Synthesis, Properties, and Biodegradability of Thermoplastic Elastomers Made from 2-Methyl-1,3-propanediol, Glutaric Acid and Lactide
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Considerations
2.2. Materials
2.3. Synthesis of PMPG
2.4. Synthesis of PLA-b-PMPG-b-PLA
2.5. Formation of Films of the Obtained Polymers
2.6. Enzymatic Biodegradation Test of the Polymers
2.7. Biodegradation Test of the Polymers in Seawater
3. Results
3.1. Synthesis of PMPG
3.2. Synthesis of PLA-b-PMPG-b-PLA as TPE
3.3. Thermal Properties of TPEs
3.4. Mechanical Properties of the TPEs
3.5. Biodegradability of the Synthesized Copolymers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, T.; Shahid, M.; Azeem, F.; Rasul, I.; Shah, A.A.; Noman, M.; Hameed, A.; Manzoor, I.; Muhammad, S. Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environ. Sci. Pollut. Res. 2018, 25, 7287–7298. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Leng, X.; Wei, Z.; Zhao, Y.; Zheng, L.; Li, Y. ABA triblock copolyesters composed of poly(l-lactide) A hard blocks: Comparison of amorphous and crystalline unsaturated aliphatic polyesters as B soft blocks. J. Mater. Sci. 2020, 55, 9129–9143. [Google Scholar] [CrossRef]
- Holden, G.; Legge, N.R.; Quirk, R.P.; Schroeder, H.E. Thermoplastic Elastomers, 2nd ed.; Hanser Gardner Pubns: Cincinnati, OH, USA, 1996. [Google Scholar]
- Nakayama, Y.; Aihara, K.; Yamanishi, H.; Fukuoka, H.; Tanaka, R.; Cai, Z.; Shiono, T. Synthesis of Biodegradable Thermoplastic Elastomers from ε-Caprolactone and Lactide. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 489–495. [Google Scholar] [CrossRef]
- Zhang, Z.; Grijpma, D.W.; Feijen, J. Triblock Copolymers Based on 1,3-Trimethylene Carbonate and Lactide as Biodegradable Thermoplastic Elastomers. Macromol. Chem. Phys. 2004, 205, 867–875. [Google Scholar] [CrossRef]
- Stridsberg, K.; Albertsson, A.C. Controlled ring-opening polymerization of L-lactide and 1,5-dioxepan-2-one forming a triblock copolymer. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 1774–1784. [Google Scholar] [CrossRef]
- Huang, M.H.; Li, S.M.; Vert, M. Synthesis and degradation of PLA-PCL-PLA triblock copolymer prepared by successive polymerization of ε-caprolactone and dl-lactide. Polymer 2004, 45, 8675–8681. [Google Scholar] [CrossRef]
- Olsen, P.; Borke, T.; Odelius, K.; Albertsson, A.C. ε-Decalactone: A thermoresilient and toughening comonomer to poly(l-lactide). Biomacromolecules 2013, 14, 2883–2890. [Google Scholar] [CrossRef]
- Hiki, S.; Miyamoto, M.; Kimura, Y. Synthesis and characterization of hydroxy-terminated-[RS]-poly(3-hydroxybutyrate) and its utilization to block copolymerization with L-lactide to obtain a biodegradable thermoplastic elastomer. Polymer 2000, 41, 7369. [Google Scholar] [CrossRef]
- Lebarbe, T.; Ibarboure, E.; Gadenne, B.; Alfos, C.; Cramail, H. Fully bio-based poly(l-lactide)-b-poly(ricinoleic acid)-b-poly(l-lactide) triblock copolyesters: Investigation of solid-state morphology and thermo-mechanical properties. Polym. Chem. 2003, 4, 3357–3369. [Google Scholar] [CrossRef]
