Spatial Characterization of Microbial Communities on Multi-Species Leafy Greens Grown Simultaneously in the Vegetable Production Systems on the International Space Station
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Preparation
2.2. Pillow Assembly, Layout, and Processing
2.3. On-Orbit Operations
2.4. Surface Sample Collection
2.5. Sample Processing
2.6. Microbiological Analysis
2.7. Molecular Community Analysis
2.8. Data Analysis
3. Results
3.1. Plant Germination and Growth
3.2. Bacterial and Fungal Counts on Leaves
3.3. Bacterial and Fungal Counts on Pillow Components
3.4. Bacterial and Fungal Counts on Surface Samples
3.5. Cultivated Bacteria and Fungi Isolate Identification
3.6. Microbial Diversity
3.7. Community Characterization
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wheeler, R.M. Agriculture for Space: People and Places Paving the Way. Open Agric. 2017, 2, 14–32. [Google Scholar] [CrossRef]
- Carillo, P.; Morrone, B.; Fusco, G.M.; De Pascale, S.; Rouphael, Y. Challenges for a Sustainable Food Production System on Board of the International Space Station: A Technical Review. Agronomy 2020, 10, 687. [Google Scholar] [CrossRef]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Lebeis, S.L. The potential for give and take in plant-microbiome relationships. Front. Plant Sci. 2014, 5, 287. [Google Scholar] [CrossRef] [Green Version]
- Santhanam, R.; Luu, V.T.; Weinhold, A.; Goldberg, J.; Oh, Y.; Baldwin, I.T. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc. Natl. Acad. Sci. USA 2015, 112, E5013–E5020. [Google Scholar] [CrossRef] [Green Version]
- Haichar, F.E.Z.; Marol, C.; Berge, O.; Rangel-Castro, J.I.; Prosser, J.; Balesdent, J.; Heulin, T.; Achouak, W. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2008, 2, 1221–1230. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Van Themaat, E.V.L.; Schulze-Lefert, P. Structure and Functions of the Bacterial Microbiota of Plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef] [Green Version]
- Penrose, D.M.; Glick, B.R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 2003, 118, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Glick, B.; Gamalero, E. Recent Developments in the Study of Plant Microbiomes. Microorganisms 2021, 9, 1533. [Google Scholar] [CrossRef]
- Edwards, J.; Johnson, C.; Santos-Medellin, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Eisen, J.A.; Sundaresan, V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 2015, 112, E911–E920. [Google Scholar] [CrossRef] [Green Version]
- Reinhold-Hurek, B.; Bünger, W.; Burbano, C.S.; Sabale, M.; Hurek, T. Roots Shaping Their Microbiome: Global Hotspots for Microbial Activity. Annu. Rev. Phytopathol. 2015, 53, 403–424. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.; Gilroy, S.; Vivanco, J.M. THE ROLE OF ROOT EXUDATES IN RHIZOSPHERE INTERACTIONS WITH PLANTS AND OTHER ORGANISMS. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [Green Version]
- Amaya-Gómez, C.V.; Porcel, M.; Mesa-Garriga, L.; Gómez-Álvarez, M.I. A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms. Appl. Environ. Microbiol. 2020, 86, e00760-20. [Google Scholar] [CrossRef]
