Exact and Approximate Solutions for Linear and Nonlinear Partial Differential Equations via Laplace Residual Power Series Method
Abstract
:1. Introduction
2. Basic Concepts and Auxiliary Results
3. The Laplace Residual Power Series Method
3.1. Laplace Residual Power Series Method for Solving Linear PDEs
3.2. Laplace Residual Power Series Method for Solving Non-Linear PDEs
4. Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tom, A.; Craig, F.; Ivor, G.-G. The History of Differential Equations; EMS Press: Helsinki, Finland, 2004; Volume 1, pp. 1670–1950, 2729. [Google Scholar]
- Davis, H.T. Introduction to Nonlinear Differential and Integral Equations (F); Dover Publications, Inc.: New York, NY, USA, 2010. [Google Scholar]
- Nagle, R.K.; Saff, E.B.; Snider, A.D. Fundamentals of Differential Equations and Boundary Value Problems; Pearson Education: New York, NY, USA, 2011. [Google Scholar]
- Olver, P.J. Hamiltonian and non-Hamiltonian models for water waves. In Trends and Applications of Pure Mathematics to Mechanics; Springer: Berlin/Heidelberg, Germany, 1984; pp. 273–290. [Google Scholar]
- Evans, D.J.; Raslan, K.R. The tanh function method for solving some important non-linear partial differential equations. Int. J. Comput. Math. 2005, 82, 897–905. [Google Scholar] [CrossRef]
- He, J.-H. Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 2003, 135, 73–79. [Google Scholar] [CrossRef]
- Liu, M.; Li, D. Properties of analytic solution and numerical solution of multi-pantograph equation. Appl. Math. Comput. 2004, 155, 853–871. [Google Scholar] [CrossRef]
- El-Ajou, A.; Odibat, Z.; Momani, S.; Alawneh, A. Construction of analytical solutions to fractional differential equations using homotopy analysis method. IAENG Int. J. Appl. Math. 2010, 40. [Google Scholar]
- Bagley, R.L. On the fractional order initial value problem and its engineering applications. In Fractional Calculus and Its Applications; Nishimoto, K., Ed.; College of Engineering, Nihon University: Tokyo, Japan, 1990; pp. 12–20. [Google Scholar]
- Kazem, S. Exact solution of some linear fractional differential equations by Laplace transform. Int. J. Nonlinear Sci. 2013, 16, 3–11. [Google Scholar]
- Luchko, Y.; Srivastava, H. The exact solution of certain differential equations of fractional order by using operational calculus. Comput. Math. Appl. 1995, 29, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Wazwaz, A.-M. The modified decomposition method for analytic treatment of differential equations. Appl. Math. Comput. 2006, 173, 165–176. [Google Scholar] [CrossRef]
- Saadatmandi, A.; Dehghan, M. A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 2009, 59, 1326–1336. [Google Scholar] [CrossRef] [Green Version]
- Das, S. Analytical solution of a fractional diffusion equation by variational iteration method. Comput. Math. Appl. 2008, 57, 483–487. [Google Scholar] [CrossRef] [Green Version]
- El-Ajou, A.; Arqub, O.A.; Momani, S. Approximate analytical solution of the nonlinear fractional KdV-Burgers equation a new iterative algorithm. J. Comput. Phys. 2015, 293, 81–95. [Google Scholar] [CrossRef]
- Oqielat, M.N.; Eriqat, T.; Ogilat, O.; El-Ajou, A.; Alhazmi, S.E.; Al-Omari, S. Laplace-Residual Power Series Method for Solving Time-Fractional Reaction–Diffusion Model. Fractal Fract. 2023, 7, 309. [Google Scholar] [CrossRef]
- Alqhtani, M.; Owolabi, K.; Saad, K.; Pindza, E. Efficient numerical techniques for computing the Riesz fractional-order reac-tion–diffusion models arising in biology. Chaos Solitons Fractals 2022, 161, 112394. [Google Scholar] [CrossRef]