- Voet, V.S.D.; van Ekenstein, G.O.R.A.; Meereboer, N.L.; Hofman, A.H.; Brinke, G.T.; Loos, K. Double-crystalline PLLA-b-PVDF-b-PLLA triblock copolymers: Preparation and crystallization. Polym. Chem. 2014, 5, 2219. [Google Scholar] [CrossRef]
- Huang, Y.; Chang, R.; Han, L.; Shan, G.; Bao, Y.; Pan, P. ABA-type thermoplastic elastomers composed of poly(ε-caprolactone-co-δ-valerolactone) soft midblock and polymorphic poly(lactic acid) hard end blocks. ACS Sustain. Chem. Eng. 2016, 4, 121–128. [Google Scholar] [CrossRef]
- Watts, A.; Kurokawa, N.; Hillmyer, M.A. Strong, resilient, and sustainable aliphatic polyester thermoplastic elastomers. Biomacromolecules 2017, 18, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Kundys, A.; Plichta, A.; Florjan´czyk, Z.; Frydrych, A.; Zurawski, K. Screening of metal catalysts influence on the synthesis, structure, properties, and biodegradation of PLA-PBA triblock copolymers obtained in melt. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 1444–1456. [Google Scholar] [CrossRef]
- Fabbri, M.; Soccio, M.; Costa, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Gamberini, R.; Rimini, B.; Munari, A.; García-Fernandez, L.; et al. New fully bio-based PLLA triblock copoly(ester urethane)s as potential candidates for soft tissue engineering. Polym. Degrad. Stabil. 2016, 132, 169–180. [Google Scholar] [CrossRef]
- Genovese, L.; Soccio, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Salatelli, E.; Balestra, F.; Munari, A. Design of biobased PLLA triblock copolymers for sustainable food packaging: Thermo-mechanical properties, gas barrier ability and compostability. Eur. Polym. J. 2017, 95, 289–303. [Google Scholar] [CrossRef]
- Dhamaniya, S.; Das, D.; Satapathy, B.K.; Jacob, J. Influence of block composition on structural, thermal and mechanical properties of novel aliphatic polyester based triblock copolymers. Polymer 2012, 53, 4662–4671. [Google Scholar] [CrossRef]
- Zhang, B.; Wei, Z.; Zhao, Y.; Che, R.; Wang, Y.; Leng, X.; Li, Y. Isodimorphic aliphatic copolyester as midblock of;poly(l-lactide)-based triblock copolymers towards largely enhanced impact toughness. Eur. Polym. J. 2019, 111, 28–37. [Google Scholar] [CrossRef]
- Kiesewetter, M.K.; Edward, J.A.; Kim, H.; Waymouth, R.M. Polycondensation of butenediol: Synthesis of telechelic 2-Butene-1,4-diol oligomers. J. Am. Chem. Soc. 2011, 133, 16390–16393. [Google Scholar] [CrossRef] [PubMed]
- Målberg, S.; Höglund, A.; Albertsson, A. Macromolecular design of aliphatic polyesters with maintained mechanical properties and a rapid, customized degradation profile. Biomacromolecules 2011, 12, 2382–2388. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Che, R.; Shao, S.; Wang, Y.; Leng, X.; Li, Y. ABA triblock copolyesters composed of poly(L-lactide) A hard blocks: A comparative study of amorphous and crystalline aliphatic polyesters as B soft blocks. Polym. Test. 2020, 83, 106348. [Google Scholar] [CrossRef]