- Dees, M.W.; Lysøe, E.; Nordskog, B.; Brurberg, M.B. Bacterial Communities Associated with Surfaces of Leafy Greens: Shift in Composition and Decrease in Richness over Time. Appl. Environ. Microbiol. 2015, 81, 1530–1539. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, G.; Sbodio, A.; Tech, J.J.; Suslow, T.V.; Coaker, G.L.; Leveau, J.H.J. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 2012, 6, 1812–1822. [Google Scholar] [CrossRef]
- Hunter, P.J.; Hand, P.; Pink, D.; Whipps, J.M.; Bending, G.D. Both Leaf Properties and Microbe-Microbe Interactions Influence Within-Species Variation in Bacterial Population Diversity and Structure in the Lettuce (Lactuca Species) Phyllosphere. Appl. Environ. Microbiol. 2010, 76, 8117–8125. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.R.; Marco, M.L. Phyllosphere microbiota composition and microbial community transplantation on lettuce plants grown indoors. mBio 2014, 5, e01564-14. [Google Scholar] [CrossRef] [Green Version]
- Hirano, S.S.; Upper, C.D. Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae—A Pathogen, Ice Nucleus, and Epiphyte. Microbiol. Mol. Biol. Rev. 2000, 64, 624–653. [Google Scholar] [CrossRef] [Green Version]
- Llontop, M.E.M.; Tian, L.; Sharma, P.; Heflin, L.; Galeano, V.A.B.; Haak, D.; Clarke, C.R.; Vinatzer, B. Experimental evidence pointing to rain as a reservoir of tomato phyllosphere microbiota. Phytobiomes J. 2021, 1–58. [Google Scholar] [CrossRef]
- Whipps, J.; Hand, P.; Pink, D.; Bending, G. Phyllosphere microbiology with special reference to diversity and plant genotype. J. Appl. Microbiol. 2008, 105, 1744–1755. [Google Scholar] [CrossRef] [Green Version]
- Berg, G.; Mahnert, A.; Moissl-Eichinger, C. Beneficial effects of plant-associated microbes on indoor microbiomes and human health? Front. Microbiol. 2014, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Maignien, L.; DeForce, E.A.; Chafee, M.E.; Eren, A.M.; Simmons, S.L. Ecological Succession and Stochastic Variation in the Assembly of Arabidopsis thaliana Phyllosphere Communities. mBio 2014, 5, e00682-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahnert, A.; Moissl-Eichinger, C.; Berg, G. Microbiome interplay: Plants alter microbial abundance and diversity within the built environment. Front. Microbiol. 2015, 6, 887. [Google Scholar] [CrossRef] [PubMed]
- Vorholt, J.A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 2012, 10, 828–840. [Google Scholar] [CrossRef] [PubMed]
- Morrow, R.C.; Remiker, R.W. A deployable salad crop production system for lunar habitats. SAE Tech. Pap. 2009. [Google Scholar] [CrossRef]
- Morrow, R.C.; Remiker, R.; Mischnick, M.J.; Tuominen, L.; Lee, M.; Crabb, T. A Low Equivalent System Mass Plant Growth Unit for Space Exploration. SAE Tech. Pap. 2005. [Google Scholar] [CrossRef]
- Massa, G.; Wheeler, R.; Morrow, R.; Levine, H. Growth chambers on the International Space Station for large plants. Acta Hortic. 2016, 1134, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Khodadad, C.L.M.; Hummerick, M.E.; Spencer, L.E.; Dixit, A.R.; Richards, J.T.; Romeyn, M.W.; Smith, T.; Wheeler, R.M.; Massa, G.D. Microbiological and Nutritional Analysis of Lettuce Crops Grown on the International Space Station. Front. Plant Sci. 2020, 11, 199. [Google Scholar] [CrossRef] [Green Version]
- Schuerger, A.C.; Amaradasa, B.S.; Dufault, N.S.; Hummerick, M.E.; Richards, J.T.; Khodadad, C.L.; Smith, T.M.; Massa, G.D. Fusarium oxysporum as an Opportunistic Fungal Pathogen on Zinnia hybrida Plants Grown on board the International Space Station. Astrobiology 2021, 21, 1029–1048. [Google Scholar] [CrossRef]
