A Comparative Study on Multi-Criteria Decision-Making in Dressing Process for Internal Grinding
Abstract
:1. Introduction
2. Methods of MCDC
2.1. TOPSIS Method
2.2. MARCOS Method
2.3. The EAMR Method
2.4. MAIRCA Method
3. Weight Calculation of Criteria
3.1. The MEREC Method
3.2. The Entropy Method
4. Experimental Setup
5. MCDM Using the MEREC Method for Calculating the Weights of Criteria
5.1. Determining the Weights for the Criteria
5.2. Using TOPSIS Method
5.3. Using MARCOS Method
5.4. Using EAMR Method
5.5. Using MAIRCA Method
6. MCDM Using the Entropy Method for Calculating the Weights of Criteria
7. Results and Remarks
- MCDM when using TOPSIS, MARCOS, EAMR and MAIRCA methods with the weight calculation of criteria by MEREC and entropy will give different ranking results.
- MCDM when using the above four methods with the calculation of the weight of criteria by MEREC and entropy methods gives the same best alternative—A5. It is worth mentioning that the determination of the best alternative is independent of the MCDM method and the weighting calculation method used.
- The best alternative when internal grinding to achieve minimum SR and maximum MRR simultaneously is the one with the following input process parameters: ar = 0.03 (mm/L); nr = 2 (times); af = 0.005 (mm); nf = 1 (times); n0 = 2 (times); and Sd = 1.2 (m/min).
- TOPSIS, MARCOS, EAMR and MAIRCA methods can be used for MCDM when internal grinding. In addition, the weight calculation of criteria can be achieved using the MEREC method or the entropy method.
8. Conclusions
- For the first time, the results of applying the four methods TOPSIS, MARCOS, EAMR, and MAIRCA when MCDM an internal grinding process have been reported.
- The use of the above methods and the weight determination for criteria according to the MEREC or entropy methods do not affect the results of choosing the best alternative.
- The above methods can be used for MCDM when internal grinding with the weight calculation of the criteria, which can be performed by MEREC or the entropy method.
- The following input factors ar = 0.03 (mm/l); nr = 2 (times); af = 0.005 (mm); nf = 1 (times); n0 = 2 (times); and Sd = 1.2 (m/min) was proposed for the best alternative for the dressing process when internal grinding to obtain a minimum SR and maximum MRR simultaneously.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCDM | Multi-Criteria Decision Making |
TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution |
MARCOS | Measurement of Alternatives and Ranking according to Compromise Solution |
EAMR | Area-based Method of Ranking |
MAIRCA | Multi-Attributive Ideal–Real Comparative Analysis |
SR | Surface Roughness |
MRR | Material Removal Rate |
MEREC | Method based on the Removal Effects of Criteria |
VIKOR | Vlsekriterijumska optimizacija I KOmpromisno Resenje in Serbian |
EDM | Electrical Discharge Machining |