- Sullivan, C.J.; Dehm, D.C.; Reich, E.E.; Dillon, M.E. Polyester resins based upon 2-methyl-1,3-propanediol. J. Coat. Tech. 1990, 62, 37–45. [Google Scholar]
- Bello, P.; Bello, A.; Riande, E. Conformational Characteristics and Crystalline Order in Poly(2-methyl-1,3-propane glycol terephthalate). Macromolecules 1999, 32, 8197–8203. [Google Scholar] [CrossRef]
- Nalampang, K.; Johnson, A.F. Kinetics of polyesterification: Modelling and simulation of unsaturated polyester synthesis involving 2-methyl-1,3-propanediol. Polymer 2003, 44, 6103–6109. [Google Scholar] [CrossRef]
- Suh, J.; Spruiell, J.E.; Schwartz, S.A. Melt Spinning and Drawing of 2-Methyl-1,3-Propanediol-Substituted Poly(ethylene terephthalate). J. Appl. Polym. Sci. 2003, 88, 2598–2606. [Google Scholar] [CrossRef]
- Lewis, C.L.; Spruiell, J.E. Crystallization of 2-Methyl-1,3-propanediol Substituted Poly(ethylene terephthalate). I. Thermal Behavior and Isothermal Crystallization. J. Appl. Polym. Sci. 2006, 100, 2592–2603. [Google Scholar] [CrossRef]
- Doak, K.W.; Campbell, H.N. Effect of substituents upon melting points of linear polyesters. J. Polym. Sci. 1955, 18, 215–226. [Google Scholar] [CrossRef]
- Chen, C.-H.; Yang, C.-S.; Chen, M.; Shih, Y.-C.; Hsu, H.-S.; LuChen, S.-F. Synthesis and characterization of novel poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s. eXPRESS Polym. Lett. 2011, 5, 284–294. [Google Scholar] [CrossRef]
- Zahir, L.; Kida, T.; Tanaka, R.; Nakayama, Y.; Shiono, T.; Kawasaki, N.; Yamano, N.; Nakayama, A. Synthesis and properties of biodegradable thermoplastic elastomers using 2-Methyl-1,3-propanediol, succinic acid and lactide. Polym. Degrad. Stab. 2020, 181, 109353. [Google Scholar] [CrossRef]
- Glutaric Acid, Pentanedioic Acid, 99%. Available online: Chemkits.eu (accessed on 29 September 2020).
- Bray, C.L.; Tan, B.; Higgins, S.; Cooper, A.I. Polymer CO2 solubility. Structure/Property Relationships in Polyester Libraries. Macromolecules 2010, 43, 9426–9433. [Google Scholar] [CrossRef]
- Nishiwaki, Y.; Masutani, K.; Kimura, Y.; Lee, C.W. Controlling the thermomechanical properties of biobased ABA triblock copolymers comprising polylactide (A) and poly(1,2-propylene succinate) (B) with high molecular weight. J. Polym. Sci. 2020, 58, 860–871. [Google Scholar] [CrossRef]
- Wanamaker, C.L.; O’Leary, L.E.; Lynd, N.A.; Hillmyer, M.A.; Tolman, W.B. Renewable-Resource Thermoplastic Elastomers Based on Polylactide and Polymenthide. Biomacromolecules 2007, 8, 3634–3640. [Google Scholar] [CrossRef] [PubMed]
- Konwar, D.B.; Sethy, S.; Satapathy, B.K.; Jacob, J. Effect of poly(L-lactide) chain length on microstructural and thermomechanical properties of poly(L-lactide)-b-poly(butylene carbonate)-b-poly(L-lactide) triblock copolymers. Polymer 2017, 123, 87–99. [Google Scholar] [CrossRef]