- Singh, N.K.; Wood, J.M.; Karouia, F.; Venkateswaran, K. Correction to: Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. Microbiome 2018, 6, 214. [Google Scholar] [CrossRef]
- Urbaniak, C.; van Dam, P.; Zaborin, A.; Zaborina, O.; Gilbert, J.A.; Torok, T.; Wang, C.C.C.; Venkateswaran, K. Genomic Characterization and Virulence Potential of Two Fusarium oxysporum Isolates Cultured from the International Space Station. mSystems 2019, 4, e00345-18. [Google Scholar] [CrossRef] [Green Version]
- Sielaff, A.C.; Urbaniak, C.; Mohan, G.B.M.; Stepanov, V.G.; Tran, Q.; Wood, J.; Minich, J.; McDonald, D.; Mayer, T.; Knight, R.; et al. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 2019, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Venkateswaran, K.; Vaishampayan, P.; Cisneros, J.; Pierson, D.L.; Rogers, S.O.; Perry, J. International Space Station environmental microbiome—Microbial inventories of ISS filter debris. Appl. Microbiol. Biotechnol. 2014, 98, 6453–6466. [Google Scholar] [CrossRef]
- Massa, G.D.; Newsham, G.; Hummerick, M.E.; Morrow, R.C.; Wheeler, R.M. Plant Pillow Preparation for the Veggie Plant Growth System on the International Space Station. Gravit. Space Res. 2017, 5, 24–34. [Google Scholar] [CrossRef]
- Massa, G.D.; Dufour, N.F.; Carver, J.A.; Hummerick, M.E.; Wheeler, R.M.; Morrow, R.C.; Smith, T. VEG-01: Veggie Hardware Validation Testing on the International Space Station. Open Agric. 2017, 2, 33–41. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration, FDA. Bacteriological Analytical Manual. Available online: https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm071363.htm (accessed on 6 June 2020).
- Bokulich, N.A.; Mills, D.A. Improved Selection of Internal Transcribed Spacer-Specific Primers Enables Quantitative, Ultra-High-Throughput Profiling of Fungal Communities. Appl. Environ. Microbiol. 2013, 79, 2519–2526. [Google Scholar] [CrossRef] [Green Version]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Oliveros, J.C. Venny, An Interactive Tool for Comparing Lists with Venn’s Diagrams. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 28 June 2021).
- Panstruga, R.; Kuhn, H. Mutual interplay between phytopathogenic powdery mildew fungi and other microorganisms. Mol. Plant Pathol. 2018, 20, 463–470. [Google Scholar] [CrossRef]
- Valentin-Bon, I.; Jacobson, A.; Monday, S.R.; Feng, P.C.H. Microbiological Quality of Bagged Cut Spinach and Lettuce Mixes. Appl. Environ. Microbiol. 2008, 74, 1240–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, C.R.; Randolph, K.C.; Osborn, S.L.; Tyler, H.L. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiol. 2013, 13, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holvoet, K.; Sampers, I.; Seynnaeve, M.; Jacxsens, L.; Uyttendaele, M. Agricultural and Management Practices and Bacterial Contamination in Greenhouse versus Open Field Lettuce Production. Int. J. Environ. Res. Public Health 2014, 12, 32–63. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.L.; Chen, J.C.; Friesen, E.; Delaquis, P.; Allen, K.J. Microbiological Survey of Locally Grown Lettuce Sold at Farmers’ Markets in Vancouver, British Columbia. J. Food Prot. 2015, 78, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Hagenmaier, R.D.; Baker, R.A. A Survey of the Microbial Population and Ethanol Content of Bagged Salad. J. Food Prot. 1998, 61, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Fröhling, A.; Rademacher, A.; Rumpold, B.; Klocke, M.; Schlüter, O. Screening of microbial communities associated with endive lettuce during postharvest processing on industrial scale. Heliyon 2018, 4, e00671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyinlola, L.A.; Obadina, A.O.; Omemu, A.M.; Oyewole, O.B. Prevention of microbial hazard on fresh-cut lettuce through adoption of food safety and hygienic practices by lettuce farmers. Food Sci. Nutr. 2017, 5, 67–75. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, Y.; Hu, L.; Melka, D.; Wang, H.; Laasri, A.; Brown, E.W.; Strain, E.; Allard, M.; Bunning, V.K.; et al. Survey of Foodborne Pathogens, Aerobic Plate Counts, Total Coliform Counts, and Escherichia coli Counts in Leafy Greens, Sprouts, and Melons Marketed in the United States. J. Food Prot. 2018, 81, 400–411. [Google Scholar] [CrossRef]
- Hummerick, M.E.; Garland, J.L.; Bingham, G.; Sychev, V.; Podolsky, I. A hazard analysis critical control point plan applied to the Lada vegetable production units VPU to ensure the safety of space grown vegetables. In Proceedings of the 41st International Conference on Environmental Systems, Portland, OR, USA, 17–21 July 2011; p. 5277. [Google Scholar]
- Talley, S.M.; Coley, P.D.; Kursar, T.A. The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC Ecol. 2002, 2, 7. [Google Scholar] [CrossRef]
- Li, Y.; Uddin, W.; Kaminski, J.E. Effects of relative humidity on infection, colonization and conidiation of Magnaporthe orzyaeon perennial ryegrass. Plant Pathol. 2014, 63, 590–597. [Google Scholar] [CrossRef]
- Be, N.A.; Avila-Herrera, A.; Allen, J.; Singh, N.K.; Sielaff, A.C.; Jaing, C.; Venkateswaran, K. Whole metagenome profiles of particulates collected from the International Space Station. Microbiome 2017, 5, 81. [Google Scholar] [CrossRef] [PubMed]
- Venkateswaran, K.; Checinska, A.; Singh, N.; Mohan, G.B.; Urbaniak, C.; Blachowicz, A.; Fox, G.E.; Jaing, C.; Allen, J.E.; Frey, K.; et al. Microbial Characteristics of ISS Environment Surfaces. In Proceedings of the 47th International Conference on Environmental Systems, Charleston, SC, USA, 16–20 July 2017; p. 131. [Google Scholar]
- Avila-Herrera, A.; Thissen, J.; Urbaniak, C.; Be, N.A.; Smith, D.J.; Karouia, F.; Mehta, S.; Venkateswaran, K.; Jaing, C. Crewmember microbiome may influence microbial composition of ISS habitable surfaces. PLoS ONE 2020, 15, e0231838. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.R.; Moyne, A.-L.; Harris, L.J.; Marco, M.L. Season, Irrigation, Leaf Age, and Escherichia coli Inoculation Influence the Bacterial Diversity in the Lettuce Phyllosphere. PLoS ONE 2013, 8, e68642. [Google Scholar] [CrossRef] [PubMed]
- Castro, V.A.; Thrasher, A.N.; Healy, M.; Ott, C.M.; Pierson, D.L. Microbial Characterization during the Early Habitation of the International Space Station. Microb. Ecol. 2004, 47, 119–126. [Google Scholar] [CrossRef]
- Vokou, D.; Vareli, K.; Zarali, E.; Karamanoli, K.; Constantinidou, H.-I.A.; Monokrousos, N.; Halley, J.M.; Sainis, I. Exploring Biodiversity in the Bacterial Community of the Mediterranean Phyllosphere and its Relationship with Airborne Bacteria. Microb. Ecol. 2012, 64, 714–724. [Google Scholar] [CrossRef]