COPRAS | Complex Proportional Assessment |
SAW | Simple Additive Weighting |
MOORA | Multi-Objective Optimization on the basis of Ratio Analysis |
WASPAS | Weighted Aggregates Sum Product Assessment |
PSI | Preference Selection Index |
PIV | Proximity Indexed Value |
GRA | Grey Relational Analysis |
PMEDM | Powder-Mixed Electrical Discharge Machining |
COPRAS-G | COmprehensive Grey complex PRoportional ASsessment |
References
- Chou, T.-Y.; Liang, G.-S. Application of a fuzzy multi-criteria decision-making model for shipping company performance evaluation. Marit. Policy Manag. 2001, 28, 375–392. [Google Scholar] [CrossRef]
- Rostamzadeh, R.; Ismail, K.; Zavadskas, E.K. Multi criteria decision making for assisting business angels in investments. Technol. Econ. Dev. Econ. 2014, 20, 696–720. [Google Scholar] [CrossRef] [Green Version]
- Cieśla, M.; Sobota, A.; Jacyna, M. Multi-Criteria decision making process in metropolitan transport means selection based on the sharing mobility idea. Sustainability 2020, 12, 7231. [Google Scholar] [CrossRef]
- Barfod, M.B.; Leleur, S. Multi-Criteria Decision Analysis for Use in Transport Decision Making; DTU Transport: Lyngby, Denmark, 2014; 75p. [Google Scholar]
- Kulak, O.; Goren, H.G.; Supciller, A.A. A new multi criteria decision making approach for medical imaging systems considering risk factors. Appl. Soft Comput. 2015, 35, 931–941. [Google Scholar] [CrossRef]
- He, Q.; Li, X.; Kim, D.N.; Jia, X.; Gu, X.; Zhen, X.; Zhou, L. Feasibility study of a multi-criteria decision-making based hierarchical model for multi-modality feature and multi-classifier fusion: Applications in medical prognosis prediction. Inf. Fusion 2020, 55, 207–219. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.; Serna, J.; Dolón-Payán, A. Evaluating military training aircrafts through the combination of multi-criteria decision making processes with fuzzy logic. A case study in the Spanish Air Force Academy. Aerosp. Sci. Technol. 2015, 42, 58–65. [Google Scholar]
- Temucin, T. Multi-criteria decision making: A cast light upon the usage in military decision process. In Research Anthology on Military and Defense Applications, Utilization, Education, and Ethics; IGI Global: Hershey, PA, USA, 2021; pp. 469–497. [Google Scholar]
- Govindan, K.; Shankar, K.M.; Kannan, D. Sustainable material selection for construction industry–A hybrid multi criteria decision making approach. Renew. Sustain. Energy Rev. 2016, 55, 1274–1288. [Google Scholar] [CrossRef]
- Turskis, Z.; Zavadskas, E.K.; Peldschus, F. Multi-criteria optimization system for decision making in construction design and management. Eng. Econ. 2009, 61, 7–17. [Google Scholar]
- Anysz, H.; Nicał, A.; Stević, Ž.; Grzegorzewski, M.; Sikora, K. Pareto optimal decisions in multi-criteria decision making explained with construction cost cases. Symmetry 2020, 13, 46. [Google Scholar] [CrossRef]
