The World of Pseudogenes: New Diagnostic and Therapeutic Targets in Cancers or Still Mystery Molecules?
Abstract
:1. Pseudogene Transcripts
2. Pseudogene Functions
3. Involvement of Pseudogenes in Cancers
3.1. Cancers Located in the Abdomen and Bones
3.2. Cancers Located in the Chest Area
3.3. Cancers Located in the Head and Neck Area
Name of Biomarkers | Location of Cancer | Type of Cancer | Type of Biomarker | Determination Method | Type of Sample | Description/Function | Ref. |
---|---|---|---|---|---|---|---|
RP4-706A16.3 | Abdomen and bones | Osteosarcoma | predictive | Analyzed RNA-seq | tissue |
| [78] |
fusion gene KLK4-KLKP1 | Prostate Cancer | diagnostic | Urine samples, fusion can also be detected in needle biopsy tissue samples using a specific antibody | urine |
| [85] | |
GBP1P1 and PTTG3P | Abdomen and bones | Cervical Carcinoma | diagnostic | Microarray analysis and qRT-PCR of patient samples and cell lines | tissue |
| [46] |
MSTO2P | Abdomen and bones | Osteosarcoma | prognostic | qRT-PCR of patient samples | tissue |
| [79] |
PA2G4P4 | Abdomen and bones | Bladder Cancer | diagnostic | qRT-PCR and ISH of patient samples | tissue |
| [45] |
FTH1P3 | Abdomen and bones | Cervical Cancer | diagnostic | qRT-PCR of patient samples and cell lines | tissue |
| [47] |
BMI1P1 | Abdomen and bones | Acute Myeloid Leukemia | diagnostic and prognostic | qRT-PCR of patient samples | tissue |
| [44] |
EMBP1 | Abdomen and bones | Renal Cell Carcinoma | diagnostic | qRT-PCR of patient samples and cell lines | tissue |
| [131] |
DUXAP8 and DUXAP9 | Abdomen and bones | Renal Cell Carcinoma | diagnostic and prognostic | RNA-seq (TCGA data) | tissue |
| [132] |
POU5F1B | Abdomen and bones | Cervical Cancer | diagnostic | qRT-PCR of patient samples and cell lines | tissue |
| [48] |
DUXAP8 | Abdomen and bones | Pancreatic Carcinoma | diagnostic and prognostic | GEO databases (GSE16515, GSE15932, GSE15471) and qRT-PCR of patient samples and cell lines | tissue |
| [82] |
PTENP1 | Abdomen and bones | Endometrial Hyperplasia and Carcinomas | diagnostic | Methyl-sensitive PCR of genomic DNA | tissue/blood |
| [54] |
DUXAP10 | Abdomen and bones | Pancreatic Cancer | diagnostic | GEO databases (GSE15471, GSE15932, GSE16515) and qRT-PCR of patient samples and cell lines | tissue |
| [83] |
CEACAM22P, MSL3P1, TREML3P | Abdomen and bones | Renal Cell Carcinoma | diagnostic and prognostic | RNA-seq (TCGA data) and qRT-PCR of patient samples | tissue/serum |
| [133] |
DUXAP8 | Abdomen and bones | Renal Cell Carcinoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [134] |
PDIA3P | Abdomen and bones | Multiple Myeloma | diagnostic, prognostic and predictive | qRT-PCR of patient samples and cell lines | tissue |
| [77] |
SUMO1P3 | Abdomen and bones | Pancreatic Cancer | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [84] |
SLC6A10P | Abdomen and bones | Ovarian Cancer | predictive | Analyze original RNA-seq; microarray analysis of primary tumors identified genes that may be useful in risk stratification/overall survival but have limited value in predicting >70% tumor recurrence rates | tissue |
| [80] |
HMGA1P6 | Abdomen and bones | Ovarian Cancer | prognostic | Microarray analysis of patient samples and TCGA analysis | tissue |
| [135] |
LDHAP5 | Abdomen and bones | Ovarian Serous Cystadenocarcinoma | diagnostic, prognostic and predictive | RNA-seq (TCGA/dreamBase) | tissue |
