Boundedness and Compactness of Weighted Composition Operators from (α, k)-Bloch Spaces to (β,k) Spaces on Generalized Hua Domains of the Fourth Kind
Abstract
:1. Introduction
2. Preliminaries
- (1)
- (2)
- (i)
- (ii)
3. Boundedness of
4. Compactness of
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cartan, E. Sur les domaines bornés homogènes de l’espace de n variables complexes. Abh. Math. Semin. Univ. Hambg. 1935, 11, 116–162. [Google Scholar] [CrossRef]
- Yin, W.; Su, J.B. Bergman kernels on generalized Hua domains. Prog. Hatural Sci. 2002, 12, 893–899. [Google Scholar]
- Wang, F.M.; Liu, Y. Weighted composition operators on Bers-type spaces. Acta Math. Sci. Ser. A 2007, 27, 665–671. [Google Scholar]
- Xu, N.; Zhou, Z. Difference of weighted composition operators from α-Bloch spaces to β-Bloch space. Rocky Mt. J. Math. 2021, 51, 2237–2250. [Google Scholar] [CrossRef]
- Ramos-Fernández, J.C. Composition operators between u-Bloch spaces. Extr. Math. 2011, 26, 75–88. [Google Scholar]
- Wolf, E. Weighted composition operators between weighted Bloch type spaces. Bull. Soc. Roy. Sci. Liege. 2011, 80, 806–816. [Google Scholar]
- Li, H.; Liu, P. Weighted composition operators between H∞ and generally weighted Bloch spaces on polydisk. Int. J. Math. 2010, 21, 687–699. [Google Scholar] [CrossRef]
- Li, S.X.; Stević, S. Weighted composition operators from α-Bloch space to H∞ on the polydisc. Numer. Funct. Anal. Optim. 2007, 28, 911–925. [Google Scholar] [CrossRef]
- Hu, Z.J. Composition operators between Bloch-type spaces in polydiscs. Sci. China (Ser. A) 2005, 48, 268–282. [Google Scholar]
- Li, S.X.; Zhu, X.L. Essential norm of weighted composition operator between α-Bloch space and β-Bloch space in polydiscs. Int. J. Math. Sci. 2004, 69–72, 3941–3950. [Google Scholar]
- Zhou, Z.H. Compact composition operators on the Bloch space in polydiscs. Sci. China (Ser. A) 2001, 44, 286. [Google Scholar] [CrossRef]
- Dai, J.N.; Ouyang, C.H. Composition Operators Between Bloch Type Spaces in the Unit Ball. Acta Math. Sci. 2014, 34, 73–81. [Google Scholar] [CrossRef]
- Zhang, X.J.; Xiao, J.B. Weighted composition operators between μ-Bloch spaces on the unit ball. Sci. China (Ser. A) Math. 2005, 40, 1349–1368. [Google Scholar] [CrossRef]
- Du, J.T.; Li, S.X. Weighted composition operators from H∞ to the Bloch space in the unit ball of . Complex Var. Elliptic Equ. 2019, 64, 1200–1213. [Google Scholar] [CrossRef]
- Liang, Y.X.; Zhou, Z.H. Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball. Ann. Polon. Math. 2015, 114, 101–114. [Google Scholar] [CrossRef]
- Stević, S. Weighted composition operators from weighted Bergman spaces to weighted-type spaces on the unit ball. Appl. Math. Comput. 2009, 212, 499–504. [Google Scholar] [CrossRef]
- Xu, H.M.; Liu, T.S. Weighted composition operators between Hardy spaces on the unit ball. Chinese Quart. J. Math. 2004, 19, 111–119. [Google Scholar]
- Li, S.X.; Stević, S. Weighted composition operators between H∞ and α-Bloch spaces in the unit ball. Taiwan. J. Math. 2008, 12, 1625–1639. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Shi, J.H. Compactness of composition operators on the Bloch space in classical bounded symmetric domains. Mich. Math. 2002, 50, 381–405. [Google Scholar]
- Hamada, H. Weighted composition operators from H∞ to the Bloch space of infinite dimensional bounded symmetric domains. Complex Anal. Oper. Theory 2008, 12, 207–216. [Google Scholar] [CrossRef]
- Allen, R.F.; Colonna, F. Weighted composition operators from H∞ to the Bloch space of a bounded homogeneous domain. Integr. Equ. Oper. Theory 2010, 66, 21–40. [Google Scholar] [CrossRef]
- Bai, H.B. Weighted composition operators on Bers-type spaces on the Cartan-Hartogs of the first kind. J. Sichuan Univ. 2022, 59, 36–41. [Google Scholar]
- Su, J.B.; Zhang, C. Composition operators from p-Bloch space to q-Bloch space on the fourth Cartan-Hartogs domains. J. Oper. 2015, 2015, 718257. [Google Scholar] [CrossRef]
- Su, J.B.; Wang, H. Boundedness and Compactness of Weighted Composition Operators from u-Bloch space to v-Bloch spaces on the Hua domains of the first kind. Chin. Sci. Math 2015, 45, 1909–1918. [Google Scholar]
- Su, J.B.; Zhang, Z.Y. Weighted Composition Operators from H∞ to (α,m)-Bloch Space on Cartan-Hartogs Domain of the First Type. J. Funct. Spaces 2022, 4732049. [Google Scholar]
- Wang, Z.Y.; Su, J.B. Weighted Composition Operators between Bers-Type Space on Generalized Hua-Cartan-Hartogs Domains. Axioms 2024, 13, 513. [Google Scholar] [CrossRef]
- Jiang, Z.J.; Li, Z.A. Weighted computation operators on the Bers-type spaces of Loo-Keng Hua domains. Bull. Korean Math. Soc. 2020, 57, 583–595. [Google Scholar]
- Allen, R.F.; Pons, M.A. Topological structure of the space of composition operatorson L∞ of an unbounded, locally finite metric space. Rend. Circ. Mat. Palermo ll Ser. 2024, 73, 715–729. [Google Scholar] [CrossRef]
- Guo, Z. Generalized Stevi’-Sharma operators from the minimal Mobius invariant space into Bloch-type spaces. Dem. Math. 2023, 56, 2022-0245. [Google Scholar] [CrossRef]
- Heidarkhani, S.; Afrouzi, G.A. Existence of one weak solution for a Steklov problem involving the weighted p(·)-Laplacian. J. Nonlinear Funct. Anal. 2023, 2023, 8. [Google Scholar]
- Stević, S.; Ueki, S.-I. Polynomial differentiation composition operators from Hp spaces to weighted-type spaces on the unit ball. J. Math. Inequalities 2023, 7, 365–379. [Google Scholar] [CrossRef]
- Wang, J.Q.; Su, J.B. Boundedness and Compactness of Weighted Composition Operators from a-Bloch Spaces to Bers-Type Spaces on Generalized Hua Domains of the First Kind. Mathematics 2023, 11, 4403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Su, J.
Boundedness and Compactness of Weighted Composition Operators from (α, k)-Bloch Spaces to
Wang J, Su J.
Boundedness and Compactness of Weighted Composition Operators from (α, k)-Bloch Spaces to
Wang, Jiaqi, and Jianbing Su.
2024. "Boundedness and Compactness of Weighted Composition Operators from (α, k)-Bloch Spaces to
Wang, J., & Su, J.
(2024). Boundedness and Compactness of Weighted Composition Operators from (α, k)-Bloch Spaces to