The Role of Pediatric Nutrition as a Modifiable Risk Factor for Precocious Puberty
Abstract
:1. Introduction
2. Methods of Data Collection
3. Discussion of the Literature
3.1. Puberty
3.1.1. Physiology of Puberty
3.1.2. Timing of Puberty
3.1.3. Precocious Puberty
3.2. Diet and Timing of Puberty
3.2.1. Maternal Nutrition
3.2.2. Early-Life Nutrition
Breastfeeding
Formula Feeding
Soy-Based Formulas
Complementary Feeding
3.2.3. Childhood Nutrition
Energy Imbalance: High-Energy Diet and Body Composition
3.2.4. Macronutrients
High Protein Intake
High Fat Intake
High Carbohydrate Intake
Micronutrients
3.2.5. Dietary Patterns
Mediterranean Diet
Vegetarian Diet
New Frontiers in Dietary Patterns
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abreu, A.P.; Kaiser, U.B. Pubertal Development and Regulation. Lancet Diabetes Endocrinol. 2016, 4, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Calcaterra, V.; Cena, H.; Regalbuto, C.; Vinci, F.; Porri, D.; Verduci, E.; Mameli, C.; Zuccotti, G.V. The Role of Fetal, Infant, and Childhood Nutrition in the Timing of Sexual Maturation. Nutrients 2021, 13, 419. [Google Scholar] [CrossRef] [PubMed]
- Villamor, E.; Jansen, E.C. Nutritional Determinants of the Timing of Puberty. Annu. Rev. Public Health 2016, 37, 33–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruszfeld, D.; Kułaga, Z.; Wierzbicka, A.; Rzehak, P.; Grote, V.; Martin, F.; Poncelet, P.; Closa-Monasterolo, R.; Escribano, J.; Verduci, E.; et al. Leptin and Adiponectin Serum Levels from Infancy to School Age: Factors Influencing Tracking. Child. Obes. 2016, 12, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Latronico, A.C.; Brito, V.N.; Carel, J.-C. Causes, Diagnosis, and Treatment of Central Precocious Puberty. Lancet Diabetes Endocrinol. 2016, 4, 265–274. [Google Scholar] [CrossRef]
- Soliman, A.; Sanctis, V.; Elalaily, R. Nutrition and Pubertal Development. Indian J. Endocrinol. Metab. 2014, 18, 39. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.T.; Denniss, A.R. An Introduction to Writing Narrative and Systematic Reviews-Tasks, Tips and Traps for Aspiring Authors. Heart Lung Circ. 2018, 27, 893–898. [Google Scholar] [CrossRef] [Green Version]
- Biro, F.M.; Chan, Y.-M. Normal Puberty. Available online: https://www.uptodate.com/contents/normal-puberty?search=normal%20puberty&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1 (accessed on 9 November 2021).
- Sørensen, K.; Mouritsen, A.; Aksglaede, L.; Hagen, C.P.; Mogensen, S.S.; Juul, A. Recent Secular Trends in Pubertal Timing: Implications for Evaluation and Diagnosis of Precocious Puberty. Horm. Res. Paediatr. 2012, 77, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Farello, G.; Altieri, C.; Cutini, M.; Pozzobon, G.; Verrotti, A. Review of the Literature on Current Changes in the Timing of Pubertal Development and the Incomplete Forms of Early Puberty. Front. Pediatr. 2019, 7, 147. [Google Scholar] [CrossRef] [Green Version]
- Kale, A.; Deardorff, J.; Lahiff, M.; Laurent, C.; Greenspan, L.C.; Hiatt, R.A.; Windham, G.; Galvez, M.P.; Biro, F.M.; Pinney, S.M.; et al. Breastfeeding Versus Formula-Feeding and Girls’ Pubertal Development. Matern. Child Health J. 2015, 19, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Uenoyama, Y.; Inoue, N.; Nakamura, S.; Tsukamura, H. Central Mechanism Controlling Pubertal Onset in Mammals: A Triggering Role of Kisspeptin. Front. Endocrinol. 2019, 10, 312. [Google Scholar] [CrossRef] [Green Version]
- Iwasa, T.; Matsuzaki, T.; Murakami, M.; Fujisawa, S.; Kinouchi, R.; Gereltsetseg, G.; Kuwahara, A.; Yasui, T.; Irahara, M. Effects of Intrauterine Undernutrition on Hypothalamic Kiss1 Expression and the Timing of Puberty in Female Rats. J. Physiol. 2010, 588, 821–829. [Google Scholar] [CrossRef]
- Ojeda, S.R.; Dubay, C.; Lomniczi, A.; Kaidar, G.; Matagne, V.; Sandau, U.S.; Dissen, G.A. Gene Networks and the Neuroendocrine Regulation of Puberty. Mol. Cell. Endocrinol. 2010, 324, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connor, N.E. Impact of Fetal and Neonatal Malnutrition on the Onset of Puberty and Associated Noncommunicable Disease Risks. Adolesc. Health Med. Ther. 2011, 2, 15–25. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, D.M.; Blache, D.; Hoggard, N.; Brookes, E.; Wooding, F.B.P.; Fowden, A.L.; Forhead, A.J. Developmental Control of Plasma Leptin and Adipose Leptin Messenger Ribonucleic Acid in the Ovine Fetus during Late Gestation: Role of Glucocorticoids and Thyroid Hormones. Endocrinology 2007, 148, 3750–3757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinton, N.D.; Smith, R.F.; Clayton, P.E.; Gill, M.S.; Shalet, S.; Justice, S.K.; Simon, S.A.; Walters, S.; Postel-Vinay, M.C.; Blakemore, A.I.; et al. Leptin Binding Activity Changes with Age: The Link between Leptin and Puberty. J. Clin. Endocrinol. Metab. 1999, 84, 2336–2341. [Google Scholar] [CrossRef] [PubMed]
- Fandiño, J.; Toba, L.; González-Matías, L.C.; Diz-Chaves, Y.; Mallo, F. Perinatal Undernutrition, Metabolic Hormones, and Lung Development. Nutrients 2019, 11, 2870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbassi, V. Growth and Normal Puberty. Pediatrics 1998, 102, 507–511. [Google Scholar]
- Marshall, W.A.; Tanner, J.M. Variations in Pattern of Pubertal Changes in Girls. Arch. Dis. Child. 1969, 44, 291–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, W.A.; Tanner, J.M. Variations in the Pattern of Pubertal Changes in Boys. Arch. Dis. Child. 1970, 45, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toppari, J.; Juul, A. Trends in Puberty Timing in Humans and Environmental Modifiers. Mol. Cell. Endocrinol. 2010, 324, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, R.L.; Lipton, R.B.; Drum, M.L. Thelarche, Pubarche, and Menarche Attainment in Children with Normal and Elevated Body Mass Index. Pediatrics 2009, 123, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Biro, F.M.; Kiess, W. Contemporary Trends in Onset and Completion of Puberty, Gain in Height and Adiposity. Endocr. Dev. 2016, 29, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Brix, N.; Ernst, A.; Lauridsen, L.L.B.; Parner, E.; Støvring, H.; Olsen, J.; Henriksen, T.B.; Ramlau-Hansen, C.H. Timing of Puberty in Boys and Girls: A Population-Based Study. Paediatr. Perinat. Epidemiol. 2019, 33, 70–78. [Google Scholar] [CrossRef]
- Ogden, C.L.; Yanovski, S.Z.; Carroll, M.D.; Flegal, K.M. The Epidemiology of Obesity. Gastroenterology 2007, 132, 2087–2102. [Google Scholar] [CrossRef]
- Wagner, I.V.; Sabin, M.A.; Pfäffle, R.W.; Hiemisch, A.; Sergeyev, E.; Körner, A.; Kiess, W. Effects of Obesity on Human Sexual Development. Nat. Rev. Endocrinol. 2012, 8, 246–254. [Google Scholar] [CrossRef]
- Kaplowitz, P.B. Link between Body Fat and the Timing of Puberty. Pediatrics 2008, 121, S208–S217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biro, F.M.; Khoury, P.; Morrison, J.A. Influence of Obesity on Timing of Puberty. Int. J. Androl. 2006, 29, 272–277. [Google Scholar] [CrossRef]
- Li, W.; Liu, Q.; Deng, X.; Chen, Y.; Liu, S.; Story, M. Association between Obesity and Puberty Timing: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public. Health 2017, 14, E1266. [Google Scholar] [CrossRef] [PubMed]