- Xiong, M.; Schneiderman, D.K.; Bates, F.S.; Hillmyer, M.A.; Zhang, K. Scalable production of mechanically tunable block polymers from sugar. Proc. Natl. Acad. Sci. USA 2014, 111, 8357–8362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kershaw, P.; Katsuhiko, S.; Lee, S.; Samseth, J.; Woodring, D. Plastic Debris in the Ocean; UNEP Year Book: Nairobi, Kenya, 2011; pp. 20–33. [Google Scholar]
- Pico, Y.; Barcelo, D. Analysis and Prevention of Microplastics Pollution in Water: Current Perspectives and Future Directions. ACS Omega 2019, 4, 6709–6719. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Nishida, H.; Shairai, Y.; Endo, T. Thermal stability of poly (l-lactide): Influence of end protection by acetyl group. Polym. Degrad. Stab. 2004, 84, 143–149. [Google Scholar] [CrossRef]
- Nishida, H.; Mori, T.; Hoshihara, S.; Fan, Y.; Shirai, Y.; Endo, T. Effect of tin on poly(l-lactic acid) pyrolysis. Polym. Degrad. Stab. 2003, 81, 515–523. [Google Scholar] [CrossRef]
- Nakayama, Y.; Matsubara, N.; Cai, Z.; Shiono, T.; Inumaru, K.; Shirahama, H. Effect of end-group modification of poly(lactide)s by cinnamoyl chloride on their thermal stability. Polym. Degrad. Stab. 2017, 141, 97–103. [Google Scholar] [CrossRef]
- Bikiaris, D.N.; Papageorgiou, G.Z.; Giliopoulos, D.J.; Stergiou, C.A. Correlation between Chemical and Solid-State Structures and Enzymatic Hydrolysis in Novel Biodegradable Polyesters. The Case of Poly(propylene alkanedicarboxylate)s. Macromol. Biosci. 2008, 8, 728–740. [Google Scholar] [CrossRef]
- Hegyesi, N.; Zhang, Y.; Kohari, A.; Polyak, P.; Suic, X.; Pukanszky, B. Enzymatic degradation of PLA/cellulose nanocrystal composites. Ind. Crops Prod. 2019, 141, 111799. [Google Scholar] [CrossRef] [Green Version]
- Tsutsumi, C.; Hayase, N.; Nakagawa, K.; Tanaka, S.; Miyahara, Y. The Enzymatic Degradation of Commercial Biodegradable Polymers by Some Lipases and Chemical Degradation of Them. Macromol. Symp. 2003, 197, 431–442. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P. Biodegradability and Biodegradation of Polyesters. J. Polym. Environ. 2007, 15, 259–267. [Google Scholar] [CrossRef]
- Nakayama, A.; Yamano, N.; Kawasaki, N. Biodegradation in seawater of aliphatic polyesters. Polym. Degrad. Stab. 2019, 166, 290–299. [Google Scholar] [CrossRef]
- Mukai, K.; Yamada, K.; Doi, Y. Enzymatic degradation of poly(hydroxyaikanoates) by a marine bacterium. Polym. Degrad. Stab. 1993, 41, 85–91. [Google Scholar] [CrossRef]
- Kita, K.; Ishimaru, K.; Teraoka, M.; Yanase, H.; Kato, N. Properties of Poly(3-Hydroxybutyrate) Depolymerase from a Marine Bacterium, Alcaligenes faecalis AE122. Appl. Environ. Microbiol. 1995, 61, 1727–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasuya, K.; Mitomo, H. Identification of a marine benthic P(3HB)-degrading bacterium isolate and characterization of its P(3HB) depolymerase. Biomacromolecules 2000, 1, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, N.B.; Mabrouk, M.E.S.; Sabry, S.A.; El-Badan, D.E.S. Degradation of polyesters by a novel marine Nocardiopsis aegyptia sp. nov.: Application of Plackett-Burman experimental design for the improvement of PHB depolymerase activity. J. Gen. Appl. Microbiol. 2005, 51, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Sung, C.-C.; Tachibana, Y.; Suzuki, M.; Hsieh, W.-C.; Kasuya, K. Identification of a poly (3-hydroxybutyrate)-degrading bacterium isolated from coastal seawater in Japan as Shewanella sp. Polymer Degradation and Stability. Polym. Degrad. Stab. 2016, 129, 268–274. [Google Scholar] [CrossRef]