- Pérez-Jaramillo, J.E.; Mendes, R.; Raaijmakers, J.M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 2016, 90, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Venturi, V.; Keel, C. Signaling in the Rhizosphere. Trends Plant Sci. 2016, 21, 187–198. [Google Scholar] [CrossRef]
- Schreiter, S.; Ding, G.-C.; Heuer, H.; Neumann, G.; Sandmann, M.; Grosch, R.; Kropf, S.; Smalla, K. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front. Microbiol. 2014, 5, 144. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Roberts, M.; Castro, S.; Oubre, C.; Makimura, K.; Leys, N.; Grohmann, E.; Sugita, T.; Ichijo, T.; Nasu, M. Microbial Monitoring of Crewed Habitats in Space—Current Status and Future Perspectives. Microbes Environ. 2014, 29, 250–260. [Google Scholar] [CrossRef] [Green Version]
- Kandel, S.L.; Firrincieli, A.; Joubert, P.M.; Okubara, P.A.; Leston, N.D.; McGeorge, K.M.; Mugnozza, G.S.; Harfouche, A.; Kim, S.-H.; Doty, S.L. An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes. Front. Microbiol. 2017, 8, 386. [Google Scholar] [CrossRef] [Green Version]
- Eberl, L.; Vandamme, P. Members of the genus Burkholderia: Good and bad guys. F1000Research 2016, 5, 1007. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, N.; Shen, Z.; Zhu, C.; Liu, H.; Xu, Z.; Li, R.; Shen, Q.; Salles, J.F. Soil microbiome manipulation triggers direct and possible indirect suppression against Ralstonia solanacearum and Fusarium oxysporum. NPJ Biofilms Microbiomes 2021, 7, 33. [Google Scholar] [CrossRef]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [Green Version]
- Stelzmueller, I.; Biebl, M.; Wiesmayr, S.; Eller, M.; Hoeller, E.; Fille, M.; Weiss, G.; Lass-Floerl, C.; Bonatti, H. Ralstonia pickettii—Innocent bystander or a potential threat? Clin. Microbiol. Infect. 2006, 12, 99–101. [Google Scholar] [CrossRef] [Green Version]
- Cankar, K.; Kraigher, H.; Ravnikar, M.; Rupnik, M. Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol. Lett. 2005, 244, 341–345. [Google Scholar] [CrossRef] [Green Version]
- Fürnkranz, M.; Lukesch, B.; Müller, H.; Huss, H.; Grube, M.; Berg, G. Microbial Diversity Inside Pumpkins: Microhabitat-Specific Communities Display a High Antagonistic Potential Against Phytopathogens. Microb. Ecol. 2012, 63, 418–428. [Google Scholar] [CrossRef]
- Preston, G.M. Plant perceptions of plant growth-promoting Pseudomonas. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 907–918. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, J.P.; U’Ren, J.M.; Gallery, R.E.; Baltrus, D.A.; Arnold, A.E. An Endohyphal Bacterium (Chitinophaga, Bacteroidetes) Alters Carbon Source Use by Fusarium keratoplasticum (F. solani Species Complex, Nectriaceae). Front. Microbiol. 2017, 8, 350. [Google Scholar] [CrossRef] [Green Version]
- Bijlani, S.; Singh, N.K.; Eedara, V.V.R.; Podile, A.R.; Mason, C.E.; Wang, C.C.C.; Venkateswaran, K. Methylobacterium ajmalii sp. nov., Isolated From the International Space Station. Front. Microbiol. 2021, 12, 639396. [Google Scholar] [CrossRef]