- Lundeen, E.A.; Norris, S.A.; Martorell, R.; Suchdev, P.S.; Mehta, N.K.; Richter, L.M.; Stein, A.D. Early Life Growth Predicts Pubertal Development in South African Adolescents. J. Nutr. 2016, 146, 622–629. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Liu, J.; Zhao, J.; Liu, J.; Bai, Y.; Jia, L.; Yao, X. Association of Obesity with Onset of Puberty and Sex Hormones in Chinese Girls: A 4-Year Longitudinal Study. PLoS ONE 2015, 10, e0134656. [Google Scholar] [CrossRef]
- Lee, J.M.; Kaciroti, N.; Appugliese, D.; Corwyn, R.F.; Bradley, R.H.; Lumeng, J.C. Body Mass Index and Timing of Pubertal Initiation in Boys. Arch. Pediatr. Adolesc. Med. 2010, 164, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Euling, S.Y.; Selevan, S.G.; Pescovitz, O.H.; Skakkebaek, N.E. Role of Environmental Factors in the Timing of Puberty. Pediatrics 2008, 121, S167–S171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özen, S.; Darcan, Ş. Effects of Environmental Endocrine Disruptors on Pubertal Development. J. Clin. Res. Pediatr. Endocrinol. 2011, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Harley, K.G.; Berger, K.P.; Kogut, K.; Parra, K.; Lustig, R.H.; Greenspan, L.C.; Calafat, A.M.; Ye, X.; Eskenazi, B. Association of Phthalates, Parabens and Phenols Found in Personal Care Products with Pubertal Timing in Girls and Boys. Hum. Reprod. Oxf. Engl. 2019, 34, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Henley, D.V.; Lipson, N.; Korach, K.S.; Bloch, C.A. Prepubertal Gynecomastia Linked to Lavender and Tea Tree Oils. N. Engl. J. Med. 2007, 356, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Leijs, M.M.; Koppe, J.G.; Olie, K.; van Aalderen, W.M.C.; de Voogt, P.; Vulsma, T.; Westra, M.; ten Tusscher, G.W. Delayed Initiation of Breast Development in Girls with Higher Prenatal Dioxin Exposure; a Longitudinal Cohort Study. Chemosphere 2008, 73, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Hauser, R.; Sergeyev, O.; Korrick, S.; Lee, M.M.; Revich, B.; Gitin, E.; Burns, J.S.; Williams, P.L. Association of Blood Lead Levels with Onset of Puberty in Russian Boys. Environ. Health Perspect. 2008, 116, 976–980. [Google Scholar] [CrossRef]
- Berger, K.; Eskenazi, B.; Kogut, K.; Parra, K.; Lustig, R.H.; Greenspan, L.C.; Holland, N.; Calafat, A.M.; Ye, X.; Harley, K.G. Association of Prenatal Urinary Concentrations of Phthalates and Bisphenol A and Pubertal Timing in Boys and Girls. Environ. Health Perspect. 2018, 126, 97004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, C.L.; DiVall, S. Consequences of Early Life Programing by Genetic and Environmental Influences: A Synthesis Regarding Pubertal Timing. Endocr. Dev. 2016, 29, 134–152. [Google Scholar] [CrossRef]
- Monteilh, C.; Kieszak, S.; Flanders, W.D.; Maisonet, M.; Rubin, C.; Holmes, A.K.; Heron, J.; Golding, J.; McGeehin, M.A.; Marcus, M. Timing of Maturation and Predictors of Tanner Stage Transitions in Boys Enrolled in a Contemporary British Cohort. Paediatr. Perinat. Epidemiol. 2011, 25, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Yermachenko, A.; Dvornyk, V. A Meta-Analysis Provides Evidence That Prenatal Smoking Exposure Decreases Age at Menarche. Reprod. Toxicol. Elmsford N 2015, 58, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Maisonet, M.; Christensen, K.Y.; Rubin, C.; Holmes, A.; Flanders, W.D.; Heron, J.; Ong, K.K.; Golding, J.; McGeehin, M.A.; Marcus, M. Role of Prenatal Characteristics and Early Growth on Pubertal Attainment of British Girls. Pediatrics 2010, 126, e591–e600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verkauskiene, R.; Petraitiene, I.; Albertsson Wikland, K. Puberty in Children Born Small for Gestational Age. Horm. Res. Paediatr. 2013, 80, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Saenger, P.; Czernichow, P.; Hughes, I.; Reiter, E.O. Small for Gestational Age: Short Stature and Beyond. Endocr. Rev. 2007, 28, 219–251. [Google Scholar] [CrossRef] [PubMed]
- Valūniene, M.; Danylaite, A.; Kryziūte, D.; Ramanauskaite, G.; Lasiene, D.; Lasas, L.; Verkauskiene, R. Postnatal growth in children born small and appropriate for gestational age during the first years of life. Med. Kaunas Lith. 2009, 45, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Golub, M.S.; Collman, G.W.; Foster, P.M.D.; Kimmel, C.A.; Rajpert-De Meyts, E.; Reiter, E.O.; Sharpe, R.M.; Skakkebaek, N.E.; Toppari, J. Public Health Implications of Altered Puberty Timing. Pediatrics 2008, 121, S218–S230. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Styne, D. Influences on the Onset and Tempo of Puberty in Human Beings and Implications for Adolescent Psychological Development. Horm. Behav. 2013, 64, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Elks, C.E.; Ong, K.K.; Scott, R.A.; van der Schouw, Y.T.; Brand, J.S.; Wark, P.A.; Amiano, P.; Balkau, B.; Barricarte, A.; Boeing, H.; et al. Age at Menarche and Type 2 Diabetes Risk: The EPIC-InterAct Study. Diabetes Care 2013, 36, 3526–3534. [Google Scholar] [CrossRef] [Green Version]
- Prentice, P.; Viner, R.M. Pubertal Timing and Adult Obesity and Cardiometabolic Risk in Women and Men: A Systematic Review and Meta-Analysis. Int. J. Obes. 2013, 37, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Day, F.R.; Elks, C.E.; Murray, A.; Ong, K.K.; Perry, J.R.B. Puberty Timing Associated with Diabetes, Cardiovascular Disease and Also Diverse Health Outcomes in Men and Women: The UK Biobank Study. Sci. Rep. 2015, 5, 11208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodicoat, D.H.; Schoemaker, M.J.; Jones, M.E.; McFadden, E.; Griffin, J.; Ashworth, A.; Swerdlow, A.J. Timing of Pubertal Stages and Breast Cancer Risk: The Breakthrough Generations Study. Breast Cancer Res. BCR 2014, 16, R18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forman, M.R.; Mangini, L.D.; Thelus-Jean, R.; Hayward, M.D. Life-Course Origins of the Ages at Menarche and Menopause. Adolesc. Health Med. Ther. 2013, 4, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waugh, E.J.; Lam, M.-A.; Hawker, G.A.; McGowan, J.; Papaioannou, A.; Cheung, A.M.; Hodsman, A.B.; Leslie, W.D.; Siminoski, K.; Jamal, S.A.; et al. Risk Factors for Low Bone Mass in Healthy 40–60 Year Old Women: A Systematic Review of the Literature. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2009, 20, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charalampopoulos, D.; McLoughlin, A.; Elks, C.E.; Ong, K.K. Age at Menarche and Risks of All-Cause and Cardiovascular Death: A Systematic Review and Meta-Analysis. Am. J. Epidemiol. 2014, 180, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Ong, K.K.; Bann, D.; Wills, A.K.; Ward, K.; Adams, J.E.; Hardy, R.; Kuh, D. National Survey of Health and Development Scientific and Data Collection Team Timing of Voice Breaking in Males Associated with Growth and Weight Gain across the Life Course. J. Clin. Endocrinol. Metab. 2012, 97, 2844–2852. [Google Scholar] [CrossRef] [Green Version]
- Hardy, R.; Kuh, D.; Whincup, P.H.; Wadsworth, M.E. Age at Puberty and Adult Blood Pressure and Body Size in a British Birth Cohort Study. J. Hypertens. 2006, 24, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Stumper, A.; Olino, T.M.; Abramson, L.Y.; Alloy, L.B. Pubertal Timing and Substance Use in Adolescence: An Investigation of Two Cognitive Moderators. J. Abnorm. Child Psychol. 2019, 47, 1509–1520. [Google Scholar] [CrossRef]