Sample | Time (2nd Stage) (min) | Yield (%) | Mn,GPCb (kg mol−1) | Mn,NMRc (kg mol−1) | Mw/Mnb | Tgd (°C) | Td5e (°C) |
---|---|---|---|---|---|---|---|
PMPG-1 | 120 | 94 | 9.1 | 9.7 | 1.6 | −46 | 377 |
PMPG-2 | 100 | 91 | 8.3 | 8.2 | 1.6 | −48 | 366 |
PMPG-3 | 50 | 90 | 5.4 | 5.3 | 1.7 | −51 | 209 |
Sample | Feed Ratio ([LA]0:[PMPG-1]) | Yield (%) | Mn,GPCb (kg mol−1) | Mn,NMRc (kg mol−1) | Mw/Mnb | FLAc (mol%) |
---|---|---|---|---|---|---|
TPE100 | 100:1 | 92 | 20.2 | 19.7 | 1.2 | 54 |
TPE75 | 75:1 | 92 | 18.7 | 17.3 | 1.2 | 49 |
TPE50 | 50:1 | 92 | 16.2 | 15.2 | 1.3 | 45 |
TPE25 | 25:1 | 88 | 14.9 | 14.0 | 1.3 | 40 |
PLA-1 [29] | 50:1 d | 97 | 5.0 | 5.7 | 1.4 | 100 |
PLA-2 [29] | 25:1 d | 97 | 3.1 | 3.1 | 1.4 | 100 |
Sample | Feed Ratio ([LA]0:[PMPG-1]) | FLA (mol%) | Tga (°C) | Tma (°C) | Td5b (°C) |
---|---|---|---|---|---|
TPE100 | 100:1 | 54 | −42 | 152 | 257 |
TPE75 | 75:1 | 49 | −43 | 145 | 271 |
TPE50 | 50:1 | 45 | −45 | 142 | 285 |
TPE25 | 25:1 | 40 | −48 | 130 | 301 |
Sample | FLA (mol%) | Young Modulus (MPa) | Strength b (MPa) | Elongation at Break (%) |
---|---|---|---|---|
TPE100 | 54 | 207 ± 2 | 6.2 ± 1.2 | 14 ± 2 |
TPE75 | 49 | 35.51 ± 0.05 | 2.0 ± 0.3 | 18 ± 2 |
TPE50 | 45 | 19.80 ± 0.05 | 1.3 ± 0.3 | 21 ± 1 |
TPE25 | 40 | 7 c | 0.4 c | 23 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahir, L.; Kida, T.; Tanaka, R.; Nakayama, Y.; Shiono, T.; Kawasaki, N.; Yamano, N.; Nakayama, A. Synthesis, Properties, and Biodegradability of Thermoplastic Elastomers Made from 2-Methyl-1,3-propanediol, Glutaric Acid and Lactide. Life 2021, 11, 43. https://doi.org/10.3390/life11010043
Zahir L, Kida T, Tanaka R, Nakayama Y, Shiono T, Kawasaki N, Yamano N, Nakayama A. Synthesis, Properties, and Biodegradability of Thermoplastic Elastomers Made from 2-Methyl-1,3-propanediol, Glutaric Acid and Lactide. Life. 2021; 11(1):43. https://doi.org/10.3390/life11010043
Chicago/Turabian StyleZahir, Lamya, Takumitsu Kida, Ryo Tanaka, Yuushou Nakayama, Takeshi Shiono, Norioki Kawasaki, Naoko Yamano, and Atsuyoshi Nakayama. 2021. "Synthesis, Properties, and Biodegradability of Thermoplastic Elastomers Made from 2-Methyl-1,3-propanediol, Glutaric Acid and Lactide" Life 11, no. 1: 43. https://doi.org/10.3390/life11010043
APA StyleZahir, L., Kida, T., Tanaka, R., Nakayama, Y., Shiono, T., Kawasaki, N., Yamano, N., & Nakayama, A. (2021). Synthesis, Properties, and Biodegradability of Thermoplastic Elastomers Made from 2-Methyl-1,3-propanediol, Glutaric Acid and Lactide. Life, 11(1), 43. https://doi.org/10.3390/life11010043