| [136] |
SDHAP1 | Abdomen and bones | Ovarian Cancer | diagnostic, prognostic and predictive | qRT-PCR of patient samples and cell lines | tissue |
| [81] |
DUXAP8, RP11-54H7.4, and RP11-138J23.1 | Abdomen and bones | Colon Cancer | diagnostic and prognostic | RNA-seq (TCGA data) | tissue |
| [49] |
REG1CP | Abdomen and bones | Colorectal Cancer | diagnostic and prognostic | qRT-PCR, ddPCR and ISH of patient samples and cell lines; databases | tissue |
| [51] |
KCNQ1OT1 | Abdomen and bones | Colorectal Cancer | diagnostic and prognostic | RNA-seq (TCGA data), GEO databases (GSE14333, GSE39582, GSE103479) and qRT-PCR of patient samples | tissue |
| [50] |
TPTE2P1 | Abdomen and bones | Colorectal Cancer | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [52] |
DUXAP8 | Abdomen and bones | Colorectal Cancer | diagnostic and prognostic | RNA-seq (TCGA data) and qRT-PCR of patient samples and cell lines | tissue |
| [53] |
PMS2L2 | Abdomen and bones | Gastric Adenocarcinoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [55] |
KRT19P3 | Abdomen and bones | Gastric Cancer | diagnostic and prognostic | Microarray and qRT-PCR of patient samples and cell lines | tissue |
| [57] |
ARHGAP27P1 | Abdomen and bones | Gastric Cancer | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue and plasma |
| [58] |
SFTA1P | Abdomen and bones | Gastric Cancer | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [56] |
DUXAP10 | Abdomen and bones | Gastric Cancer | diagnostic and prognostic | GEO database (GSE54129, GSE70880, GSE79973, and GSE99416) and qRT-PCR of cell lines | tissue |
| [137] |
PDIA3P1 | Abdomen and bones | Hepatocellular Carcinoma | predictive | real-time quantitative PCR of patient samples | tissue |
| [59] |
HSPB1P1 | Abdomen and bones | Hepatocellular Carcinoma | prognostic | RNA-seq from GSE124535 dataset | tissue |
| [138] |
AKR1B10P1 | Abdomen and bones | Hepatocellular Carcinoma | diagnostic | RNA-seq (TCGA data) and microarray analysis (GEO), qRT-PCR of patient samples and cell lines | tissue |
| [60] |
DUXAP8 | Abdomen and bones | Hepatocellular Carcinoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [70] |
Panel of pseudogenes (ABCC6P2, ANXA2P2, AQP7P1, AZGP1P1, C3P1, CA5BP1, DSTNP2, HLA-J, HSPA7, LPAL2, NAPSB, NUDT16P1, PLGLA, RP9P) | Abdomen and bones | Hepatocellular Carcinoma | diagnostic and prognostic | RNA-seq (TCGA data) | tissue |
| [139] |
AOC4P (UPAT) | Abdomen and bones | Hepatocellular Carcinoma | diagnostic, prognostic and predictive | qRT-PCR of patient samples and cell lines | tissue |
| [73] |
WFDC21P | Abdomen and bones | Hepatocellular Carcinoma | diagnostic, prognostic and predictive | qRT-PCR of patient samples and cell lines | tissue |
| [72] |
DUXAP8 | Abdomen and bones | Hepatocellular Carcinoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [71] |
GOLGA2P10 | Abdomen and bones | Hepatocellular Carcinoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [74] |
MSTO2P | Abdomen and bones | Hepatocellular Carcinoma | diagnostic and prognostic | RNA-seq (TCGA data), dataset GSE30219, and qRT-PCR of patient samples and cell lines | tissue |
| [62] |
AKR1B10P | Abdomen and bones | Hepatocellular Carcinoma Cells | diagnostic | qRT-PCR of patient samples and cell lines | tissue |
| [61] |
