Nonlocal Inverse Problem for a Pseudohyperbolic- Pseudoelliptic Type Integro-Differential Equations
Abstract
:1. Statement of the Inverse Problem
2. Expansion of the Solution of the Direct Problem (1)–(4) into Fourier Series. Regular Case
3. Inverse Problem (1)–(5). The Regular Case of the Spectral Parameter
4. Convergence of Series (46)–(49)
5. Possibility of Term Differentiation of the Series (48) and (49)
6. Calculation of Values of Spectral Parameters
7. Expansion of the Solution of the Direct Problem (1)–(4) in a Fourier Series. Irregular Case of a Spectral Parameter
8. Inverse Problem (1)–(5). Irregular Case of a Spectral Parameter
9. Statement of the Theorem. Conclusions
Funding
Conflicts of Interest
References
- Benney, D.J.; Luke, J.C. Interactions of permanent waves of finite amplitude. J. Math. Phys. 1964, 43, 309–313. [Google Scholar] [CrossRef]
- Cavalcanti, M.M.; Domingos Cavalcanti, V.N.; Ferreira, J. Existence and uniform decay for a nonlinear viscoelastic equation with strong damping. Math. Methods Appl. Sci. 2001, 24, 1043–1053. [Google Scholar] [CrossRef]
- Yuldashev, T.K. Nonlocal boundary value problem for a nonlinear Fredholm integro-differential equation with degenerate kernel. Differ. Equ. 2018, 54, 1646–1653. [Google Scholar] [CrossRef]
- Yuldashev, T.K. On the solvability of a boundary value problem for the ordinary Fredholm integrodifferential equation with a degenerate kernel. Comput. Math. Math. Phys. 2019, 59, 241–252. [Google Scholar] [CrossRef]
- Il’in, V.A.; Moiseev, E.I. An upper bound taken on the diagonal for the spectral function of the multidimensional Schrödinger operator with a potential satisfying the Kato condition. Diff. Equ. 1998, 34, 358–368. [Google Scholar]
- Kapustin, N.Y.; Moiseev, E.I. A spectral problem for the Laplace operator in the square with a spectral parameter in the boundary condition. Differ. Equ. 1998, 34, 663–668. [Google Scholar]
- Kapustin, N.Y.; Moiseev, E.I. Convergence of spectral expansions for functions of the Hölder class for two problems with a spectral parameter in the boundary condition. Differ. Equ. 2000, 36, 1182–1188. [Google Scholar] [CrossRef]
- Kapustin, N.Y.; Moiseev, E.I. A Remark on the Convergence Problem for Spectral Expansions Corresponding to a Classical Problem with Spectral Parameter in the Boundary Condition. Differ. Equ. 2001, 37, 1677–1683. [Google Scholar] [CrossRef]
- Yuldashev, T.K. On inverse boundary value problem for a Fredholm integro-differential equation with degenerate kernel and spectral parameter. Lobachevskii J. Math. 2019, 40, 230–239. [Google Scholar] [CrossRef]
- Yuldashev, T.K. Spectral features of the solving of a Fredholm homogeneous integro-differential equation with integral conditions and reflecting deviation. Lobachevskii J. Math. 2019, 40, 2116–2123. [Google Scholar] [CrossRef]
- Sidorov, D.N.; Sidorov, N.A. Solution of irregular systems using skeleton decomposition of linear operators. VEstnik Yuzhno Ural. State Univ. Seria Mat. Model. Progr. 2017, 10, 63–73. [Google Scholar]
- Sidorov, N.A. Classic solutions of boundary value problems for partial differential equations with operator of finite index in the main part of equation. Bull. Irkutsk. State Univ. Ser. Math. 2019, 27, 55–70. [Google Scholar] [CrossRef]