- Coronel-Escamilla, A.; Gómez-Aguilar, J.; Torres, L.; Escobar-Jiménez, R. A numerical solution for a variable-order reaction–diffusion model by using fractional derivatives with non-local and non-singular kernel. Phys. A Stat. Mech. its Appl. 2018, 491, 406–424. [Google Scholar] [CrossRef]
- Owolabi, K.M. Numerical simulation of fractional-order reaction–diffusion equations with the Riesz and Caputo derivatives. Neural Comput. Appl. 2019, 32, 4093–4104. [Google Scholar] [CrossRef]
- Matoog, R.T.; Salas, A.H.; Alharbey, R.A.; El-Tantawy, S.A. Rational solutions to the cylindrical nonlinear Schrödinger equation: Rogue waves, breathers, and Jacobi breathers solutions. J. Ocean Eng. Sci. 2022, 13, 19. [Google Scholar] [CrossRef]
- Hou, E.; Hussain, A.; Rehman, A.; Baleanu, D.; Nadeem, S.; Matoog, R.T.; Khan, I.; Sherif, E.-S.M. Entropy generation and induced magnetic field in pseudoplastic nanofluid flow near a stagnant point. Sci. Rep. 2021, 11, 23736. [Google Scholar] [CrossRef]
- Trikha, P.; Mahmoud, E.E.; Jahanzaib, L.S.; Matoog, R.; Abdel-Aty, M. Fractional order biological snap oscillator: Analysis and control. Chaos Solitons Fractals 2021, 145, 110763. [Google Scholar] [CrossRef]
- Mahmoud, E.E.; Trikha, P.; Jahanzaib, L.S.; Eshmawi, A.A.; Matoog, R. Chaos control and Penta-compound combination anti-synchronization on a novel fractional chaotic system with analysis and application. Results Phys. 2021, 24, 104130. [Google Scholar] [CrossRef]
- Alyousef, H.A.; Salas, A.H.; Matoog, R.T.; El-Tantawy, S.A. On the analytical and numerical approximations to the forced damped Gardner Kawahara equation and modeling the nonlinear structures in a collisional plasma. Phys. Fluids 2022, 34, 103105. [Google Scholar] [CrossRef]
- Hasan, S.; Al-Smadi, M.; Dutta, H.; Momani, S.; Hadid, S. Multi-step reproducing kernel algorithm for solving Caputo–Fabrizio fractional stiff models arising in electric circuits. Soft Comput. 2022, 26, 3713–3727. [Google Scholar] [CrossRef]
- Prakasha, D.G.; Veeresha, P.; Baskonus, H.M. Two novel computational techniques for fractional Gardner and Cahn-Hilliard equations. Comput. Math. Methods 2019, 1, e1021. [Google Scholar] [CrossRef] [Green Version]
- Iyiola, O.S.; Olayinka, O.G. Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations. Ain Shams Eng. J. 2014, 5, 999–1004. [Google Scholar] [CrossRef] [Green Version]
- Bira, B.; Sekhar, T.R.; Zeidan, D. Exact solutions for some time-fractional evolution equations using Lie group theory. Math. Methods Appl. Sci. 2018, 41, 6717–6725. [Google Scholar] [CrossRef]
- Korpinar, Z.; Inc, M.; Baleanu, D.; Bayram, M. Theory and application for the time fractional Gardner equation with Mittag-Leffler kernel. J. Taibah Univ. Sci. 2019, 13, 813–819. [Google Scholar] [CrossRef] [Green Version]
- Al-Smadi, M.; Freihat, A.; Khalil, H.; Momani, S.; Khan, R.A. Numerical Multistep Approach for Solving Fractional Partial Differential Equations. Int. J. Comput. Methods 2017, 14, 1750029. [Google Scholar] [CrossRef]
- Eriqat, T.; El-Ajou, A.; Oqielat, M.N.; Al-Zhour, Z.; Momani, S. A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations. Chaos Solitons Fractals 2020, 138, 109957. [Google Scholar] [CrossRef]
- El-Ajou, A. Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach. Eur. Phys. J. Plus 2021, 136, 229. [Google Scholar] [CrossRef]
- El-Ajou, A.; Al-Zhour, Z. A Vector Series Solution for a Class of Hyperbolic System of Caputo Time-Fractional Partial Differential Equations With Variable Coefficients. Front. Phys. 2021, 9, 525250. [Google Scholar] [CrossRef]