- Biro, F.M.; Galvez, M.P.; Greenspan, L.C.; Succop, P.A.; Vangeepuram, N.; Pinney, S.M.; Teitelbaum, S.; Windham, G.C.; Kushi, L.H.; Wolff, M.S. Pubertal Assessment Method and Baseline Characteristics in a Mixed Longitudinal Study of Girls. Pediatrics 2010, 126, e583–e590. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, A.; Pantsiotou, S.; Douros, K.; Papadimitriou, D.T.; Nicolaidou, P.; Fretzayas, A. Timing of Pubertal Onset in Girls: Evidence for Non-Gaussian Distribution. J. Clin. Endocrinol. Metab. 2008, 93, 4422–4425. [Google Scholar] [CrossRef] [Green Version]
- Semiz, S.; Kurt, F.; Kurt, D.T.; Zencir, M.; Sevinç, O. Pubertal Development of Turkish Children. J. Pediatr. Endocrinol. Metab. JPEM 2008, 21, 951–961. [Google Scholar] [CrossRef]
- Euling, S.Y.; Herman-Giddens, M.E.; Lee, P.A.; Selevan, S.G.; Juul, A.; Sørensen, T.I.A.; Dunkel, L.; Himes, J.H.; Teilmann, G.; Swan, S.H. Examination of US Puberty-Timing Data from 1940 to 1994 for Secular Trends: Panel Findings. Pediatrics 2008, 121, S172–S191. [Google Scholar] [CrossRef] [Green Version]
- Herman-Giddens, M.E.; Steffes, J.; Harris, D.; Slora, E.; Hussey, M.; Dowshen, S.A.; Wasserman, R.; Serwint, J.R.; Smitherman, L.; Reiter, E.O. Secondary Sexual Characteristics in Boys: Data from the Pediatric Research in Office Settings Network. Pediatrics 2012, 130, e1058–e1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørensen, K.; Aksglaede, L.; Petersen, J.H.; Juul, A. Recent Changes in Pubertal Timing in Healthy Danish Boys: Associations with Body Mass Index. J. Clin. Endocrinol. Metab. 2010, 95, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herman-Giddens, M.E. Recent Data on Pubertal Milestones in United States Children: The Secular Trend toward Earlier Development. Int. J. Androl. 2006, 29, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Walvoord, E.C. The Timing of Puberty: Is It Changing? Does It Matter? J. Adolesc. Health Off. Publ. Soc. Adolesc. Med. 2010, 47, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Slora, E.J.; Bocian, A.B.; Herman-Giddens, M.E.; Harris, D.L.; Pedlow, S.E.; Dowshen, S.A.; Wasserman, R.C. Assessing Inter-Rater Reliability (IRR) of Tanner Staging and Orchidometer Use with Boys: A Study from PROS. J. Pediatr. Endocrinol. Metab. JPEM 2009, 22, 291–299. [Google Scholar] [CrossRef]
- Canton, A.P.M.; Seraphim, C.E.; Brito, V.N.; Latronico, A.C. Pioneering Studies on Monogenic Central Precocious Puberty. Arch. Endocrinol. Metab. 2019, 63, 438–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, D. Precocious Puberty. Pediatr. Rev. 2015, 36, 319–321. [Google Scholar] [CrossRef] [Green Version]
- Calcaterra, V.; Klersy, C.; Vinci, F.; Regalbuto, C.; Dobbiani, G.; Montalbano, C.; Pelizzo, G.; Albertini, R.; Larizza, D. Rapid Progressive Central Precocious Puberty: Diagnostic and Predictive Value of Basal Sex Hormone Levels and Pelvic Ultrasound. J. Pediatr. Endocrinol. Metab. 2020, 33, 785–791. [Google Scholar] [CrossRef]
- Eckert-Lind, C.; Busch, A.S.; Petersen, J.H.; Biro, F.M.; Butler, G.; Bräuner, E.V.; Juul, A. Worldwide Secular Trends in Age at Pubertal Onset Assessed by Breast Development Among Girls: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2020, 174, e195881. [Google Scholar] [CrossRef] [PubMed]
- Berberoğlu, M. Precocious Puberty and Normal Variant Puberty: Definition, Etiology, Diagnosis and Current Management-Review. J. Clin. Res. Pediatr. Endocrinol. 2009, 1, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, M.F. Physiology of Puberty in Boys and Girls and Pathological Disorders Affecting Its Onset. J. Adolesc. 2019, 71, 63–71. [Google Scholar] [CrossRef]
- Bulcao Macedo, D.; Nahime Brito, V.; Latronico, A.C. New Causes of Central Precocious Puberty: The Role of Genetic Factors. Neuroendocrinology 2014, 100, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Macedo, D.B.; Silveira, L.F.G.; Bessa, D.S.; Brito, V.N.; Latronico, A.C. Sexual Precocity-Genetic Bases of Central Precocious Puberty and Autonomous Gonadal Activation. In Endocrine Development; Bourguignon, J.-P., Parent, A.-S., Eds.; S. Karger AG: Basel, Switzerland, 2015; Volume 29, pp. 50–71. ISBN 978-3-318-02788-4. [Google Scholar]
- Shin, Y.-L. An Update on the Genetic Causes of Central Precocious Puberty. Ann. Pediatr. Endocrinol. Metab. 2016, 21, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silveira, L.G.; Noel, S.D.; Silveira-Neto, A.P.; Abreu, A.P.; Brito, V.N.; Santos, M.G.; Bianco, S.D.C.; Kuohung, W.; Xu, S.; Gryngarten, M.; et al. Mutations of the KISS1 Gene in Disorders of Puberty. J. Clin. Endocrinol. Metab. 2010, 95, 2276–2280. [Google Scholar] [CrossRef] [PubMed]
- Teles, M.G.; Silveira, L.F.G.; Tusset, C.; Latronico, A.C. New Genetic Factors Implicated in Human GnRH-Dependent Precocious Puberty: The Role of Kisspeptin System. Mol. Cell. Endocrinol. 2011, 346, 84–90. [Google Scholar] [CrossRef]
- Abreu, A.P.; Dauber, A.; Macedo, D.B.; Noel, S.D.; Brito, V.N.; Gill, J.C.; Cukier, P.; Thompson, I.R.; Navarro, V.M.; Gagliardi, P.C.; et al. Central Precocious Puberty Caused by Mutations in the Imprinted Gene MKRN3. N. Engl. J. Med. 2013, 368, 2467–2475. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Liu, Q.; Lei, X.; Wen, Y.; Yang, Y.-L.; Zhang, R.; Hu, M.-Y. Association of Estrogen Receptor Gene Polymorphisms with Human Precocious Puberty: A Systematic Review and Meta-Analysis. Gynecol. Endocrinol. 2015, 31, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Eugster, E.A. Peripheral Precocious Puberty: Causes and Current Management. Horm. Res. Paediatr. 2009, 71, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Carel, J.-C.; Léger, J. Clinical Practice. Precocious Puberty. N. Engl. J. Med. 2008, 358, 2366–2377. [Google Scholar] [CrossRef] [PubMed]
- Brito, V.N.; Spinola-Castro, A.M.; Kochi, C.; Kopacek, C.; Silva, P.C.A.D.; Guerra-Júnior, G. Central Precocious Puberty: Revisiting the Diagnosis and Therapeutic Management. Arch. Endocrinol. Metab. 2016, 60, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantas-Orsdemir, S.; Eugster, E.A. Update on Central Precocious Puberty: From Etiologies to Outcomes. Expert Rev. Endocrinol. Metab. 2019, 14, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bangalore Krishna, K.; Fuqua, J.S.; Rogol, A.D.; Klein, K.O.; Popovic, J.; Houk, C.P.; Charmandari, E.; Lee, P.A. Use of Gonadotropin-Releasing Hormone Analogs in Children: Update by an International Consortium. Horm. Res. Paediatr. 2019, 91, 357–372. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, R.S.; Eugster, E.A. Central Precocious Puberty: From Genetics to Treatment. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Yeh, S.-N.; Ting, W.-H.; Huang, C.-Y.; Huang, S.-K.; Lee, Y.-C.; Chua, W.-K.; Lin, C.-H.; Cheng, B.-W.; Lee, Y.-J. Diagnostic Evaluation of Central Precocious Puberty in Girls. Pediatr. Neonatol. 2021, 62, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Carel, J.-C.; Eugster, E.A.; Rogol, A.; Ghizzoni, L.; Palmert, M.R.; on Behalf of the Members of the ESPE-LWPES GnRH Analogs Consensus Conference Group. Consensus Statement on the Use of Gonadotropin-Releasing Hormone Analogs in Children. Pediatrics 2009, 123, e752–e762. [Google Scholar] [CrossRef] [PubMed]
- Mazgaj, M. Sonography of Abdominal Organs in Precocious Puberty in Girls. J. Ultrason. 2013, 13, 418–424. [Google Scholar] [CrossRef]
- Stranzinger, E.; Strouse, P.J. Ultrasound of the Pediatric Female Pelvis. Semin. Ultrasound CT MRI 2008, 29, 98–113. [Google Scholar] [CrossRef]
- Bertelloni, S.; Mul, D. Treatment of Central Precocious Puberty by GnRH Analogs: Long-Term Outcome in Men. Asian J. Androl. 2008, 10, 525–534. [Google Scholar] [CrossRef]