PDIA3P1 | Abdomen and bones | Hepatocellular Carcinoma and Multiple Cancer Types | diagnostic, prognostic and predictive | qRT-PCR of patient samples and cell lines, data sets GSE43541, GSE58074, GSE32301, GSE42531, GSE63351 for cell line | tissue |
| [59] |
PDPK2P | Abdomen and bones | Hepatocellular Carcinoma | diagnostic and prognostic | Microarray and qRT-PCR of patient samples and cell lines | tissue |
| [63] |
SUMO1P3 | Abdomen and bones | Hepatocellular Carcinoma | diagnostic, prognostic and predictive | qRT-PCR of patient samples and cell lines | tissue |
| [64] |
RP11-424C20.2 | Abdomen and bones | Liver Hepatocellular Carcinoma And Thymoma | diagnostic, prognostic and predictive | RNA-seq (TCGA data) | tissue |
| [75] |
RACGAP1P | Abdomen and bones | Hepatocellular Carcinoma | diagnostic and prognostic | Microarray and qRT-PCR of patient samples and cell lines, datasets GSE84005, GSE76297, GSE6404, GSE54236, and GSE5975 and TCGA | tissue |
| [65] |
ANXA2P2 | Abdomen and bones | Hepatocellular Carcinoma | diagnostic and prognostic | RNA-seq (TCGA data) and qRT-PCR of patient samples and cell lines | tissue |
| [66] |
AURKAPS1 | Abdomen and bones | Hepatocellular Carcinoma | diagnostic | qRT-PCR of patient samples and cell lines | tissue |
| [67] |
UBE2CP3 | Abdomen and bones | Hepatocellular Carcinoma | diagnostic and prognostic | qRT-PCR and ISH of patient samples and cell lines | tissue |
| [76] |
PTTG3P | Abdomen and bones | Hepatocellular Carcinoma | diagnostic and prognostic | Microarrays of patient samples, qRT-PCR and ISH of patient samples and cell lines | tissue |
| [68] |
POU5F1B | Abdomen and bones | Hepatocellular Carcinoma | diagnostic and prognostic | RNA-seq (TCGA data) and qRT-PCR of cell lines | tissue |
| [69] |
UGT1A1, BAIAP2L1, LOC100129096, PTMAP2, CDC14C, LOC643634, FTH1P2, ARPC3P3, FTH1P11, PTMAP5 | Chest area | Lung Adenocarcinoma | diagnostic | RNA-seq | plasma-derived exosomes |
| [99] |
PTTG3P | Chest area | Lung Adenocarcinoma | diagnostic, prognostic and predictive | Microarray gene profiling datasets: (GSE27262, GSE31210, GSE30219 and GSE19188) containing both the tumor and normal tissue samples. Six datasets (GSE31210, GSE50081, GSE37745, GSE30219, GSE3141 and GSE19188) and RNA-seq TCGA | tissue |
| [90] |
WTAPP1 | Chest area | Non-Small-Cell Lung Carcinoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [106] |
FTH1P3 | Chest area | Non-Small-Cell Lung Carcinoma | diagnostic, prognostic and predictive | RNA-seq (TCGA data) and qRT-PCR of patient samples and cell lines | tissue |
| [108] |
AOC4P | Chest area | Non-Small-Cell Lung Carcinoma | diagnostic | RNA-seq (TCGA data) and qRT-PCR of cell lines | tissue |
| [140] |
TPTEP1 | Chest area | Non-Small-Cell Lung Carcinoma | diagnostic and prognostic | RNA-seq (TCGA data), dataset GSE30219, and qRT-PCR of patient samples and cell lines | tissue |
| [141] |
PMPCAP1, SOWAHC | Chest area | Lung Squamous Cell Cancer | prognostic | Methylation data from TCGA | tissue |
| [110] |
DUXAP8 | Chest area | Non-Small-Cell Lung Cancer | diagnostic | qRT-PCR of patient samples and cell lines | tissue |
| [104,105] |
RPL13AP17, CHIAP2, SFTA1P, SIGLEC17P, CYP2B7P1, CYP4Z2P | Chest area | Lung Adenocarcinoma | diagnostic and prognostic | RNA-seq (TCGA data), | tissue |
| [101] |
PDIA3P1 (PDIA3P) | Chest area | Non-Small Cell Lung Cancer | diagnostic and prognostic | RNA-seq (TCGA data) and qRT-PCR of patient samples and cell lines | tissue |
| [109] |
