A Class of Fractional Viscoelastic Kirchhoff Equations Involving Two Nonlinear Source Terms of Different Signs
Abstract
:1. Introduction
2. Preliminaries
- (i)
- if and , then ;
- (ii)
- if , then .
3. Existence of Global Solutions
4. Asymptotic Behavior of Global Solutions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fiscella, A.; Valdinoci, E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 2014, 94, 156–170. [Google Scholar] [CrossRef]
- Torrejón, R.; Yong, J.M. On a quasilinear wave equation with memory. Nonlinear Anal. 1991, 16, 61–78. [Google Scholar] [CrossRef]
- Wu, S.T.; Tsai, L.Y. Blow-up of positive-initial-energy solutions for an integro-differential equation with nonlinear damping. Taiwan. J. Math. 2010, 14, 2043–2058. [Google Scholar] [CrossRef]
- Liu, G.W.; Hou, C.S.; Guo, X.L. Global nonexistence for nonlinear Kirchhoff systems with memory term. Z. Angew. Math. Phys. 2014, 65, 925–940. [Google Scholar] [CrossRef]
- Caffarelli, L. Non-local diffusions, drifts and games. In Proceedings of the Nonlinear Partial Differential Equations The Abel Symposium 2010, Oslo, Norway, 28 September–1 October 2010; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–52. [Google Scholar] [CrossRef]
- Applebaum, D. Lévy processes-from probability to finance and quantum groups. Not. Amer. Math. Soc. 2004, 51, 1336–1347. [Google Scholar]
- Laskin, N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef]
- Valdinoci, E. From the long jump random walk to the fractional Laplacian. arXiv 2009, arXiv:0901.3261. [Google Scholar]
- Vázquez, J.L. Recent progress in the theory of nonlinear diffusion with fractional laplacian operators. Discret. Contin. Dyn. Syst. 2014, 7, 857–885. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Tuan, N.A.; Yang, C. Global well-posedness for fractional Sobolev-Galpern type equations. Discret. Contin. Dyn. Syst. 2022, 42, 2637–2665. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Tuan, N.H.; Yang, C. On Cauchy problem for fractional parabolic-elliptic Keller-Segel model. Adv. Nonlinear Anal. 2023, 12, 97–116. [Google Scholar] [CrossRef]
- Ambrosio, V.; Isernia, T. A multiplicity result for a fractional Kirchhoff equation in RN with a general nonlinearity. Commun. Contemp. Math. 2018, 20, 1750054. [Google Scholar] [CrossRef]
- Nyamoradi, N.; Ambrosio, V. Existence and non-existence results for fractional Kirchhoff Laplacian problems. Anal. Math. Phys. 2021, 11, 125. [Google Scholar] [CrossRef]
- Fiscella, A.; Mishra, P.K. Fractional Kirchhoff Hardy problems with singular and critical Sobolev nonlinearities. Manuscr. Math. 2022, 168, 257–301. [Google Scholar] [CrossRef]
- do Ó, J.M.; He, X.M.; Mishra, P.K. Fractional Kirchhoff problem with critical indefinite nonlinearity. Math. Nachr. 2019, 292, 615–632. [Google Scholar] [CrossRef]
- Zhang, B.L.; Rădulescu, V.D.; Wang, L. Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 2019, 149, 1061–1081. [Google Scholar] [CrossRef]
- Bisci, G.M.; Vilasi, L. On a fractional degenerate Kirchhoff-type problem. Commun. Contemp. Math. 2017, 19, 1550088. [Google Scholar] [CrossRef]
- Xiang, M.Q.; Rădulescu, V.D.; Zhang, B.L. Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions. Nonlinearity 2018, 31, 3228–3250. [Google Scholar] [CrossRef]
- Lin, Q.; Tian, X.T.; Xu, R.Z.; Zhang, M.N. Blow up and blow up time for degenerate Kirchhoff- type wave problems involving the fractional Laplacian with arbitrary positive initial energy. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 2095–2107. [Google Scholar] [CrossRef]
- Pan, N.; Pucci, P.; Xu, R.Z.; Zhang, B.L. Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms. J. Evol. Equ. 2019, 19, 615–643. [Google Scholar] [CrossRef]