- Bertelloni, S.; Baroncelli, G.I. Current Pharmacotherapy of Central Precocious Puberty by GnRH Analogs: Certainties and Uncertainties. Expert Opin. Pharmacother. 2013, 14, 1627–1639. [Google Scholar] [CrossRef]
- Franzini, I.A.; Yamamoto, F.M.; Bolfi, F.; Antonini, S.R.; Nunes-Nogueira, V.S. GnRH Analog Is Ineffective in Increasing Adult Height in Girls with Puberty Onset after 7 Years of Age: A Systematic Review and Meta-Analysis. Eur. J. Endocrinol. 2018, 179, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Pienkowski, C.; Tauber, M. Gonadotropin-Releasing Hormone Agonist Treatment in Sexual Precocity. In Endocrine Development; Bourguignon, J.-P., Parent, A.-S., Eds.; S. Karger AG: Basel, Switzerland, 2015; Volume 29, pp. 214–229. ISBN 978-3-318-02788-4. [Google Scholar]
- Eugster, E.A. Treatment of Central Precocious Puberty. J. Endocr. Soc. 2019, 3, 965–972. [Google Scholar] [CrossRef]
- Li, P.; Li, Y.; Yang, C.-L. Gonadotropin Releasing Hormone Agonist Treatment to Increase Final Stature in Children With Precocious Puberty: A Meta-Analysis. Medicine (Baltimore) 2014, 93, e260. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V.; Soliman, A.T.; Di Maio, S.; Soliman, N.; Elsedfy, H. Long-Term Effects and Significant Adverse Drug Reactions (ADRs) Associated with the Use of Gonadotropin-Releasing Hormone Analogs (GnRHa) for Central Precocious Puberty: A Brief Review of Literature. Acta Bio Med. Atenei Parm. 2019, 90, 345–359. [Google Scholar] [CrossRef]
- Guaraldi, F.; Beccuti, G.; Gori, D.; Ghizzoni, L. Management of Endocrine Disease: Long-Term Outcomes of the Treatment of Central Precocious Puberty. Eur. J. Endocrinol. 2016, 174, R79–R87. [Google Scholar] [CrossRef] [PubMed]
- Deardorff, J.; Berry-Millett, R.; Rehkopf, D.; Luecke, E.; Lahiff, M.; Abrams, B. Maternal Pre-Pregnancy BMI, Gestational Weight Gain, and Age at Menarche in Daughters. Matern. Child Health J. 2013, 17, 1391–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keim, S.A.; Branum, A.M.; Klebanoff, M.A.; Zemel, B.S. Maternal Body Mass Index and Daughters’ Age at Menarche. Epidemiology 2009, 20, 677–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juul, F.; Chang, V.W.; Brar, P.; Parekh, N. Birth Weight, Early Life Weight Gain and Age at Menarche: A Systematic Review of Longitudinal Studies: Birth Weight Early Life Weight Gain and Age at Menarche. Obes. Rev. 2017, 18, 1272–1288. [Google Scholar] [CrossRef]
- Lawn, R.B.; Lawlor, D.A.; Fraser, A. Associations Between Maternal Prepregnancy Body Mass Index and Gestational Weight Gain and Daughter’s Age at Menarche. Am. J. Epidemiol. 2018, 187, 677–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diemert, A.; Lezius, S.; Pagenkemper, M.; Hansen, G.; Drozdowska, A.; Hecher, K.; Arck, P.; Zyriax, B.C. Maternal Nutrition, Inadequate Gestational Weight Gain and Birth Weight: Results from a Prospective Birth Cohort. BMC Pregnancy Childbirth 2016, 16, 224. [Google Scholar] [CrossRef] [Green Version]
- Voerman, E.; Santos, S.; Patro Golab, B.; Amiano, P.; Ballester, F.; Barros, H.; Bergström, A.; Charles, M.-A.; Chatzi, L.; Chevrier, C.; et al. Maternal Body Mass Index, Gestational Weight Gain, and the Risk of Overweight and Obesity across Childhood: An Individual Participant Data Meta-Analysis. PLoS Med. 2019, 16, e1002744. [Google Scholar] [CrossRef]
- Poston, L. Maternal Obesity, Gestational Weight Gain and Diet as Determinants of Offspring Long Term Health. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Roth, C.L. The Link between Obesity and Puberty: What Is New? Curr. Opin. Pediatr. 2021, 33, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, Y.; Miller, D.; Rehman, N.O.; Cheng, X.; Yeo, J.-Y.; Joe, B.; Hill, J.W. Microbial Reconstitution Reverses Early Female Puberty Induced by Maternal High-Fat Diet During Lactation. Endocrinology 2020, 161, 41. [Google Scholar] [CrossRef] [PubMed]
- Baothman, O.A.; Zamzami, M.A.; Taher, I.; Abubaker, J.; Abu-Farha, M. The Role of Gut Microbiota in the Development of Obesity and Diabetes. Lipids Health Dis. 2016, 15, 108. [Google Scholar] [CrossRef] [Green Version]
- Galley, J.D.; Bailey, M.; Kamp Dush, C.; Schoppe-Sullivan, S.; Christian, L.M. Maternal Obesity Is Associated with Alterations in the Gut Microbiome in Toddlers. PLoS ONE 2014, 9, e113026. [Google Scholar] [CrossRef] [PubMed]
- Jarrell, J.; Foster, W.G.; Kinniburgh, D.W. Phytoestrogens in Human Pregnancy. Obstet. Gynecol. Int. 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Marks, K.J.; Hartman, T.J.; Taylor, E.V.; Rybak, M.E.; Northstone, K.; Marcus, M. Exposure to Phytoestrogens in Utero and Age at Menarche in a Contemporary British Cohort. Environ. Res. 2017, 155, 287–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Park, M.J. Effects of Phytoestrogen on Sexual Development. Korean J. Pediatr. 2012, 55, 265. [Google Scholar] [CrossRef] [PubMed]
- Todaka, E.; Sakurai, K.; Fukata, H.; Miyagawa, H.; Uzuki, M.; Omori, M.; Osada, H.; Ikezuki, Y.; Tsutsumi, O.; Iguchi, T.; et al. Fetal Exposure to Phytoestrogens—The Difference in Phytoestrogen Status between Mother and Fetus. Environ. Res. 2005, 99, 195–203. [Google Scholar] [CrossRef]
- Foster, W.G.; Chan, S.; Platt, L.; Hughes, C.L. Detection of Phytoestrogens in Samples of Second Trimester Human Amniotic Fluid. Toxicol. Lett. 2002, 129, 199–205. [Google Scholar] [CrossRef]
- Takashima-Sasaki, K.; Komiyama, M.; Adachi, T.; Sakurai, K.; Kato, H.; Iguchi, T.; Mori, C. Effect of Exposure to High Isoflavone-Containing Diets on Prenatal and Postnatal Offspring Mice. Biosci. Biotechnol. Biochem. 2006, 70, 2874–2882. [Google Scholar] [CrossRef]
- Lee, W.; Lee, S.-H.; Ahn, R.-S.; Park, M.J. Effect of Genistein on the Sexual Maturation in Immature Female Rats. Korean J. Pediatr. 2009, 52, 111. [Google Scholar] [CrossRef]
- Kwok, M.K.; Schooling, C.M.; Lam, T.H.; Leung, G.M. Does Breastfeeding Protect against Childhood Overweight? Hong Kong’s “Children of 1997” Birth Cohort. Int. J. Epidemiol. 2010, 39, 297–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaolis-Danckert, N.; Buyken, A.E.; Sonntag, A.; Kroke, A. Birth and Early Life Influences on the Timing of Puberty Onset: Results from the DONALD (DOrtmund Nutritional and Anthropometric Longitudinally Designed) Study. Am. J. Clin. Nutr. 2009, 90, 1559–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proos, L.; Gustafsson, J. Is Early Puberty Triggered by Catch-Up Growth Following Undernutrition? Int. J. Environ. Res. Public. Health 2012, 9, 1791–1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghaee, S.; Deardorff, J.; Greenspan, L.C.; Quesenberry, C.P.; Kushi, L.H.; Kubo, A. Breastfeeding and Timing of Pubertal Onset in Girls: A Multiethnic Population-Based Prospective Cohort Study. BMC Pediatr. 2019, 19, 277. [Google Scholar] [CrossRef]
- Belsky, J.; Houts, R.M.; Fearon, R.M.P. Infant Attachment Security and the Timing of Puberty: Testing an Evolutionary Hypothesis. Psychol. Sci. 2010, 21, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Buyken, A.E.; Shi, L.; Karaolis-Danckert, N.; Kroke, A.; Wudy, S.A.; Degen, G.H.; Remer, T. Beyond Overweight: Nutrition as an Important Lifestyle Factor Influencing Timing of Puberty. Nutr. Rev. 2012, 70, 133–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Assembly, Global Strategy for Infant and Young Child Feeding: In The Optimal Duration of Exclusive Breastfeeding; World Health Organization: Geneva, Switzerland, 2001.