SFTA1P | Chest area | Lung Squamous Cell Carcinoma | diagnostic and prognostic | RNA-seq (TCGA data) and qRT-PCR of patient samples | tissue |
| [142] |
SUMO1P3 | Chest area | Lung Adenocarcinoma | diagnostic and prognostic | RNA-seq (TCGA data) | tissue |
| [102] |
SUMO1P3 | Chest area | Non-Small Cell Lung Cancer | diagnostic | RNA-seq (TCGA data) and qRT-PCR of patient samples and cell lines | tissue |
| [103] |
FTH1P3 | Chest area | Non-Small Cell Lung Carcinoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [108] |
SLC6A10P | Chest area | Lung Adenocarcinoma | diagnostic and prognostic | RNA-seq (TCGA data) and ISH of patient samples | tissue |
| [100] |
CTSLP8, RPS10P20, HLA-K, GPS2P1, LOC387646 | Chest area | Breast Cancer | prognostic | RNA-seq (TCGA) with LASSO-Cox model | tissue |
| [86] |
HLA-DPB2 | Chest area | Breast Cancer | diagnostic, prognostic and predictive | RNA-seq (TCGA data) and microarray analysis (ONCOMINE) | tissue |
| [87] |
RP11-480I12.5-004 | Chest area | Breast Cancer | diagnostic and prognostic | RNA-seq (TCGA data) and qRT-PCR of patient samples and cell lines | tissue |
| [88] |
PCNAP1 | Chest area | Breast Cancer | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [89] |
PTENP1 | Chest area | Breast Cancer | diagnostic, prognostic and predictive | qRT-PCR of patient samples and cell lines; databases | tissue |
| [97] |
PTTG3P | Chest area | Breast Cancer | diagnostic and prognostic | RNA-seq (TCGA data), other databases and qRT-PCR of patient samples | tissue |
| [91] |
CRYβB2P1 | Chest area | Breast Cancer | diagnostic and predictive | RNA-seq (TCGA data) and qRT-PCR of patient samples and cell lines | tissue |
| [92] |
CYP4Z2P | Chest area | Breast Cancer | diagnostic | qRT-PCR of patient samples and cell lines, RNA-seq and microarray data | tissue |
| [94] |
PDIA3P | Chest area | Breast Cancer | diagnostic | qRT-PCR of patient samples and cell lines | tissue |
| [95] |
CKS1BP7 | Chest area | Breast Cancers | diagnostic | Quantitative multi-gene fluorescence in situ hybridization (QM-FISH) technique | tissue |
| [96] |
FTH1P3 | Chest area | Breast Cancer | diagnostic and predictive | qRT-PCR of patient samples and cell lines | tissue |
| [98] |
DUXAP8 | Head and neck | Neuroblastoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [114] |
MT1JP | Head and neck | Glioma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [115] |
PDIA3P1 | Head and neck | Glioma | diagnostic and prognostic | Microarray gene profiling dataset GSE45301 and RNA-seq TCGA of patient samples and cell lines | tissue |
| [116] |
ANXA2P2 | Head and neck | Glioblastoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines and RNA-seq (TCGA) | tissue |
| [112] |
RPSAP52 | Head and neck | Glioblastoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [117] |
PKMP3, AC027612.4, HILS1, RP5-1132H15.3 and HSPB1P1 | Head and neck | Glioma | diagnostic and prognostic | The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) | tissue |
| [118] |
ANXA2P2, EEF1A1P9, FER1L4, HILS1, and RAET1K | Head and neck | Glioma | diagnostic and prognostic | RNA-seq (TCGA data) | tissue |
| [119] |
HERC2P2 | Head and neck | Glioma | diagnostic and prognostic | RNA-seq (TCGA data) and CGGA database of patient samples | tissue |
| [120] |
FTH1P3 | Head and neck | Glioma | diagnostic | qRT-PCR of patient samples and cell lines | tissue |
| [121] |