- Sidorov, N.A.; Sidorov, D.N. Solving the Hammerstein integral equation in the irregular case by successive approximations. Sib. Math. J. 2010, 51, 325–329. [Google Scholar] [CrossRef]
- Apakov, Y.P. A three-dimensional analog of the Tricomi problem for a parabolic-hyperbolic equation. J. Appl. Industr. Math. 2012, 6, 12–21. [Google Scholar] [CrossRef]
- Dzhuraev, T.D.; Apakov, Y.P. The Gellerstedt problem for a parabolic-hyperbolic equation in a three-dimensional space. Differ. Equ. 1990, 26, 322–330. [Google Scholar]
- Islomov, B. Analogues of the Tricomi problem for an equation of mixed parabolic-hyperbolic type with two lines and different order of degeneracy. Differ. Equ. 1991, 27, 713–719. [Google Scholar]
- Polosin, A.A. Gellerstedt Type Directional Derivative Problem for an Equation of the Mixed Type with a Spectral Parameter. Differ. Equ. 2019, 55, 1373–1383. [Google Scholar] [CrossRef]
- Ruziev, M.K. On the Boundary-Value Problem for a Class of Equations of Mixed Type in an Unbounded Domain. Math. Notes 2012, 92, 70–78. [Google Scholar] [CrossRef]
- Soldatov, A.P. On Dirichlet-type problems for the Lavrent’ev–Bitsadze equation. Proc. Steklov. Inst. Math. 2012, 278, 233–240. [Google Scholar] [CrossRef]
- Salakhitdinov, M.S.; Islomov, B.I. A nonlocal boundary-value problem with conormal derivative for a mixed-type equation with two inner degeneration lines and various orders of degeneracy. Russ. Math. (Iz. VUZ) 2011, 55, 42–49. [Google Scholar] [CrossRef]
- Salakhitdinov, M.S.; Urinov, A.K. Eigenvalue problems for a mixed-type equation with two singular coefficients. Siberian Math. J. 2007, 48, 707–717. [Google Scholar] [CrossRef]
- Urinov, A.K.; Nishonova, S.T. A Problem with Integral Conditions for an Elliptic-Parabolic Equation. Math. Notes 2017, 102, 68–80. [Google Scholar] [CrossRef]
- Yuldashev, T.K. Nonlocal problem for a mixed type differential equation in rectangular domain. Proc. Yerevan State Univ. Phys. Math. Sci. 2016, 3, 70–78. [Google Scholar]
- Yuldashev, T.K. On an integro-differential equation of pseudoparabolic-pseudohyperbolic type with degenerate kernels. Proc. Yerevan State Univ. Phys. Math. Sci. 2018, 52, 19–26. [Google Scholar]
- Sabitov, K.B.; Safin, E.M. The inverse problem for a mixed-type parabolic-hyperbolic equation in a rectangular domain. Russ. Math. (Iz. VUZ) 2010, 54, 48–54. [Google Scholar] [CrossRef]
- Sabitov, K.B.; Martem’yanova, N.V. A nonlocal inverse problem for a mixed-type equation. Russ. Math. (Iz. VUZ) 2011, 55, 61–74. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuldashev, T.K. Nonlocal Inverse Problem for a Pseudohyperbolic- Pseudoelliptic Type Integro-Differential Equations. Axioms 2020, 9, 45. https://doi.org/10.3390/axioms9020045
Yuldashev TK. Nonlocal Inverse Problem for a Pseudohyperbolic- Pseudoelliptic Type Integro-Differential Equations. Axioms. 2020; 9(2):45. https://doi.org/10.3390/axioms9020045
Chicago/Turabian StyleYuldashev, Tursun K. 2020. "Nonlocal Inverse Problem for a Pseudohyperbolic- Pseudoelliptic Type Integro-Differential Equations" Axioms 9, no. 2: 45. https://doi.org/10.3390/axioms9020045
APA StyleYuldashev, T. K. (2020). Nonlocal Inverse Problem for a Pseudohyperbolic- Pseudoelliptic Type Integro-Differential Equations. Axioms, 9(2), 45. https://doi.org/10.3390/axioms9020045