- Eidelman, A.I.; Schanler, R.J.; Johnston, M.; Landers, S.; Noble, L.; Szucs, K.; Viehmann, L. Breastfeeding and the Use of Human Milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef] [Green Version]
- Lessen, R.; Kavanagh, K. Position of the Academy of Nutrition and Dietetics: Promoting and Supporting Breastfeeding. J. Acad. Nutr. Diet. 2015, 115, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Blell, M.; Pollard, T.M.; Pearce, M.S. Predictors of Age at Menarche in the Newcastle Thousand Families Study. J. Biosoc. Sci. 2008, 40, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Kwok, M.K.; Leung, G.M.; Lam, T.H.; Schooling, C.M. Breastfeeding, Childhood Milk Consumption, and Onset of Puberty. Pediatrics 2012, 130, e631–e639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hvidt, J.J.; Brix, N.; Ernst, A.; Lunddorf, L.L.H.; Ramlau-Hansen, C.H. Breast Feeding and Timing of Puberty in Boys and Girls: A Nationwide Cohort Study. Paediatr. Perinat. Epidemiol. 2021, 35, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Al-Sahab, B.; Adair, L.; Hamadeh, M.J.; Ardern, C.I.; Tamim, H. Impact of Breastfeeding Duration on Age at Menarche. Am. J. Epidemiol. 2011, 173, 971–977. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.A.; Kim, Y.J.; Lee, H.; Gwak, H.S.; Hong, Y.S.; Kim, H.S.; Park, E.A.; Cho, S.J.; Ha, E.H.; Park, H. The Preventive Effect of Breast-Feeding for Longer than 6 Months on Early Pubertal Development among Children Aged 7–9 Years in Korea. Public Health Nutr. 2015, 18, 3300–3307. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.H.; Jones, M.E.; Schoemaker, M.J.; Ashworth, A.; Swerdlow, A.J. Determinants of Age at Menarche in the UK: Analyses from the Breakthrough Generations Study. Br. J. Cancer 2010, 103, 1760–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmett, P.M.; Jones, L.R. Diet, Growth, and Obesity Development throughout Childhood in the Avon Longitudinal Study of Parents and Children. Nutr. Rev. 2015, 73, 175–206. [Google Scholar] [CrossRef] [Green Version]
- Weng, S.F.; Redsell, S.A.; Swift, J.A.; Yang, M.; Glazebrook, C.P. Systematic Review and Meta-Analyses of Risk Factors for Childhood Overweight Identifiable during Infancy. Arch. Dis. Child. 2012, 97, 1019–1026. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; von Kries, R.; Monasterolo, R.C.; Subías, J.E.; Scaglioni, S.; Giovannini, M.; Beyer, J.; Demmelmair, H.; Anton, B.; Gruszfeld, D.; et al. Can Infant Feeding Choices Modulate Later Obesity Risk? Am. J. Clin. Nutr. 2009, 89, 1502S–1508S. [Google Scholar] [CrossRef] [Green Version]
- Mameli, C.; Mazzantini, S.; Zuccotti, G. Nutrition in the First 1000 Days: The Origin of Childhood Obesity. Int. J. Environ. Res. Public. Health 2016, 13, 838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Liu, L.; Zhu, Y.; Huang, G.; Wang, P.P. The Association between Breastfeeding and Childhood Obesity: A Meta-Analysis. BMC Public Health 2014, 14, 1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haschke, F.; Binder, C.; Huber-Dangl, M.; Haiden, N. Early-Life Nutrition, Growth Trajectories, and Long-Term Outcome. In Nestlé Nutrition Institute Workshop Series; Donovan, S.M., German, J.B., Lönnerdal, B., Lucas, A., Eds.; S. Karger AG: Basel, Switzerland, 2019; Volume 90, pp. 107–120. ISBN 978-3-318-06340-0. [Google Scholar]
- Zheng, M.; Lamb, K.E.; Grimes, C.; Laws, R.; Bolton, K.; Ong, K.K.; Campbell, K. Rapid Weight Gain during Infancy and Subsequent Adiposity: A Systematic Review and Meta-Analysis of Evidence: Infant Rapid Weight Gain and Later Adiposity. Obes. Rev. 2018, 19, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Larnkjær, A.; Mølgaard, C.; Michaelsen, K.F. Early Nutrition Impact on the Insulin-like Growth Factor Axis and Later Health Consequences. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Locke, R. Preventing Obesity: The Breast Milk-Leptin Connection. Acta Paediatr. 2007, 91, 891–894. [Google Scholar] [CrossRef]
- Sloboda, D.M.; Hickey, M.; Hart, R. Reproduction in Females: The Role of the Early Life Environment. Hum. Reprod. Update 2011, 17, 210–227. [Google Scholar] [CrossRef] [Green Version]
- Smith-Brown, P.; Morrison, M.; Krause, L.; Davies, P.S.W. Microbiota and Body Composition During the Period of Complementary Feeding. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Gooze, R.A.; Anderson, S.E.; Whitaker, R.C. Prolonged Bottle Use and Obesity at 5.5 Years of Age in US Children. J. Pediatr. 2011, 159, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Lyons-Reid, J.; Albert, B.B.; Kenealy, T.; Cutfield, W.S. Birth Size and Rapid Infant Weight Gain—Where Does the Obesity Risk Lie? J. Pediatr. 2021, 230, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Marcovecchio, M.L.; Chiarelli, F. Obesity and Growth during Childhood and Puberty. In World Review of Nutrition and Dietetics; Shamir, R., Turck, D., Phillip, M., Eds.; S. Karger AG: Basel, Switzerland, 2013; Volume 106, pp. 135–141. ISBN 978-3-318-02265-0. [Google Scholar]
- Wolfe, A.; Divall, S.; Wu, S. The Regulation of Reproductive Neuroendocrine Function by Insulin and Insulin-like Growth Factor-1 (IGF-1). Front. Neuroendocrinol. 2014, 35, 558–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burt Solorzano, C.M.; McCartney, C.R. Obesity and the Pubertal Transition in Girls and Boys. Reproduction 2010, 140, 399–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tharner, A.; Luijk, M.P.C.M.; Raat, H.; IJzendoorn, M.H.; Bakermans-Kranenburg, M.J.; Moll, H.A.; Jaddoe, V.W.V.; Hofman, A.; Verhulst, F.C.; Tiemeier, H. Breastfeeding and Its Relation to Maternal Sensitivity and Infant Attachment. J. Dev. Behav. Pediatr. 2012, 33, 396–404. [Google Scholar] [CrossRef]
- Grigoriadis, S.; VonderPorten, E.H.; Mamisashvili, L.; Tomlinson, G.; Dennis, C.-L.; Koren, G.; Steiner, M.; Mousmanis, P.; Cheung, A.; Radford, K.; et al. The Impact of Maternal Depression During Pregnancy on Perinatal Outcomes: A Systematic Review and Meta-Analysis. J. Clin. Psychiatry 2013, 74, e321–e341. [Google Scholar] [CrossRef] [PubMed]
- Ellis, B.J.; Garber, J. Psychosocial Antecedents of Variation in Girls’ Pubertal Timing: Maternal Depression, Stepfather Presence, and Marital and Family Stress. Child Dev. 2000, 71, 485–501. [Google Scholar] [CrossRef]
- Martin, C.R.; Ling, P.-R.; Blackburn, G.L. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients 2016, 8, E279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Childhood Obesity Trial Study Group; Socha, P.; Grote, V.; Gruszfeld, D.; Janas, R.; Demmelmair, H.; Closa-Monasterolo, R.; Subías, J.E.; Scaglioni, S.; Verduci, E.; et al. Milk Protein Intake, the Metabolic-Endocrine Response, and Growth in Infancy: Data from a Randomized Clinical Trial. Am. J. Clin. Nutr. 2011, 94, 1776S–1784S. [Google Scholar] [CrossRef] [Green Version]
- European Childhood Obesity Trial Study Group; Escribano, J.; Luque, V.; Ferre, N.; Mendez-Riera, G.; Koletzko, B.; Grote, V.; Demmelmair, H.; Bluck, L.; Wright, A.; et al. Effect of Protein Intake and Weight Gain Velocity on Body Fat Mass at 6 Months of Age: The EU Childhood Obesity Programme. Int. J. Obes. 2012, 36, 548–553. [Google Scholar] [CrossRef] [Green Version]
- Brands, B.; Demmelmair, H.; Koletzko, B. Early Nutrition Project. How Growth Due to Infant Nutrition Influences Obesity and Later Disease Risk. Acta Paediatr. 2014, 103, 578–585. [Google Scholar] [CrossRef]
- Michaelsen, K.F.; Greer, F.R. Protein Needs Early in Life and Long-Term Health. Am. J. Clin. Nutr. 2014, 99, 718S–722S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanaro, S.; Ballardini, E.; Vigi, V. Different Pre-Term Formulas for Different Pre-Term Infants. Early Hum. Dev. 2010, 86, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Chourdakis, M.; Grote, V.; Hellmuth, C.; Prell, C.; Rzehak, P.; Uhl, O.; Weber, M. Regulation of Early Human Growth: Impact on Long-Term Health. Ann. Nutr. Metab. 2014, 65, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, K.K. Dietary Energy Intake at the Age of 4 Months Predicts Postnatal Weight Gain and Childhood Body Mass Index. Pediatrics 2006, 117, e503–e508. [Google Scholar] [CrossRef] [Green Version]
- Novotny, R.; Daida, Y.G.; Grove, J.S.; Acharya, S.; Vogt, T.M. Formula Feeding in Infancy Is Associated with Adolescent Body Fat and Earlier Menarche. Cell. Mol. Biol. Noisy-Gd. Fr. 2003, 49, 1289–1293. [Google Scholar]