- Yong, Z.; Li, P. On the time-fractional Navier–Stokes equations. Comput. Math. Appl. 2017, 73, 874–891. [Google Scholar]
- Oqielat, M.N.; Ahmad, E.-A.; Al-Zhour, Z.; Eriqat, T.; Mohammed, A.-S. A New Approach to Solving Fuzzy Quadratic Riccati Differential Equations. Int. J. Fuzzy Log. Intell. Syst. 2022, 22, 23–47. [Google Scholar] [CrossRef]
- Adyan, M.; Osama, H. Two efficient methods for solving fractional Lane–Emden equations with conformable fractional derivative. J. Egypt. Math. Soc. 2020, 28, 42. [Google Scholar]
- Oqielat, M.N.; Eriqat, T.; Al-Zhour, Z.; El-Ajou, A.; Momani, S. Numerical solutions of Time-fractional nonlinear water wave partial differential equation via Caputo fractional derivative: An effective analytical method and some applications. Appl. Comput. Math. 2022, 21, 207–222. [Google Scholar]
- Oqielat, M.N.; Eriqat, T.; Al-Zhour, Z.; Ogilat, O.; El-Ajou, A.; Hashim, I. Construction of fractional series solutions to nonlinear fractional reaction–diffusion for bacteria growth model via Laplace residual power series method. Int. J. Dyn. Control 2022, 11, 520–527. [Google Scholar] [CrossRef]
- Eriqat, T.; Oqielat, M.N.; Al-Zhour, Z.; El-Ajou, A.; Bataineh, A.S. Revisited Fisher’s equation and logistic system model: A new fractional approach and some modifications. Int. J. Dyn. Control 2022, 11, 555–563. [Google Scholar] [CrossRef]
- Tenenbaum, M.; Pollard, H. Ordinary Differential Equations: An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences; Courier Corporation: Chelmsford, MA, USA, 1985. [Google Scholar]
- Zill, D.G.; Shanahan, P.D. A First Course in Complex Analysis with Applications; Jones & Bartlett Learning: London, UK, 2013. [Google Scholar]
- Momani, S.; Odibat, Z. Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 2006, 355, 271–279. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Comput. Math. Appl. 2007, 54, 910–919. [Google Scholar] [CrossRef] [Green Version]
Absolute Error | Relative Error | ||||
---|---|---|---|---|---|
5 | |||||
10 | |||||
5 | |||||
10 | |||||
5 | |||||
10 | |||||
5 | |||||
10 |
App. Exa. Err. | App. Rel. Err. | ||||
---|---|---|---|---|---|
0 | |||||
10 | |||||
0.10 | |||||
0 | |||||
10 | |||||
0.20 | |||||
0 | |||||
10 | |||||
0.40 | |||||
0 | |||||
10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khresat, H.; El-Ajou, A.; Al-Omari, S.; Alhazmi, S.E.; Oqielat, M.N. Exact and Approximate Solutions for Linear and Nonlinear Partial Differential Equations via Laplace Residual Power Series Method. Axioms 2023, 12, 694. https://doi.org/10.3390/axioms12070694
Khresat H, El-Ajou A, Al-Omari S, Alhazmi SE, Oqielat MN. Exact and Approximate Solutions for Linear and Nonlinear Partial Differential Equations via Laplace Residual Power Series Method. Axioms. 2023; 12(7):694. https://doi.org/10.3390/axioms12070694
Chicago/Turabian StyleKhresat, Haneen, Ahmad El-Ajou, Shrideh Al-Omari, Sharifah E. Alhazmi, and Moa’ath N. Oqielat. 2023. "Exact and Approximate Solutions for Linear and Nonlinear Partial Differential Equations via Laplace Residual Power Series Method" Axioms 12, no. 7: 694. https://doi.org/10.3390/axioms12070694
APA StyleKhresat, H., El-Ajou, A., Al-Omari, S., Alhazmi, S. E., & Oqielat, M. N. (2023). Exact and Approximate Solutions for Linear and Nonlinear Partial Differential Equations via Laplace Residual Power Series Method. Axioms, 12(7), 694. https://doi.org/10.3390/axioms12070694