- Saha, A.; Majumder, H. Multi criteria selection of optimal machining parameter in turning operation using comprehensive grey complex proportional assessment method for ASTM A36. Int. J. Eng. Res. Afr. 2016, 23, 24–32. [Google Scholar] [CrossRef]
- Muthuramalingam, T.; Vasanth, S.; Vinothkumar, P.; Geethapriyan, T.; Rabik, M.M. Multi criteria decision making of abrasive flow oriented process parameters in abrasive water jet machining using Taguchi–DEAR methodology. Silicon 2018, 10, 2015–2021. [Google Scholar] [CrossRef]
- Huu Phan, N.; Muthuramalingam, T. Multi criteria decision making of vibration assisted EDM process parameters on machining silicon steel using Taguchi-DEAR methodology. Silicon 2021, 13, 1879–1885. [Google Scholar] [CrossRef]
- Phan, N.H.; Muthuramalingam, T.; Minh, N.D.; Van Duc, N. Enhancing surface morphology of machined SKD61 die steel in EDM process using DEAR approach based multi criteria decision making. Int. J. Interact. Des. Manuf. (IJIDeM) 2022, 1–7. [Google Scholar] [CrossRef]
- Tran, Q.-P.; Nguyen, V.-N.; Huang, S.-C. Drilling process on CFRP: Multi-criteria decision-making with entropy weight using grey-TOPSIS method. Appl. Sci. 2020, 10, 7207. [Google Scholar] [CrossRef]
- Babu, S.S.; Dhanasekaran, C. Mathematical Analysis of Process Parameters in Drilling of Various Aluminium Matrix Composites Using TOPSIS. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021. [Google Scholar] [CrossRef]
- Singh, A.; Shivakoti, I.; Mustafa, Z.; Phipon, R.; Sharma, A. TOPSIS based selection of optimal end milling process parameters. AIP Conf. Proc. 2020, 2273, 050071. [Google Scholar]
- Çalışkan, H.; Kurşuncu, B.; Kurbanoğlu, C.; Güven, Ş.Y. Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Mater. Des. 2013, 45, 473–479. [Google Scholar] [CrossRef]
- Singaravel, B.; Selvaraj, T. Optimization of machining parameters in turning operation using combined TOPSIS and AHP method. Teh. Vjesn. 2015, 22, 1475–1480. [Google Scholar]
- Thirumalai, R.; Senthilkumaar, J. Multi-criteria decision making in the selection of machining parameters for Inconel 718. J. Mech. Sci. Technol. 2013, 27, 1109–1116. [Google Scholar] [CrossRef]
- Jayaraj, J.; Sundaresan, R.; Chinnamuthu, S. Multi-criteria decision of W-powder mixed electro discharge drilling parameters using TOPSIS approach. Mechanics 2019, 25, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.R.; Jana, A.K.; Mohanty, S.C.; Rao, K.M.; Shanker, V.G.; Reddy, D.R. Optimizing process parameters of die sinking EDM in AISI D2 steel by using TOPSIS using EDM oil as dielectric. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021. [Google Scholar] [CrossRef]
- Pattnaik, S.K.; Priyadarshini, M.; Mahapatra, K.D.; Mishra, D.; Panda, S. Multi objective optimization of EDM process parameters using fuzzy TOPSIS method. In Proceedings of the 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 19–20 March 2015. [Google Scholar]