- Madhaiyan, M.; Poonguzhali, S.; Kwon, S.-W.; Sa, T.-M. Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. Int. J. Syst. Evol. Microbiol. 2009, 59, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Bohra, A.; Pandey, A.K.; Pandey, M.K.; Kumar, A. Metabolomics for Plant Improvement: Status and Prospects. Front. Plant Sci. 2017, 8, 1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macey, M.C.; Pratscher, J.; Crombie, A.T.; Murrell, J.C. Impact of plants on the diversity and activity of methylotrophs in soil. Microbiome 2020, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Baricz, A.; Teban-Man, A.M.; Chiriac, C.; Szekeres, E.; Farkas, A.; Nica, M.; Dascălu, A.; Oprișan, C.; Lavin, P.; Coman, C. Investigating the potential use of an Antarctic variant of Janthinobacterium lividum for tackling antimicrobial resistance in a One Health approach. Sci. Rep. 2018, 8, 15272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, W.T.; Giri, S.S.; Yun, S.; Kim, H.J.; Kim, S.G.; Kim, S.W.; Kang, J.W.; Han, S.J.; Kwon, J.; Jun, J.W.; et al. Janthinobacterium lividum as An Emerging Pathogenic Bacterium Affecting Rainbow Trout (Oncorhynchus mykiss) Fisheries in Korea. Pathogens 2019, 8, 146. [Google Scholar] [CrossRef] [Green Version]
- Haack, F.S.; Poehlein, A.; Kröger, C.; Voigt, C.; Piepenbring, M.; Bode, H.B.; Daniel, R.; Schäfer, W.; Streit, W.R. Molecular Keys to the Janthinobacterium and Duganella spp. Interaction with the Plant Pathogen Fusarium graminearum. Front. Microbiol. 2016, 7, 1668. [Google Scholar] [CrossRef] [Green Version]
- Ibekwe, A.; Grieve, C. Changes in developing plant microbial community structure as affected by contaminated water. FEMS Microbiol. Ecol. 2004, 48, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Toju, H.; Kurokawa, H.; Kenta, T. Factors Influencing Leaf- and Root-Associated Communities of Bacteria and Fungi Across 33 Plant Orders in a Grassland. Front. Microbiol. 2019, 10, 241. [Google Scholar] [CrossRef] [Green Version]
- Dixit, A.R.; Khodadad, C.L.M.; Hummerick, M.E.; Spern, C.J.; Spencer, L.E.; Fischer, J.A.; Curry, A.B.; Gooden, J.L.; Maldonado Vazquez, G.J.; Wheeler, R.M.; et al. Persistence of Escherichia coli in the microbiomes of red Romaine lettuce (Lactuca sativa cv. ‘Outredgeous’) and mizuna mustard (Brassica rapa var. japonica)—Does seed sanitization matter? BMC Microbiol. 2021. accepted. [Google Scholar]
Tech Demo | Plant/Pillow Initiation | 1st Harvest | 2nd Harvest | 3rd Harvest | Final Harvest | Return to Earth | Plant analysis | Pillow Analysis | Swab Analysis |
---|---|---|---|---|---|---|---|---|---|
VEG-03D (SN002) | 9/26/17 | 10/27/17 | 11/3/17 | 11/13/17 | 11/23/17 | 5/5/18 | 5/14/18 | 7/10/18 | 6/29/18 |
VEG-03E (SN001) | 2/6/18 | 3/8/18 | 3/14/18 | 3/27/18 | 4/6/18 | 8/30/18 | 10/4/18 | 11/27/18 | 11/19/18 |
VEG-03F (SN002) | 2/9/18 | 3/11/18 | 3/17/18 | 3/30/18 | 4/9/18 | 8/3/18 | 10/4/18 | 11/27/18 | 11/19/18 |
Sample | APC CFU/Swab | Fungi CFU/Swab | ||||
---|---|---|---|---|---|---|
D | E | F | D | E | F | |
1-pillow | 3.5 × 102 | 2.1 × 104 | 1.3 × 105 | <DL | 8.0 × 103 | 8.1 × 103 |
2-pillow | 6.0 × 104 | 7.7 × 104 | 4.0 × 106 | 4.5 × 103 | 1.6 × 104 | 1.2 × 104 |
3-pillow | 3.5 × 102 | <DL | 4.0 × 106 | 4.9 × 103 | <DL | 4.0 × 106 |
4-bellows UL | 1.5 × 103 | <DL | 7.0 × 102 | <DL | <DL | 2.5 × 102 |
5-bellows MF | 1.0 × 102 | <DL | <DL | 1.4 × 102 | <DL | 7.0 × 101 |
6-bellows LR | 1.1 × 103 | <DL | 5.2 × 103 | 1.8 × 102 | <DL | 1.1 × 102 |
7-fan screen | 3.5 × 101 | 4.1 × 104 | 8.6 × 103 | 3.5 × 101 | 3.3 × 104 | 5.1 × 103 |
