Defuzzification of FFODEs
4. FF-OHAM for FFTBVPs
5. Convergence Dynamic of the FF-OHAM
6. Numerical Simulation of the Physical Applications via FF-OHAM
- Mechanical Application: Fuzzy Fractional Bagley–Torvik Equation
- Thermal Conductivity of a Material: Nonlinear Fractional Temperature Distribution Equation
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Machado, J.T.; Galhano, A.M.; Trujillo, J.J. On development of fractional calculus during the last fifty years. Scientometrics 2014, 98, 577–582. [Google Scholar] [CrossRef]
- Failla, G.; Zingales, M. Advanced materials modelling via fractional calculus: Challenges and perspectives. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20200050. [Google Scholar] [CrossRef] [PubMed]
- Dalir, M.; Bashour, M. Applications of fractional calculus. Appl. Math. Sci. 2010, 4, 1021–1032. [Google Scholar]
- Bonyah, E.; Atangana, A.; Chand, M. Analysis of 3D IS-LM macroeconomic system model within the scope of fractional calculus. Chaos Solitons Fractals X 2019, 2, 100007. [Google Scholar] [CrossRef]
- Picozzi, S.; West, B.J. Fractional langevin model of memory in financial markets. Phys. Rev. E 2002, 66, 046118. [Google Scholar] [CrossRef]
- You, X.; Li, S.; Kang, L.; Cheng, L. A Study of the Non-Linear Seepage Problem in Porous Media via the Homotopy Analysis Method. Energies 2023, 16, 2175. [Google Scholar] [CrossRef]
- Esmaeilbeigi, M.; Paripour, M.; Garmanjani, G. Approximate solution of the fuzzy fractional Bagley-Torvik equation by the RBF collocation method. Comput. Methods Differ. Equ. 2018, 6, 186–214. [Google Scholar]
- Chakraverty, S.; Tapaswini, S.; Behera, D. Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications; John Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Abdollahi, R.; Farshbaf Moghimi, M.B.; Khastan, A.; Hooshmandasl, M.R. Linear fractional fuzzy differential equations with Caputo derivative. Comput. Methods Differ. Equ. 2019, 7, 252–265. [Google Scholar]
- Das, A.K.; Roy, T.K. Exact solution of some linear fuzzy fractional differential equation using Laplace transform method. Glob. J. Pure Appl. Math. 2017, 13, 5427–5435. [Google Scholar]
- Kudryashov, N.A. Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik 2020, 206, 163550. [Google Scholar] [CrossRef]
- Bulut, H.; Baskonus, H.M.; Belgacem, F.B.M. The analytical solution of some fractional ordinary differential equations by the Sumudu transform method. Abstr. Appl. Anal. 2013, 2013, 203875. [Google Scholar] [CrossRef]
- Ghanbari, B.; Akgul, A. Abundant new analytical and approximate solutions to the generalized schamel equation. Phys. Scr. 2020, 95, 075201. [Google Scholar] [CrossRef]
- Verma, P.; Kumar, M. An analytical solution of linear/nonlinear fractional-order partial differential equations and with new existence and uniqueness conditions. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2022, 92, 47–55. [Google Scholar] [CrossRef]
- Takači, D.; Takači, A.; Takači, A. On the operational solutions of fuzzy fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 1100–1113. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Hasan, M.K.; Abbasbandy, S. Solving fuzzy fractional differential equations using Zadeh’s extension principle. Sci. World J. 2013, 2013, 454969. [Google Scholar] [CrossRef]
- Ahmadian, A.; Senu, N.; Salahshour, S.; Suleiman, M. On a numerical solution for fuzzy fractional differential equation using an operational matrix method. In Proceedings of the 2015 International Symposium on Mathematical Sciences and Computing Research (iSMSC), Ipoh, Malaysia, 19–20 May 2015; pp. 432–437. [Google Scholar]
- Ahmadian, A.; Suleiman, M.; Salahshour, S.; Baleanu, D. A Jacobi operational matrix for solving a fuzzy linear fractional differential equation. Adv. Differ. Equ. 2013, 2013, 104. [Google Scholar] [CrossRef]
- Mazandarani, M.; Kamyad, A.V. Modified fractional Euler method for solving fuzzy fractional initial value problem. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 12–21. [Google Scholar] [CrossRef]
- Ahmadian, A.; Ismail, F.; Salahshour, S.; Baleanu, D.; Ghaemi, F. Uncertain viscoelastic models with fractional order: A new spectral tau method to study the numerical simulations of the solution. Commun. Nonlinear Sci. Numer. Simul. 2017, 53, 44–64. [Google Scholar] [CrossRef]
- Prakash, P.; Nieto, J.J.; Senthilvelavan, S.; Sudha Priya, G. Fuzzy fractional initial value problem. J. Intell. Fuzzy Syst. 2015, 28, 2691–2704. [Google Scholar] [CrossRef]
- Khodadadi, E.; Çelik, E. The variational iteration method for fuzzy fractional differential equations with uncertainty. Fixed Point Theory Appl. 2013, 2013, 13. [Google Scholar] [CrossRef]
- Panahi, A. Approximate solution of fuzzy fractional differential equations. Int. J. Ind. Math. 2017, 9, 111–118. [Google Scholar]