- Yuvaraj, N.; Kumar, M.P. Multiresponse optimization of abrasive water jet cutting process parameters using TOPSIS approach. Mater. Manuf. Processes 2015, 30, 882–889. [Google Scholar] [CrossRef]
- Do Trung, D. Multi-criteria decision making under the MARCOS method and the weighting methods: Applied to milling, grinding and turning processes. Manuf. Rev. 2022, 9, 3. [Google Scholar] [CrossRef]
- Trung, D.; Thinh, H. A multi-criteria decision-making in turning process using the MAIRCA, EAMR, MARCOS and TOPSIS methods: A comparative study. Adv. Prod. Eng. Manag. 2021, 16, 443–456. [Google Scholar] [CrossRef]
- Dey, A.; Shrivastav, M.; Kumar, P. Optimum performance evaluation during machining of Al6061/cenosphere AMCs using TOPSIS and VIKOR based multi-criteria approach. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021, 235, 2174–2188. [Google Scholar] [CrossRef]
- Varatharajulu, M.; Duraiselvam, M.; Kumar, M.B.; Jayaprakash, G.; Baskar, N. Multi criteria decision making through TOPSIS and COPRAS on drilling parameters of magnesium AZ91. J. Magnes. Alloys 2021. [Google Scholar] [CrossRef]
- Do, D.T. A combination method for multi-criteria decision making problem in turning process. Manuf. Rev. 2021, 8, 26. [Google Scholar]
- Huu-Phan, N.; Tien-Long, B.; Quang-Dung, L.; Duc-Toan, N.; Muthuramalingam, T. Multi-criteria decision making using preferential selection index in titanium based die-sinking PMEDM. J. Korean Soc. Precis. Eng. 2019, 36, 793–802. [Google Scholar] [CrossRef]
- Trung, D.D. Application of TOPSIS and PIV methods for multi-criteria decision making in hard turning process. J. Mach. Eng. 2021, 21, 57–71. [Google Scholar]
- Hwang, C.-L.; Lai, Y.-J.; Liu, T.-Y. A new approach for multiple objective decision making. Comput. Oper. Res. 1993, 20, 889–899. [Google Scholar] [CrossRef]
- Stević, Ž.; Pamučar, D.; Puška, A.; Chatterjee, P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Amiri, M.; Antucheviciene, J. Evaluation by an area-based method of ranking interval type-2 fuzzy sets (EAMRIT-2F) for multi-criteria group decision-making. Transform. Bus. Econ. 2016, 15, 39. [Google Scholar]
- Pamučar, D.; Vasin, L.; Lukovac, L. Selection of railway level crossings for investing in security equipment using hybrid DEMATEL-MARICA model. In Proceedings of the XVI International Scientific-Expert Conference on Railways, Niš, Serbia, 9–10 October 2014; pp. 89–92. [Google Scholar]
- Keshavarz-Ghorabaee, M. Assessment of distribution center locations using a multi-expert subjective–objective decision-making approach. Sci. Rep. 2021, 11, 19461. [Google Scholar] [CrossRef] [PubMed]
- Hieu, T.T.; Thao, N.X.; Thuy, L. Application of MOORA and COPRAS Models to Select Materials for Mushroom Cultivation. Vietnam. J. Agric. Sci. 2019, 17, 32–2331. [Google Scholar]