8-outlet | 1.4 × 102 | <DL | <DL | <DL | <DL | <DL |
Bacteria | Swab | Wick | Substrate | Leaf | Root |
---|---|---|---|---|---|
Achromobacter | E (WG, M), F (WG) | ||||
Acidovorax | F | ||||
Amphibacillus | D | D (Ol) | |||
Bacillus | D | D | D | ||
Brevundimonas | F | F | |||
Burkholderia | D, E, F | D, F | F (GL) | D, F | |
Chryseobacterium | E, F | D | |||
Clavibacter | D | ||||
Cupriavidis | F | ||||
Curtobacterium | F | E (WG), F (OL) | |||
Enterobacter | D | ||||
Fictibacillus | F | ||||
Flavomonas | D | D | D | ||
Gardinella | D | ||||
Gordonia | D | ||||
Klebsiella | D, F | D (OL, WG) | |||
Kocura | D (WG) | ||||
Leifsonia | D, E, F | D, E, F | D | ||
Methylobacterium | D | D | D | ||
Microbacterium | D, E, F | E, F | D, E, F | E (WGL), F (OL) | D, E, F |
Micrococcus | D | E (M) | |||
Nocardioidaceae | F | ||||
Novosphingobium | E, F | ||||
Paenibacillus | E, F | E, F | E (M, OL), F (OL) | ||
Pantoea | D, F | F | D (WG) | ||
Paracoccus | F | ||||
Pectobacterium | D (OL) | ||||
Pseudomonas | D, E, F | D | D (M, WG, OL)E (WG), F (OL) | ||
Rhizobium | D, E | D, E | |||
Staphylococcus | D, E, F | D, F | D (WG, M), E (M) F (WG) |
Fungi | Swabs | Wick | Substrate | Leaf | Roots |
---|---|---|---|---|---|
Aspergillus spp. | D, E, F | D, E, F | D, E, F | D, E, F | D, E, F |
Fusarium oxysporum | D, E, F | D, E, F | D, E, F | D, E, F | D, E, F |
Penicillium spp. | F | D, F | D, E | D, E, F | |
Rhodotorula spp. | D, F | D, E, F | D, E, F | D, E, F | D, E, F |
Exophiala spp. | E | ||||
Purpureocillium lilacinum | E, F |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hummerick, M.E.; Khodadad, C.L.M.; Dixit, A.R.; Spencer, L.E.; Maldonado-Vasquez, G.J.; Gooden, J.L.; Spern, C.J.; Fischer, J.A.; Dufour, N.; Wheeler, R.M.; et al. Spatial Characterization of Microbial Communities on Multi-Species Leafy Greens Grown Simultaneously in the Vegetable Production Systems on the International Space Station. Life 2021, 11, 1060. https://doi.org/10.3390/life11101060
Hummerick ME, Khodadad CLM, Dixit AR, Spencer LE, Maldonado-Vasquez GJ, Gooden JL, Spern CJ, Fischer JA, Dufour N, Wheeler RM, et al. Spatial Characterization of Microbial Communities on Multi-Species Leafy Greens Grown Simultaneously in the Vegetable Production Systems on the International Space Station. Life. 2021; 11(10):1060. https://doi.org/10.3390/life11101060
Chicago/Turabian StyleHummerick, Mary E., Christina L. M. Khodadad, Anirudha R. Dixit, Lashelle E. Spencer, Gretchen J. Maldonado-Vasquez, Jennifer L. Gooden, Cory J. Spern, Jason A. Fischer, Nicole Dufour, Raymond M. Wheeler, and et al. 2021. "Spatial Characterization of Microbial Communities on Multi-Species Leafy Greens Grown Simultaneously in the Vegetable Production Systems on the International Space Station" Life 11, no. 10: 1060. https://doi.org/10.3390/life11101060
APA StyleHummerick, M. E., Khodadad, C. L. M., Dixit, A. R., Spencer, L. E., Maldonado-Vasquez, G. J., Gooden, J. L., Spern, C. J., Fischer, J. A., Dufour, N., Wheeler, R. M., Romeyn, M. W., Smith, T. M., Massa, G. D., & Zhang, Y. (2021). Spatial Characterization of Microbial Communities on Multi-Species Leafy Greens Grown Simultaneously in the Vegetable Production Systems on the International Space Station. Life, 11(10), 1060. https://doi.org/10.3390/life11101060