- Xiang, M.Q.; Hu, D. Existence and blow-up of solutions for fractional wave equations of Kirchhoff type with viscoelasticity. Discret. Contin. Dyn. Syst. Ser. 2021, 14, 4609–4629. [Google Scholar] [CrossRef]
- Cavalcanti, M.M.; Cavalcanti, V.N.D.; Ma, T.F. Exponential decay of the viscoelastic Euler–Bernoulli equation with a nonlocal dissipation in general domains. Differ. Integral Equ. 2004, 17, 495–510. [Google Scholar] [CrossRef]
- Xu, R.Z.; Zhang, M.Y.; Chen, S.H.; Yang, Y.B.; Shen, J.H. The initial-boundary value problems for a class of six order nonlinear wave equation. Discret. Contin. Dyn. Syst. 2017, 37, 5631–5649. [Google Scholar] [CrossRef]
- Cavalcanti, M.M.; Cavalcanti, V.N.D. Existence and asymptotic stability for evolution problems on manifolds with damping and source terms. J. Math. Anal. Appl 2004, 291, 109–127. [Google Scholar] [CrossRef]
- Gazzola, F.; Squassina, M. Global solutions and finite time blow up for damped semilinear wave equations. Ann. Inst. Henri Poincare Anal. Non Lineaire 2006, 3, 185–207. [Google Scholar] [CrossRef]
- Liu, Y.; Mu, J.; Jiao, Y.J. A class of fourth order damped wave equations with arbitrary positive initial energy. Proc. Edinb. Math. Soc. 2019, 62, 165–178. [Google Scholar] [CrossRef]
- Xu, R.Z.; Su, J. Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. 2013, 264, 2732–2763. [Google Scholar] [CrossRef]
- Luo, Y.B.; Xu, R.Z.; Yang, C. Global well-posedness for a class of semilinear hyperbolic equations with singular potentials on manifolds with conical singularities. Calc. Var. Partial. Differ. Equ. 2022, 61, 210. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.K. A class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films. Discret. Contin. Dyn. Syst. Ser. S 2021, 14, 4367–4381. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, T.; Li, W.K. Global well-posedness, asymptotic behavior and blow-up of solutions for a class of degenerate parabolic equations. Nonlinear Anal. 2020, 196, 111759. [Google Scholar] [CrossRef]
- Haraux, A.; Zuazua, E. Decay estimates for some semilinear damped hyperbolic problems. Arch. Ration. Mech. Anal. 1988, 100, 191–206. [Google Scholar] [CrossRef]
- Liu, Y. Global attractors for a nonlinear plate equation modeling the oscillations of suspension bridges. Commun. Anal. Mech. 2023, 15, 436–456. [Google Scholar] [CrossRef]
- Liu, Y.; Moon, B.; Rădulescu, V.D.; Xu, R.Z.; Yang, C. Qualitative properties of solution to a viscoelastic Kirchhoff-like plate equation. J. Math. Phys. 2023, 64, 051511. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 2013, 33, 2105–2137. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. The Brezis-Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc. 2015, 367, 67–102. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, P.J.; Da, C.J. Blow-up of a nonlocal p-Laplacian evolution equation with critical initial energy. Ann. Polon. Math. 2016, 117, 89–99. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Liu, Y. A Class of Fractional Viscoelastic Kirchhoff Equations Involving Two Nonlinear Source Terms of Different Signs. Axioms 2024, 13, 169. https://doi.org/10.3390/axioms13030169
Zhang L, Liu Y. A Class of Fractional Viscoelastic Kirchhoff Equations Involving Two Nonlinear Source Terms of Different Signs. Axioms. 2024; 13(3):169. https://doi.org/10.3390/axioms13030169
Chicago/Turabian StyleZhang, Li, and Yang Liu. 2024. "A Class of Fractional Viscoelastic Kirchhoff Equations Involving Two Nonlinear Source Terms of Different Signs" Axioms 13, no. 3: 169. https://doi.org/10.3390/axioms13030169
APA StyleZhang, L., & Liu, Y. (2024). A Class of Fractional Viscoelastic Kirchhoff Equations Involving Two Nonlinear Source Terms of Different Signs. Axioms, 13(3), 169. https://doi.org/10.3390/axioms13030169