No. | Input Factors | Symbol | Unit | Levels | |||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||
1 | Coarse dressing depth | ar | mm | 0.025 | 0.03 | - | - |
2 | Coarse dressing time | nr | times | 1 | 2 | 3 | 4 |
3 | Fine dressing depth | af | mm | 0.005 | 0.01 | 0.015 | 0.02 |
4 | Fine dressing time | nf | times | 0 | 1 | 2 | 3 |
5 | Non-feeding dressing | n0 | times | 0 | 1 | 2 | 3 |
6 | Dressing feed rate | Sd | m/min | 1 | 1.2 | - | - |
No. | Input Factors | Symbol | Unit | VALUE |
---|---|---|---|---|
1 | Wheel speed | ns | rpm | 12,000 |
2 | Workpiece speed | nw | rpm | 150 |
3 | Radial wheel feed | fr | mm/stroke | 0.0025 |
4 | Axial feed speed | vfa | mm/min | 1 |
Parameters | Specification |
---|---|
Grinding machine | Minakuchi MGU-65-26T (Japan) |
Workpiece material | SKD11 too steel |
Workpiece size | ϕ25 × ϕ36 × 22 (mm) |
Grinding wheel | 19A 120L 8 ASI T S 1A (Japan) |
Grinding wheel size | ϕ23 × ϕ25 × 8 (mm) |
Diamond dresser | DKB3E002110 |
Surface roughness tester | Mitutoyo SV-3100 |
Coolant material | Caltex Aquatex 3180 (3.9%; 2.87 L/min) |
No. | Input Parameters | Output Results | ||||||
---|---|---|---|---|---|---|---|---|
ar (mm) | nr (times) | af (mm) | nf (times) | n0 (times) | Sd (m/min) | Ra (μm) | MRR (mm3/s) | |
1 | 0.025 | 1 | 0.005 | 0 | 0 | 1 | 0.3652 | 0.9186 |
2 | 0.03 | 1 | 0.01 | 1 | 1 | 1 | 0.2137 | 1.0413 |
3 | 0.025 | 1 | 0.015 | 2 | 2 | 1.2 | 0.1948 | 1.1215 |
4 | 0.03 | 1 | 0.02 | 3 | 3 | 1.2 | 0.2417 | 1.1111 |
5 | 0.03 | 2 | 0.005 | 1 | 2 | 1.2 | 0.1850 | 1.2459 |
6 | 0.025 | 2 | 0.01 | 0 | 3 | 1.2 | 0.2477 | 1.2667 |
7 | 0.03 | 2 | 0.015 | 3 | 0 | 1 | 0.2520 | 1.1782 |
8 | 0.025 | 2 | 0.02 | 2 | 1 | 1 | 0.2167 | 1.2251 |
9 | 0.03 | 3 | 0.005 | 2 | 3 | 1 | 0.3064 | 1.4878 |
10 | 0.025 | 3 | 0.01 | 3 | 2 | 1 | 0.3239 | 1.3724 |
11 | 0.03 | 3 | 0.015 | 0 | 1 | 1.2 | 0.3406 | 1.2709 |
12 | 0.025 | 3 | 0.02 | 1 | 0 | 1.2 | 0.3541 | 1.1988 |
13 | 0.025 | 4 | 0.005 | 3 | 1 | 1.2 | 0.3179 | 1.2273 |
14 | 0.03 | 4 | 0.01 | 2 | 0 | 1.2 | 0.3126 | 1.2647 |
15 | 0.025 | 4 | 0.015 | 1 | 3 | 1 | 0.3259 | 1.1247 |
16 | 0.03 | 4 | 0.02 | 0 | 2 | 1 | 0.3634 | 1.1898 |
Trial. | kij | lij | Di+ | Di− | Ri | Rank | ||
---|---|---|---|---|---|---|---|---|
RS | MRR | RS | MRR | |||||
A1 | 0.3133 | 0.1899 | 0.1568 | 0.0949 | 0.0972 | 0.0000 | 0.0000 | 16 |
A2 | 0.1833 | 0.2153 | 0.0917 | 0.1076 | 0.0477 | 0.0663 | 0.5813 | 5 |
A3 | 0.1671 | 0.2318 | 0.0836 | 0.1158 | 0.0381 | 0.0761 | 0.6665 | 3 |
A4 | 0.2073 | 0.2297 | 0.1037 | 0.1148 | 0.0459 | 0.0566 | 0.5524 | 7 |
A5 | 0.1587 | 0.2575 | 0.0794 | 0.1287 | 0.0250 | 0.0844 | 0.7716 | 1 |
A6 | 0.2125 | 0.2618 | 0.1063 | 0.1308 | 0.0353 | 0.0620 | 0.6371 | 4 |
A7 | 0.2162 | 0.2436 | 0.1082 | 0.1217 | 0.0430 | 0.0555 | 0.5634 | 6 |
A8 | 0.1859 | 0.2532 | 0.0930 | 0.1265 | 0.0304 | 0.0712 | 0.7011 | 2 |