- Hasan, S.; Alawneh, A.; Al-Momani, M.; Momani, S. Second order fuzzy fractional differential equations under Caputo’s H-differentiability. Appl. Math. Inf. Sci. 2017, 11, 1597–1608. [Google Scholar] [CrossRef]
- Ali, F.J.; Anakira, N.R.; Alomari, A.K.J.; Man, N.H. Solution and analysis of the fuzzy Volterra integral equations via homotopy analysis method. Comput. Model. Eng. Sci. 2021, 127, 875–899. [Google Scholar]
- Rivaz, A.; Fard, O.S.; Bidgoli, T.A. Solving fuzzy fractional differential equations by a generalized differential transform method. SeMA J. 2016, 73, 149–170. [Google Scholar] [CrossRef]
- Alshorman, M.A.; Zamri, N.; Ali, M.; Albzeirat, A.K. New implementation of residual power series for solving fuzzy fractional Riccati equation. J. Model. Optim. 2018, 10, 81–87. [Google Scholar] [CrossRef]
- Alaroud, M.O.; Saadeh, R.A.; Al-smadi, M.O.; Ahmad, R.R.; Din, U.K.; Abu Arqub, O. Solving nonlinear fuzzy fractional IVPs using fractional residual power series algorithm. IACM 2019, 2019, 170–175. [Google Scholar]
- Dulfikar, J.H.; Ali, F.J.; The, Y.Y.; Alomari, A.K.; Anakira, N.R. Optimal homotopy asymptotic method for solving several models of first order fuzzy fractional IVPs. Alex. Eng. J. 2022, 61, 4931–4943. [Google Scholar]
- Mousa, M.M.; Alsharari, F. Convergence and error estimation of a new formulation of homotopy perturbation method for classes of nonlinear integral/integro-differential equations. Mathematics 2021, 9, 2244. [Google Scholar] [CrossRef]
- Marinca, V.; Herişanu, N. Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. Int. Commun. Heat Mass Transf. 2008, 35, 710–715. [Google Scholar] [CrossRef]
- Ali, F.J.; Akram, H.S.; Anakira, N.R.; Alomari, A.K.; Azizan, S. Comparison for the Approximate Solution of the Second-Order Fuzzy Nonlinear Differential Equation with Fuzzy Initial Conditions. Math. Stat. 2020, 8, 527–534. [Google Scholar]
- Ali, F.J.; Anakira, N.R.; Alomari, A.K.; Hashim, I.; Shakhatreh, M. Numerical solution of n-th order fuzzy initial value problems by six stages Range Kutta method of order five. Int. J. Electr. Comput. Eng. 2019, 9, 6497–6506. [Google Scholar]
- Yuldashev, T.K.; Karimov, E.T. Inverse problem for a mixed type integro-differential equation with fractional order Caputo operators and spectral parameters. Axioms 2020, 9, 121. [Google Scholar] [CrossRef]
- Radi, D.; Sorini, L.; Stefanini, L. On the numerical solution of ordinary, interval and fuzzy differential equations by use of F-transform. Axioms 2020, 9, 15. [Google Scholar] [CrossRef]
- Dulfikar, J.H.; Ali, F.J.; Teh, Y.Y. Approximate Solutions of Fuzzy Fractional Differential Equations via Homotopy Analysis Method. Fract. Differ. Appl. 2023, 9, 167–187. [Google Scholar]
- Kaur, D.; Agarwal, P.; Rakshit, M.; Chand, M. Fractional calculus involving (p, q)-mathieu type series. Appl. Math. Nonlinear Sci. 2020, 5, 15–34. [Google Scholar] [CrossRef]
- Bodjanova, S. Median alpha-levels of a fuzzy number. Fuzzy Sets Syst. 2002, 157, 879–891. [Google Scholar] [CrossRef]
- Ismail, M.; Saeed, U.; Alzabut, J.; Rehman, M. Approximate solutions for fractional boundary value problems via green-CAS wavelet method. Mathematics 2019, 7, 1164. [Google Scholar] [CrossRef]
0 | ||||
0.2 | ||||
0.4 | ||||
0.6 | ||||
0.8 | ||||
1 |
0 | ||||
0.2 | ||||
0.4 | ||||
0.6 | ||||
0.8 | ||||
1 |
0 | |||
0.5 | |||
1 | |||
4354434171497< | |||
0 | |||
0.5 | |||
1 | |||
0 | ||||
0.5 | ||||
1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jameel, A.F.; Jawad Hashim, D.; Anakira, N.; Ababneh, O.; Qazza, A.; Alomari, A.-K.; Al Kalbani, K.S. Application of the Optimal Homotopy Asymptotic Approach for Solving Two-Point Fuzzy Ordinary Differential Equations of Fractional Order Arising in Physics. Axioms 2023, 12, 387. https://doi.org/10.3390/axioms12040387
Jameel AF, Jawad Hashim D, Anakira N, Ababneh O, Qazza A, Alomari A-K, Al Kalbani KS. Application of the Optimal Homotopy Asymptotic Approach for Solving Two-Point Fuzzy Ordinary Differential Equations of Fractional Order Arising in Physics. Axioms. 2023; 12(4):387. https://doi.org/10.3390/axioms12040387
Chicago/Turabian StyleJameel, Ali Fareed, Dulfikar Jawad Hashim, Nidal Anakira, Osama Ababneh, Ahmad Qazza, Abedel-Karrem Alomari, and Khamis S. Al Kalbani. 2023. "Application of the Optimal Homotopy Asymptotic Approach for Solving Two-Point Fuzzy Ordinary Differential Equations of Fractional Order Arising in Physics" Axioms 12, no. 4: 387. https://doi.org/10.3390/axioms12040387
APA StyleJameel, A. F., Jawad Hashim, D., Anakira, N., Ababneh, O., Qazza, A., Alomari, A. -K., & Al Kalbani, K. S. (2023). Application of the Optimal Homotopy Asymptotic Approach for Solving Two-Point Fuzzy Ordinary Differential Equations of Fractional Order Arising in Physics. Axioms, 12(4), 387. https://doi.org/10.3390/axioms12040387