- Stewart, C.J.; Ajami, N.J.; O’Brien, J.L.; Hutchinson, D.S.; Smith, D.P.; Wong, M.C.; Ross, M.C.; Lloyd, R.E.; Doddapaneni, H.; Metcalf, G.A.; et al. Temporal Development of the Gut Microbiome in Early Childhood from the TEDDY Study. Nature 2018, 562, 583–588. [Google Scholar] [CrossRef]
- Lemaire, M.; Le Huërou-Luron, I.; Blat, S. Effects of Infant Formula Composition on Long-Term Metabolic Health. J. Dev. Orig. Health Dis. 2018, 9, 573–589. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Sears, C.L.; Maruthur, N. Gut Microbiome and Its Role in Obesity and Insulin Resistance. Ann. N. Y. Acad. Sci. 2020, 1461, 37–52. [Google Scholar] [CrossRef]
- Edwards, C.A.; Parrett, A.M. Intestinal Flora during the First Months of Life: New Perspectives. Br. J. Nutr. 2002, 88, s11–s18. [Google Scholar] [CrossRef]
- Vael, C.; Verhulst, S.L.; Nelen, V.; Goossens, H.; Desager, K.N. Intestinal Microflora and Body Mass Index during the First Three Years of Life: An Observational Study. Gut Pathog. 2011, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar-El Dadon, S.; Reifen, R. Soy as an Endocrine Disruptor: Cause for Caution? J. Pediatr. Endocrinol. Metab. 2010, 23. [Google Scholar] [CrossRef]
- Adgent, M.A.; Daniels, J.L.; Rogan, W.J.; Adair, L.; Edwards, L.J.; Westreich, D.; Maisonet, M.; Marcus, M. Early-Life Soy Exposure and Age at Menarche: Early Soy Exposure and Menarche. Paediatr. Perinat. Epidemiol. 2012, 26, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Adgent, M.A.; Umbach, D.M.; Zemel, B.S.; Kelly, A.; Schall, J.I.; Ford, E.G.; James, K.; Darge, K.; Botelho, J.C.; Vesper, H.W.; et al. A Longitudinal Study of Estrogen-Responsive Tissues and Hormone Concentrations in Infants Fed Soy Formula. J. Clin. Endocrinol. Metab. 2018, 103, 1899–1909. [Google Scholar] [CrossRef] [PubMed]
- Hiney, J.K.; Srivastava, V.K.; Dees, W.L. Manganese Induces IGF-1 and Cyclooxygenase-2 Gene Expressions in the Basal Hypothalamus during Prepubertal Female Development. Toxicol. Sci. 2011, 121, 389–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockell, K.A.; Bonacci, G.; Belonje, B. Manganese Content of Soy or Rice Beverages Is High in Comparison to Infant Formulas. J. Am. Coll. Nutr. 2004, 23, 124–130. [Google Scholar] [CrossRef]
- Felício, J.S.; de Alcântara, A.L.; Janaú, L.C.; de Moraes, L.V.; de Oliveira, M.C.N.I.; de Lemos, M.N.; de Souza Neto, N.J.K.; Neto, J.F.A.; da Silva, W.M.; de Souza, Í.J.A.; et al. Association of Soy and Exclusive Breastfeeding With Central Precocious Puberty: A Case-Control Study. Front. Endocrinol. 2021, 12, 667029. [Google Scholar] [CrossRef]
- Giampietro, P.G.; Bruno, G.; Furcolo, G.; Casati, A.; Brunetti, E.; Spadoni, G.L.; Galli, E. Soy Protein Formulas in Children: No Hormonal Effects in Long-Term Feeding. J. Pediatr. Endocrinol. Metab. 2004, 17. [Google Scholar] [CrossRef]
- Sinai, T.; Ben-Avraham, S.; Guelmann-Mizrahi, I.; Goldberg, M.R.; Naugolni, L.; Askapa, G.; Katz, Y.; Rachmiel, M. Consumption of Soy-Based Infant Formula Is Not Associated with Early Onset of Puberty. Eur. J. Nutr. 2019, 58, 681–687. [Google Scholar] [CrossRef]
- Huh, S.Y.; Rifas-Shiman, S.L.; Taveras, E.M.; Oken, E.; Gillman, M.W. Timing of Solid Food Introduction and Risk of Obesity in Preschool-Aged Children. Pediatrics 2011, 127, e544–e551. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.L.; Bentley, M.E. The Critical Period of Infant Feeding for the Development of Early Disparities in Obesity. Soc. Sci. Med. 2013, 97, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Scaglioni, S.; Agostoni, C.; De Notaris, R.; Radaelli, G.; Radice, N.; Valenti, M.; Giovannini, M.; Riva, E. Early Macronutrient Intake and Overweight at Five Years of Age. Int. J. Obes. 2000, 24, 777–781. [Google Scholar] [CrossRef] [Green Version]
- Woo Baidal, J.A.; Locks, L.M.; Cheng, E.R.; Blake-Lamb, T.L.; Perkins, M.E.; Taveras, E.M. Risk Factors for Childhood Obesity in the First 1000 Days. Am. J. Prev. Med. 2016, 50, 761–779. [Google Scholar] [CrossRef] [PubMed]
- Schack-Nielsen, L.; Sørensen, T.I.; Mortensen, E.L.; Michaelsen, K.F. Late Introduction of Complementary Feeding, Rather than Duration of Breastfeeding, May Protect against Adult Overweight. Am. J. Clin. Nutr. 2010, 91, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Morgen, C.S.; Ängquist, L.; Baker, J.L.; Andersen, A.-M.N.; Sørensen, T.I.A.; Michaelsen, K.F. Breastfeeding and Complementary Feeding in Relation to Body Mass Index and Overweight at Ages 7 and 11 y: A Path Analysis within the Danish National Birth Cohort. Am. J. Clin. Nutr. 2018, 107, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Rogero, M.M.; Fisberg, M.; Waitzberg, D. Health Impact of Childhood and Adolescent Soy Consumption. Nutr. Rev. 2017, 75, 500–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, T.; Alicea, E.; Chakraborty, S. Alicea Relationships between Urinary Biomarkers of Phytoestrogens, Phthalates, Phenols, and Pubertal Stages in Girls. Adolesc. Health Med. Ther. 2012, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Nagata, C. Factors to Consider in the Association Between Soy Isoflavone Intake and Breast Cancer Risk. J. Epidemiol. 2010, 20, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, K.; Nakamura, K.; Masue, T.; Sahashi, Y.; Ando, K.; Nagata, C. Soy Intake and Urinary Sex Hormone Levels in Preschool Japanese Children. Am. J. Epidemiol. 2011, 173, 998–1003. [Google Scholar] [CrossRef] [Green Version]
- Quak, S.H.; Tan, S.P. Use of Soy-Protein Formulas and Soyfood for Feeding Infants and Children in Asia. Am. J. Clin. Nutr. 1998, 68, 1444S–1446S. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, S.; Huh, K.; Kim, Y.; Joung, H.; Park, M. High Serum Isoflavone Concentrations Are Associated with the Risk of Precocious Puberty in Korean Girls. Clin. Endocrinol. 2011, 75, 831–835. [Google Scholar] [CrossRef]
- Yum, T.; Lee, S.; Kim, Y. Association between Precocious Puberty and Some Endocrine Disruptors in Human Plasma. J. Environ. Sci. Health Part A 2013, 48, 912–917. [Google Scholar] [CrossRef]
- Segovia-Siapco, G.; Pribis, P.; Oda, K.; Sabaté, J. Soy Isoflavone Consumption and Age at Pubarche in Adolescent Males. Eur. J. Nutr. 2018, 57, 2287–2294. [Google Scholar] [CrossRef] [PubMed]
- Wolff, M.S.; Teitelbaum, S.L.; McGovern, K.; Pinney, S.M.; Windham, G.C.; Galvez, M.; Pajak, A.; Rybak, M.; Calafat, A.M.; Kushi, L.H.; et al. Environmental Phenols and Pubertal Development in Girls. Environ. Int. 2015, 84, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Remer, T.; Prinz-Langenohl, R.; Blaszkewicz, M.; Degen, G.H.; Buyken, A.E. Relation of Isoflavones and Fiber Intake in Childhood to the Timing of Puberty. Am. J. Clin. Nutr. 2010, 92, 556–564. [Google Scholar] [CrossRef] [PubMed]
- ESPGHAN Committee on Nutrition; Agostoni, C.; Braegger, C.; Decsi, T.; Kolacek, S.; Koletzko, B.; Mihatsch, W.; Moreno, L.A.; Puntis, J.; Shamir, R.; et al. Role of Dietary Factors and Food Habits in the Development of Childhood Obesity: A Commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 662–669. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, Y.; Zhang, Y.; Sun, W.; Jiang, Y.; Song, Y.; Zhu, Q.; Mei, H.; Wang, X.; Liu, S.; et al. Association between Dietary Patterns and Precocious Puberty in Children: A Population-Based Study. Int. J. Endocrinol. 2018, 2018, 4528704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.T.K.; Fan, H.-Y.; Tsai, M.-C.; Tung, T.-H.; Huynh, Q.T.V.; Huang, S.-Y.; Chen, Y.C. Nutrient Intake through Childhood and Early Menarche Onset in Girls: Systematic Review and Meta-Analysis. Nutrients 2020, 12, E2544. [Google Scholar] [CrossRef] [PubMed]
- Aksglaede, L.; Juul, A.; Olsen, L.W.; Sørensen, T.I.A. Age at Puberty and the Emerging Obesity Epidemic. PLoS ONE 2009, 4, e8450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyne, M.S.; Thame, M.; Osmond, C.; Fraser, R.A.; Gabay, L.; Reid, M.; Forrester, T.E. Growth, Body Composition, and the Onset of Puberty: Longitudinal Observations in Afro-Caribbean Children. J. Clin. Endocrinol. Metab. 2010, 95, 3194–3200. [Google Scholar] [CrossRef] [Green Version]
- Buyken, A.E.; Karaolis-Danckert, N.; Remer, T. Association of Prepubertal Body Composition in Healthy Girls and Boys with the Timing of Early and Late Pubertal Markers. Am. J. Clin. Nutr. 2009, 89, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Mamun, A.A.; Hayatbakhsh, M.R.; O’Callaghan, M.; Williams, G.; Najman, J. Early Overweight and Pubertal Maturation--Pathways of Association with Young Adults’ Overweight: A Longitudinal Study. Int. J. Obes. 2009, 33, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Zampieri, T.T.; Bohlen, T.M.; Silveira, M.A.; Lana, L.C.; de Paula, D.G.; Donato, J.; Frazao, R. Postnatal Overnutrition Induces Changes in Synaptic Transmission to Leptin Receptor-Expressing Neurons in the Arcuate Nucleus of Female Mice. Nutrients 2020, 12, 2425. [Google Scholar] [CrossRef] [PubMed]