A9 | 0.2629 | 0.3076 | 0.1315 | 0.1537 | 0.0521 | 0.0640 | 0.5510 | 8 |
A10 | 0.2779 | 0.2837 | 0.1390 | 0.1418 | 0.0608 | 0.0501 | 0.4519 | 9 |
A11 | 0.2922 | 0.2627 | 0.1462 | 0.1313 | 0.0704 | 0.0379 | 0.3499 | 12 |
A12 | 0.3038 | 0.2478 | 0.1520 | 0.1238 | 0.0785 | 0.0293 | 0.2720 | 14 |
A13 | 0.2727 | 0.2537 | 0.1364 | 0.1268 | 0.0631 | 0.0378 | 0.3748 | 11 |
A14 | 0.2682 | 0.2614 | 0.1342 | 0.1306 | 0.0594 | 0.0423 | 0.4159 | 10 |
A15 | 0.2796 | 0.2325 | 0.1399 | 0.1162 | 0.0712 | 0.0272 | 0.2763 | 13 |
A16 | 0.3118 | 0.2460 | 0.1560 | 0.1229 | 0.0825 | 0.0280 | 0.2534 | 15 |
Trial. | K− | K+ | f (K−) | f (K+) | f (Ki) | Rank |
---|---|---|---|---|---|---|
A1 | 0.335931 | 0.437706 | 0.565777 | 0.434223 | 0.2520 | 16 |
A2 | 0.468012 | 0.609803 | 0.565777 | 0.434223 | 0.3510 | 6 |
A3 | 0.509223 | 0.6635 | 0.565777 | 0.434223 | 0.3819 | 2 |
A4 | 0.452015 | 0.588959 | 0.565777 | 0.434223 | 0.3390 | 8 |
A5 | 0.549206 | 0.715596 | 0.565777 | 0.434223 | 0.4119 | 1 |
A6 | 0.477707 | 0.622436 | 0.565777 | 0.434223 | 0.3583 | 5 |
A7 | 0.456109 | 0.594294 | 0.565777 | 0.434223 | 0.3421 | 7 |
A8 | 0.501322 | 0.653204 | 0.565777 | 0.434223 | 0.3760 | 3 |
A9 | 0.479265 | 0.624465 | 0.565777 | 0.434223 | 0.3595 | 4 |
A10 | 0.446363 | 0.581596 | 0.565777 | 0.434223 | 0.3348 | 9 |
A11 | 0.417635 | 0.544164 | 0.565777 | 0.434223 | 0.3132 | 12 |
A12 | 0.396927 | 0.517182 | 0.565777 | 0.434223 | 0.2977 | 13 |
A13 | 0.420461 | 0.547846 | 0.565777 | 0.434223 | 0.3154 | 11 |
A14 | 0.430944 | 0.561505 | 0.565777 | 0.434223 | 0.3232 | 10 |
A15 | 0.39558 | 0.515426 | 0.565777 | 0.434223 | 0.2967 | 14 |
A16 | 0.39112 | 0.509615 | 0.565777 | 0.434223 | 0.2934 | 15 |
Trial. | nij | vij | Gi | Si | Rank | |||
---|---|---|---|---|---|---|---|---|
Ra | MRR | Ra | MRR | Ra | MRR | |||
A1 | 1.0000 | 0.6174 | 0.5003 | 0.3085 | 0.5003 | 0.3085 | 0.6167 | 16 |
A2 | 0.5850 | 0.6999 | 0.2927 | 0.3497 | 0.2927 | 0.3497 | 1.1949 | 5 |
A3 | 0.5333 | 0.7538 | 0.2668 | 0.3767 | 0.2668 | 0.3767 | 1.4117 | 2 |
A4 | 0.6617 | 0.7468 | 0.3310 | 0.3732 | 0.3310 | 0.3732 | 1.1272 | 9 |
A5 | 0.5065 | 0.8374 | 0.2534 | 0.4184 | 0.2534 | 0.4184 | 1.6511 | 1 |
A6 | 0.6781 | 0.8513 | 0.3393 | 0.4254 | 0.3393 | 0.4254 | 1.2539 | 4 |
A7 | 0.6900 | 0.7919 | 0.3452 | 0.3957 | 0.3452 | 0.3957 | 1.1463 | 8 |
A8 | 0.5932 | 0.8234 | 0.2968 | 0.4115 | 0.2968 | 0.4115 | 1.3863 | 3 |
A9 | 0.8391 | 1.0000 | 0.4198 | 0.4997 | 0.4198 | 0.4997 | 1.1904 | 6 |
A10 | 0.8868 | 1.0000 | 0.4437 | 0.4997 | 0.4437 | 0.4997 | 1.1263 | 10 |
A11 | 0.9325 | 1.0000 | 0.4665 | 0.4997 | 0.4665 | 0.4997 | 1.0712 | 12 |
A12 | 0.9696 | 0.9478 | 0.4851 | 0.4736 | 0.4851 | 0.4736 | 0.9764 | 15 |
A13 | 0.8704 | 0.9704 | 0.4355 | 0.4849 | 0.4355 | 0.4849 | 1.1136 | 11 |
A14 | 0.8558 | 1.0000 | 0.4282 | 0.4997 | 0.4282 | 0.4997 | 1.1671 | 7 |
A15 | 0.8923 | 0.9452 | 0.4464 | 0.4723 | 0.4464 | 0.4723 | 1.0581 | 13 |