PTENP1 | Head and neck | Glioma | diagnostic | qRT-PCR of patient samples and cell lines | tissue |
| [122] |
AGPG | Head and neck | Esophageal Squamous Cell Carcinoma | prognostic | TCGA analysis and qRT-PCR analysis of patient samples | tissue |
| [123] |
LILRP1, RP6-191P20.5, RPL29P19, TAS2R2P, and ZBTB45P1 | Head and neck | Head and Neck Squamous Cell Carcinoma | prognostic and predictive | RNA-seq (TCGA data) | tissue |
| [124] |
PTTG3P | Head and neck | Head and Neck Squamous Cell Carcinomas | diagnostic and prognostic | RNA-seq (TCGA data) | tissue |
| [125] |
DUXAP10 | Head and neck | Oral squamous cell carcinoma | diagnostic | Microarray data of GSE30784 | tissue |
| [126] |
FKBP9P1 | Head and neck | Head and Neck Squamous Cell Carcinoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [127] |
FTH1P3 | Head and neck | Laryngeal Squamous Cell Carcinoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [128] |
TUSC2P | Head and neck | Esophageal Squamous Cell Carcinoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [129,130] |
FTH1P3 | Head and neck | Esophageal Squamous Cell Carcinoma | diagnostic | qRT-PCR of patient samples and cell lines | tissue |
| [143] |
DUXAP10 | Head and neck | Esophageal Squamous Cell Carcinoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [144] |
FTH1P3 | Head and neck | Oral Squamous Cell Carcinoma | diagnostic and prognostic | qRT-PCR of patient samples and cell lines | tissue |
| [145] |
DUXAP8 | Head and neck | Oral Cancer | diagnostic and prognostic | RNA-seq (TCGA data) and microarray analysis (GSE30784, GSE74530, GSE84805, GSE125866) | tissue |
| [146] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.; Yang, W.; Wang, X.-J. Pseudogenes: Pseudo or Real Functional Elements? J. Genet. Genom. 2013, 40, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Jacq, C.; Miller, J.; Brownlee, G. A pseudogene structure in 5S DNA of Xenopus laevis. Cell 1977, 12, 109–120. [Google Scholar] [CrossRef]
- Hardison, R.C.; Butler, E.T.; Lacy, E.; Maniatis, T.; Rosenthal, N.; Efstratiadis, A. The structure and transcription of four linked rabbit β-like globin genes. Cell 1979, 18, 1285–1297. [Google Scholar] [CrossRef]
- Proudfoot, N.J.; Maniatis, T. The structure of a human α-globin pseudogene and its relationship to α-globin gene duplication. Cell 1980, 21, 537–544. [Google Scholar] [CrossRef]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-H.; Tsai, Z.T.-Y.; Tsai, H.-K. Comparative genomic analyses highlight the contribution of pseudogenized protein-coding genes to human lincRNAs. BMC Genom. 2017, 18, 786. [Google Scholar] [CrossRef] [PubMed]
- Hezroni, H.; Perry, R.B.-T.; Meir, Z.; Housman, G.; Lubelsky, Y.; Ulitsky, I. A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes. Genome Biol. 2017, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Zhang, X.-O.; Zhang, Y.; Ma, X.-K.; Chen, L.-L.; Yang, Z. CircRNA-derived pseudogenes. Cell Res. 2016, 26, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.D.; Frankish, A.; Hunt, T.; Harrow, J.; Gerstein, M. Identification and analysis of unitary pseudogenes: Historic and contemporary gene losses in humans and other primates. Genome Biol. 2010, 11, R26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. Evolution by gene duplication: An update. Trends Ecol. Evol. 2003, 18, 292–298. [Google Scholar] [CrossRef]