- Terasawa, E.; Kurian, J.R.; Keen, K.L.; Shiel, N.A.; Colman, R.J.; Capuano, S.V. Body Weight Impact on Puberty: Effects of High-Calorie Diet on Puberty Onset in Female Rhesus Monkeys. Endocrinology 2012, 153, 1696–1705. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; Roth, C.L. Is There a Causal Relationship between Obesity and Puberty? Lancet Child Adolesc. Health 2019, 3, 44–54. [Google Scholar] [CrossRef]
- Rizzoto, G.; Sekhar, D.; Thundathil, J.C.; Chelikani, P.K.; Kastelic, J.P. Calorie Restriction Modulates Reproductive Development and Energy Balance in Pre-Pubertal Male Rats. Nutrients 2019, 11, 1993. [Google Scholar] [CrossRef] [Green Version]
- Juul, A.; Magnusdottir, S.; Scheike, T.; Prytz, S.; Skakkebaek, N.E. Age at Voice Break in Danish Boys: Effects of Pre-Pubertal Body Mass Index and Secular Trend. Int. J. Androl. 2007, 30, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, J.; Ben-Shlomo, Y.; Cole, T.J.; Holly, J.; Davey Smith, G. The Impact of Childhood Body Mass Index on Timing of Puberty, Adult Stature and Obesity: A Follow-up Study Based on Adolescent Anthropometry Recorded at Christ’s Hospital (1936–1964). Int. J. Obes. 2006, 30, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Rutters, F.; Nieuwenhuizen, A.G.; Verhoef, S.P.M.; Lemmens, S.G.T.; Vogels, N.; Westerterp-Plantenga, M.S. The Relationship between Leptin, Gonadotropic Hormones, and Body Composition during Puberty in a Dutch Children Cohort. Eur. J. Endocrinol. 2009, 160, 973–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parent, A.-S.; Franssen, D.; Fudvoye, J.; Pinson, A.; Bourguignon, J.-P. Current Changes in Pubertal Timing: Revised Vision in Relation with Environmental Factors Including Endocrine Disruptors. Endocr. Dev. 2016, 29, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; Kulle, A.; Wolters, B.; Lass, N.; Welzel, M.; Riepe, F.; Holterhus, P.-M. Steroid Hormone Profiles in Prepubertal Obese Children before and after Weight Loss. J. Clin. Endocrinol. Metab. 2013, 98, E1022–E1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulun, S.E.; Chen, D.; Moy, I.; Brooks, D.C.; Zhao, H. Aromatase, Breast Cancer and Obesity: A Complex Interaction. Trends Endocrinol. Metab. TEM 2012, 23, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Dao, H.; Wang, M.; Heston, A.; Garcia, K.M.; Sangal, A.; Dowling, A.R.; Faulkner, L.D.; Molitor, S.C.; Elias, C.F.; et al. Insulin and Leptin Signaling Interact in the Mouse Kiss1 Neuron during the Peripubertal Period. PLoS ONE 2015, 10, e0121974. [Google Scholar] [CrossRef] [Green Version]
- Rendo-Urteaga, T.; Ferreira de Moraes, A.C.; Torres-Leal, F.L.; Manios, Y.; Gottand, F.; Sjöström, M.; Kafatos, A.; Widhalm, K.; De Henauw, S.; Molnár, D.; et al. Leptin and Adiposity as Mediators on the Association between Early Puberty and Several Biomarkers in European Adolescents: The HELENA Study. J. Pediatr. Endocrinol. Metab. JPEM 2018, 31, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J. The Adiposity Rebound in the 21st Century Children: Meaning for What? Korean J. Pediatr. 2018, 61, 375–380. [Google Scholar] [CrossRef]
- Thankamony, A.; Ong, K.K.; Ahmed, M.L.; Ness, A.R.; Holly, J.M.P.; Dunger, D.B. Higher Levels of IGF-I and Adrenal Androgens at Age 8 Years Are Associated with Earlier Age at Menarche in Girls. J. Clin. Endocrinol. Metab. 2012, 97, E786–E790. [Google Scholar] [CrossRef] [Green Version]
- Günther, A.L.B.; Karaolis-Danckert, N.; Kroke, A.; Remer, T.; Buyken, A.E. Dietary Protein Intake throughout Childhood Is Associated with the Timing of Puberty. J. Nutr. 2010, 140, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Berkey, C.S.; Gardner, J.D.; Frazier, A.L.; Colditz, G.A. Relation of Childhood Diet and Body Size to Menarche and Adolescent Growth in Girls. Am. J. Epidemiol. 2000, 152, 446–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remer, T.; Shi, L.; Buyken, A.E.; Maser-Gluth, C.; Hartmann, M.F.; Wudy, S.A. Prepubertal Adrenarchal Androgens and Animal Protein Intake Independently and Differentially Influence Pubertal Timing. J. Clin. Endocrinol. Metab. 2010, 95, 3002–3009. [Google Scholar] [CrossRef] [PubMed]
- Wiley, A.S. Milk Intake and Total Dairy Consumption: Associations with Early Menarche in NHANES 1999–2004. PLoS ONE 2011, 6, e14685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyd, A.; Golding, J.; Macleod, J.; Lawlor, D.A.; Fraser, A.; Henderson, J.; Molloy, L.; Ness, A.; Ring, S.; Davey Smith, G. Cohort Profile: The ’Children of the 90s’--the Index Offspring of the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 2013, 42, 111–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, B.M.; MacLennan, M.B.; Hillyer, L.M.; Ma, D.W.L. Lifelong Exposure to N-3 PUFA Affects Pubertal Mammary Gland Development. Appl. Physiol. Nutr. Metab. 2014, 39, 699–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, I.S.; Northstone, K.; Dunger, D.B.; Cooper, A.R.; Ness, A.R.; Emmett, P.M. Diet throughout Childhood and Age at Menarche in a Contemporary Cohort of British Girls. Public Health Nutr. 2010, 13, 2052–2063. [Google Scholar] [CrossRef] [Green Version]
- Maclure, M.; Travis, L.B.; Willett, W.; MacMahon, B. A Prospective Cohort Study of Nutrient Intake and Age at Menarche. Am. J. Clin. Nutr. 1991, 54, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.S.; Day, F.R.; Perry, J.R.B.; Luan, J.; Langenberg, C.; Forouhi, N.G.; Wareham, N.J.; Ong, K.K. Prepubertal Dietary and Plasma Phospholipid Fatty Acids Related to Puberty Timing: Longitudinal Cohort and Mendelian Randomization Analyses. Nutrients 2021, 13, 1868. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhang, J.; Yuan, C.; Zhang, F.; Fu, Q.; Su, H.; Zhu, X.; Wang, L.; Gao, P.; Shu, G.; et al. Oleic Acid Stimulates HC11 Mammary Epithelial Cells Proliferation and Mammary Gland Development in Peripubertal Mice through Activation of CD36-Ca2+ and PI3K/Akt Signaling Pathway. Oncotarget 2018, 9, 12982–12994. [Google Scholar] [CrossRef]
- Valsamakis, G.; Arapaki, A.; Balafoutas, D.; Charmandari, E.; Vlahos, N.F. Diet-Induced Hypothalamic Inflammation, Phoenixin, and Subsequent Precocious Puberty. Nutrients 2021, 13, 3460. [Google Scholar] [CrossRef] [PubMed]
- Bo, T.; Wen, J.; Gao, W.; Tang, L.; Liu, M.; Wang, D. Influence of HFD-Induced Precocious Puberty on Neurodevelopment in Mice. Nutr. Metab. 2021, 18, 86. [Google Scholar] [CrossRef]
- Dereń, K.; Weghuber, D.; Caroli, M.; Koletzko, B.; Thivel, D.; Frelut, M.-L.; Socha, P.; Grossman, Z.; Hadjipanayis, A.; Wyszyńska, J.; et al. Consumption of Sugar-Sweetened Beverages in Paediatric Age: A Position Paper of the European Academy of Paediatrics and the European Childhood Obesity Group. Ann. Nutr. Metab. 2019, 74, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Carwile, J.L.; Willett, W.C.; Spiegelman, D.; Hertzmark, E.; Rich-Edwards, J.; Frazier, A.L.; Michels, K.B. Sugar-Sweetened Beverage Consumption and Age at Menarche in a Prospective Study of US Girls. Hum. Reprod. Oxf. Engl. 2015, 30, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.T.; Jacobs, D.R.; MacLehose, R.F.; Demerath, E.W.; Kelly, S.P.; Dreyfus, J.G.; Pereira, M.A. Consumption of Caffeinated and Artificially Sweetened Soft Drinks Is Associated with Risk of Early Menarche. Am. J. Clin. Nutr. 2015, 102, 648–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villamor, E.; Marín, C.; Mora-Plazas, M.; Oliveros, H. Micronutrient Status in Middle Childhood and Age at Menarche: Results from the Bogotá School Children Cohort. Br. J. Nutr. 2017, 118, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Eliassen, A.H.; Liao, X.; Rosner, B.; Tamimi, R.M.; Tworoger, S.S.; Hankinson, S.E. Plasma Carotenoids and Risk of Breast Cancer over 20 y of Follow-Up. Am. J. Clin. Nutr. 2015, 101, 1197–1205. [Google Scholar] [CrossRef] [Green Version]
- Boeing, H. Nutritional Epidemiology: New Perspectives for Understanding the Diet-Disease Relationship? Eur. J. Clin. Nutr. 2013, 67, 424–429. [Google Scholar] [CrossRef] [Green Version]