A16 | 0.9951 | 1.0000 | 0.4979 | 0.4997 | 0.4979 | 0.4997 | 1.0037 | 14 |
Trial. | kij | lij | Qi | Rank | ||
---|---|---|---|---|---|---|
Ra | MRR | Ra | MRR | |||
A1 | 0.0000 | 0.0000 | 0.0278 | 0.0278 | 0.0556 | 16 |
A2 | 0.0234 | 0.0060 | 0.0044 | 0.0218 | 0.0262 | 7 |
A3 | 0.0263 | 0.0099 | 0.0015 | 0.0179 | 0.0194 | 4 |
A4 | 0.0191 | 0.0094 | 0.0087 | 0.0184 | 0.0271 | 9 |
A5 | 0.0278 | 0.0160 | 0.0000 | 0.0118 | 0.0118 | 1 |
A6 | 0.0181 | 0.0170 | 0.0097 | 0.0108 | 0.0205 | 5 |
A7 | 0.0175 | 0.0127 | 0.0103 | 0.0151 | 0.0254 | 6 |
A8 | 0.0229 | 0.0149 | 0.0049 | 0.0128 | 0.0177 | 2 |
A9 | 0.0091 | 0.0278 | 0.0187 | 0.0000 | 0.0187 | 3 |
A10 | 0.0064 | 0.0221 | 0.0214 | 0.0056 | 0.0271 | 8 |
A11 | 0.0038 | 0.0172 | 0.0240 | 0.0106 | 0.0346 | 12 |
A12 | 0.0017 | 0.0137 | 0.0261 | 0.0141 | 0.0402 | 14 |
A13 | 0.0073 | 0.0151 | 0.0205 | 0.0127 | 0.0332 | 11 |
A14 | 0.0081 | 0.0169 | 0.0197 | 0.0109 | 0.0306 | 10 |
A15 | 0.0061 | 0.0100 | 0.0217 | 0.0177 | 0.0394 | 13 |
A16 | 0.0003 | 0.0132 | 0.0275 | 0.0145 | 0.0421 | 15 |
Trial. | MEREC Weight | Entropy Weight | ||||||
---|---|---|---|---|---|---|---|---|
TOPSIS | MARCOS | EAMR | MAIRCA | TOPSIS | MARCOS | EAMR | MAIRCA | |
A1 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
A2 | 5 | 6 | 5 | 7 | 9 | 8 | 5 | 10 |
A3 | 3 | 2 | 2 | 4 | 5 | 4 | 2 | 5 |
A4 | 7 | 8 | 9 | 9 | 8 | 9 | 9 | 9 |
A5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
A6 | 4 | 5 | 4 | 5 | 4 | 5 | 4 | 4 |
A7 | 6 | 7 | 8 | 6 | 7 | 7 | 8 | 7 |
A8 | 2 | 3 | 3 | 2 | 3 | 3 | 3 | 3 |
A9 | 8 | 4 | 6 | 3 | 2 | 2 | 6 | 2 |
A10 | 9 | 9 | 10 | 8 | 6 | 6 | 10 | 6 |
A11 | 12 | 12 | 12 | 12 | 11 | 11 | 12 | 12 |
A12 | 14 | 13 | 15 | 14 | 13 | 13 | 15 | 13 |
A13 | 11 | 11 | 11 | 11 | 12 | 12 | 11 | 11 |
A14 | 10 | 10 | 7 | 10 | 10 | 10 | 7 | 8 |
A15 | 13 | 14 | 13 | 13 | 15 | 15 | 13 | 14 |
A16 | 15 | 15 | 14 | 15 | 14 | 14 | 14 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.-Q.; Le, X.-H.; Nguyen, T.-T.; Tran, Q.-H.; Vu, N.-P. A Comparative Study on Multi-Criteria Decision-Making in Dressing Process for Internal Grinding. Machines 2022, 10, 303. https://doi.org/10.3390/machines10050303
Nguyen H-Q, Le X-H, Nguyen T-T, Tran Q-H, Vu N-P. A Comparative Study on Multi-Criteria Decision-Making in Dressing Process for Internal Grinding. Machines. 2022; 10(5):303. https://doi.org/10.3390/machines10050303
Chicago/Turabian StyleNguyen, Huu-Quang, Xuan-Hung Le, Thanh-Tu Nguyen, Quoc-Hoang Tran, and Ngoc-Pi Vu. 2022. "A Comparative Study on Multi-Criteria Decision-Making in Dressing Process for Internal Grinding" Machines 10, no. 5: 303. https://doi.org/10.3390/machines10050303
APA StyleNguyen, H. -Q., Le, X. -H., Nguyen, T. -T., Tran, Q. -H., & Vu, N. -P. (2022). A Comparative Study on Multi-Criteria Decision-Making in Dressing Process for Internal Grinding. Machines, 10(5), 303. https://doi.org/10.3390/machines10050303