- Grundmann, M.; von Versen-Höynck, F. Vitamin D-Roles in Women’s Reproductive Health? Reprod. Biol. Endocrinol. RBE 2011, 9, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aeberli, I.; Molinari, L.; Spinas, G.; Lehmann, R.; l’Allemand, D.; Zimmermann, M.B. Dietary Intakes of Fat and Antioxidant Vitamins Are Predictors of Subclinical Inflammation in Overweight Swiss Children. Am. J. Clin. Nutr. 2006, 84, 748–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ridder, C.M.; Thijssen, J.H.; Van ’t Veer, P.; van Duuren, R.; Bruning, P.F.; Zonderland, M.L.; Erich, W.B. Dietary Habits, Sexual Maturation, and Plasma Hormones in Pubertal Girls: A Longitudinal Study. Am. J. Clin. Nutr. 1991, 54, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Liu, Y.; Xue, H.; Luo, J.; Chen, Y.; Bao, Y.; Duan, R.; Yang, M.; Cheng, G. Dietary Fiber and Pubertal Development among Children and Adolescents—A Cross-sectional Study in Chengdu, Sichuan. Sichuan Da Xue Xue Bao Yi Xue Ban 2016, 47, 244–247. [Google Scholar] [PubMed]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet; A Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
- Calcaterra, V.; Verduci, E.; Ghezzi, M.; Cena, H.; Pascuzzi, M.C.; Regalbuto, C.; Lamberti, R.; Rossi, V.; Manuelli, M.; Bosetti, A.; et al. Pediatric Obesity-Related Asthma: The Role of Nutrition and Nutrients in Prevention and Treatment. Nutrients 2021, 13, 3708. [Google Scholar] [CrossRef]
- Fernández-Iglesias, R.; Álvarez-Pereira, S.; Tardón, A.; Fernández-García, B.; Iglesias-Gutiérrez, E. Adherence to the Mediterranean Diet in a School Population in the Principality of Asturias (Spain): Relationship with Physical Activity and Body Weight. Nutrients 2021, 13, 1507. [Google Scholar] [CrossRef]
- Szamreta, E.A.; Qin, B.; Rivera-Núñez, Z.; Parekh, N.; Barrett, E.S.; Ferrante, J.; Lin, Y.; Bandera, E.V. Greater Adherence to a Mediterranean-like Diet Is Associated with Later Breast Development and Menarche in Peripubertal Girls. Public Health Nutr. 2020, 23, 1020–1030. [Google Scholar] [CrossRef] [PubMed]
- Rudloff, S.; Bührer, C.; Jochum, F.; Kauth, T.; Kersting, M.; Körner, A.; Koletzko, B.; Mihatsch, W.; Prell, C.; Reinehr, T.; et al. Vegetarian Diets in Childhood and Adolescence: Position Paper of the Nutrition Committee, German Society for Paediatric and Adolescent Medicine (DGKJ). Mol. Cell. Pediatr. 2019, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kissinger, D.G.; Sanchez, A. The Association of Dietary Factors with the Age of Menarche. Nutr. Res. 1987, 7, 471–479. [Google Scholar] [CrossRef]
- Schürmann, S.; Kersting, M.; Alexy, U. Vegetarian Diets in Children: A Systematic Review. Eur. J. Nutr. 2017, 56, 1797–1817. [Google Scholar] [CrossRef] [PubMed]
- Persky, V.W.; Chatterton, R.T.; Van Horn, L.V.; Grant, M.D.; Langenberg, P.; Marvin, J. Hormone Levels in Vegetarian and Nonvegetarian Teenage Girls: Potential Implications for Breast Cancer Risk. Cancer Res. 1992, 52, 578–583. [Google Scholar]
- Sanchez, A.; Kissinger, D.G.; Phillips, R.I. A Hypothesis on the Etiological Role of Diet on Age of Menarche. Med. Hypotheses 1981, 7, 1339–1345. [Google Scholar] [CrossRef]
- Ambroszkiewicz, J.; Laskowska-Klita, T.; Klemarczyk, W. Low Levels of Osteocalcin and Leptin in Serum of Vegetarian Prepubertal Children. Med. Wieku Rozwoj. 2003, 7, 587–591. [Google Scholar] [PubMed]
- Ambroszkiewicz, J.; Chełchowska, M.; Szamotulska, K.; Rowicka, G.; Klemarczyk, W.; Strucińska, M.; Gajewska, J. Bone Status and Adipokine Levels in Children on Vegetarian and Omnivorous Diets. Clin. Nutr. Edinb. Scotl. 2019, 38, 730–737. [Google Scholar] [CrossRef]
- Cheng, G.; Gerlach, S.; Libuda, L.; Kranz, S.; Günther, A.L.B.; Karaolis-Danckert, N.; Kroke, A.; Buyken, A.E. Diet Quality in Childhood Is Prospectively Associated with the Timing of Puberty but Not with Body Composition at Puberty Onset. J. Nutr. 2010, 140, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, R.; Chen, Y.; Qiao, T.; Duan, R.; Chen, M.; Zhao, L.; Gong, Y.; Cheng, G. Modern Dietary Pattern Is Prospectively Associated with Earlier Age at Menarche: Data from the CHNS 1997–2015. Nutr. J. 2020, 19, 95. [Google Scholar] [CrossRef]
Central True Precocious Puberty | Pseudo or Peripheral Precocious Puberty | Normal Variant |
---|---|---|
Idiopathic | Gonadal
| Premature thelarche |
Congenital central nervous system (CNS) lesion
| Adrenal
| Premature adrenarche |
Acquired CNS lesion
| Gonadotropin-producing tumors
| |
Genetic | Primary hypothyroidism Exogenous hormonal exposure | |
Due to withdrawal of choric sex hormone exposure | Exogenous hormonal exposure |
Period | Dietary Source | Mechanism of Action | BMI Dependent and/or Independent Action | Effect on Puberty | References |
---|---|---|---|---|---|
Early-life nutrition | Breastfeeding | Overweight prevention through normal hormonal and microbiome balance and positive psychosocial influence | Both | Precocious puberty prevention | [102,107,120,130,131,132,133,140,141,142,143,162] |
Formula feeding | Overweight development and predisposition to childhood obesity through increased IGF-1 and consequent enhanced sex steroid production | BMI dependent | Increased risk for precocius puberty | [136,153,154,158,159] | |
Soy-based formulas | Weak estrogenic effects of soy isoflavones | BMI independent | Uncertain increased risk for precocius puberty | [166,167,171,172,173] | |
Complementary feeding | Overweight development in case of age-inappropriate feeding and high protein consumption | BMI dependent | Increased risk for precocius puberty | [174,175,176,178,179] | |
Soy-based foods | Weak estrogenic effects of soy isoflavones | BMI independent | Uncertain increased risk for precocius puberty | [166,172,180,181,186,187] | |
Childhood nutrition | High-energy diet | Higher levels of leptin, IGF-1 activation, adrenal androgen overproduction, and increased conversion of androgens to estrogens | BMI dependent | Increased risk for precocius puberty | [192,199,204,205,206] |
Macronutrients | |||||
Protein intake | Adiposity rebound before pubertal onset, IGF-1 secretion | Both | Increased risk for precocius puberty | [2,192,209,210] | |
Fat intake | Direct effect on steroidogenesis and mammary gland development, indirect effect through induction of low-grade hypothalamic inflammation | BMI independent | Increased risk for precocius puberty (PUFAs). Uncertain increased risk for precocius puberty (MUFAs) | [2,192,217,221] | |
Carbohydrate intake | Rapid increase in insulin concentration in high-glycemic-index diets resulting in increased availability of sex hormones and IGF-1 | BMI independent | Uncertain increased risk for precocius puberty | [221,224] | |
Micronutrients | |||||
Further studies are needed to identify the possible mechanisms | BMI independent | Uncertain increased risk for precocius puberty | [2,192,217,226] | ||
Dietary Pattern | |||||
Mediterranean diet | Reduction in circulating levels of estrogen, follicle-stimulating hormone, and luteinizing hormone. Increased excretion of estrogen. Stimulation of hepatic synthesis of SHBG, which reduces the biological availability of sex hormones | BMI independent | Precocious puberty prevention | [236] | |
Vegetarian diet | Lower leptin levels | BMI dependent | Uncertain increased risk for later puberty | [238,239,240,242] | |
New dietary patterns | A combination of the above mechanisms of high energy, fat, glycemic, and protein intake associated with unbalanced micronutrient supplies | Both | Increased risk for precocius puberty | [191,244,245] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calcaterra, V.; Verduci, E.; Magenes, V.C.; Pascuzzi, M.C.; Rossi, V.; Sangiorgio, A.; Bosetti, A.; Zuccotti, G.; Mameli, C. The Role of Pediatric Nutrition as a Modifiable Risk Factor for Precocious Puberty. Life 2021, 11, 1353. https://doi.org/10.3390/life11121353
Calcaterra V, Verduci E, Magenes VC, Pascuzzi MC, Rossi V, Sangiorgio A, Bosetti A, Zuccotti G, Mameli C. The Role of Pediatric Nutrition as a Modifiable Risk Factor for Precocious Puberty. Life. 2021; 11(12):1353. https://doi.org/10.3390/life11121353
Chicago/Turabian StyleCalcaterra, Valeria, Elvira Verduci, Vittoria Carlotta Magenes, Martina Chiara Pascuzzi, Virginia Rossi, Arianna Sangiorgio, Alessandra Bosetti, Gianvincenzo Zuccotti, and Chiara Mameli. 2021. "The Role of Pediatric Nutrition as a Modifiable Risk Factor for Precocious Puberty" Life 11, no. 12: 1353. https://doi.org/10.3390/life11121353
APA StyleCalcaterra, V., Verduci, E., Magenes, V. C., Pascuzzi, M. C., Rossi, V., Sangiorgio, A., Bosetti, A., Zuccotti, G., & Mameli, C. (2021). The Role of Pediatric Nutrition as a Modifiable Risk Factor for Precocious Puberty. Life, 11(12), 1353. https://doi.org/10.3390/life11121353