- Cheetham, S.W.; Faulkner, G.J.; Dinger, M.E. Overcoming challenges and dogmas to understand the functions of pseudogenes. Nat. Rev. Genet. 2019, 21, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lei, C.; He, Q.; Pan, Z.; Xiao, D.; Tao, Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol. Cancer 2018, 17, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Poliseno, L.; Salmena, L.; Zhang, J.; Carver, B.; Haveman, W.J.; Pandolfi, P.P. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010, 465, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Chiefari, E.; Iiritano, S.; Paonessa, F.; Le Pera, I.; Arcidiacono, B.; Filocamo, M.; Foti, D.; Liebhaber, S.A.; Brunetti, A. Pseudogene-mediated posttranscriptional silencing of HMGA1 can result in insulin resistance and type 2 diabetes. Nat. Commun. 2010, 1, 40. [Google Scholar] [CrossRef] [PubMed]
- Korneev, S.A.; Park, J.-H.; O’Shea, M. Neuronal Expression of Neural Nitric Oxide Synthase (nNOS) Protein Is Suppressed by an Antisense RNA Transcribed from an NOS Pseudogene. J. Neurosci. 1999, 19, 7711–7720. [Google Scholar] [CrossRef]
- Carthew, R.W.; Sontheimer, E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136, 642–655. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.K.W.; Chow, M.Y.T.; Zhang, Y.; Leung, S.W.S. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol. Ther. Nucleic Acids 2015, 4, e252. [Google Scholar] [CrossRef] [PubMed]
- Pantano, L.; Jodar, M.; Bak, M.; Ballescà, J.L.; Tommerup, N.; Oliva, R.; Vavouri, T. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes. RNA 2015, 21, 1085–1095. [Google Scholar] [CrossRef]
- Watanabe, T.; Cheng, E.-C.; Zhong, M.; Lin, H. Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline. Genome Res. 2014, 25, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, P.G.; Morris, K.V. Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 2010, 1, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Johnsson, P.; Ackley, A.; Vidarsdottir, L.; Lui, W.-O.; Corcoran, M.; Grandér, D.; Morris, K. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat. Struct. Mol. Biol. 2013, 20, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Kolenda, T.; Guglas, K.; Ryś, M.; Bogaczyńska, M.; Teresiak, A.; Bliźniak, R.; Łasińska, I.; Mackiewicz, J.; Lamperska, K.M. Biological role of long non-coding RNA in head and neck cancers. Rep. Pract. Oncol. Radiother. 2017, 22, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Kolenda, T.; Guglas, K.; Kopczyńska, M.; Teresiak, A.; Bliźniak, R.; Mackiewicz, A.; Lamperska, K.; Mackiewicz, J. Oncogenic Role of ZFAS1 lncRNA in Head and Neck Squamous Cell Carcinomas. Cells 2019, 8, 366. [Google Scholar] [CrossRef]
- Guglas, K.; Bogaczyńska, M.; Kolenda, T.; Ryś, M.; Teresiak, A.; Bliźniak, R.; Łasińska, I.; Mackiewicz, J.; Lamperska, K. lncRNA in HNSCC: Challenges and potential. Contemp. Oncol. 2017, 21, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Kolenda, T.; Guglas, K.; Baranowski, D.; Sobocińska, J.; Kopczyńska, M.; Teresiak, A.; Bliźniak, R.; Lamperska, K. cfRNAs as biomarkers in oncology—Still experimental or applied tool for personalized medicine already? Rep. Pr. Oncol. Radiother. 2020, 25, 783–792. [Google Scholar] [CrossRef]
- Kopczyńska, M.; Kolenda, T.; Guglas, K.; Sobocińska, J.; Teresiak, A.; Bliźniak, R.; Mackiewicz, A.; Mackiewicz, J.; Lamperska, K. PRINS lncRNA Is a New Biomarker Candidate for HPV Infection and Prognosis of Head and Neck Squamous Cell Carcinomas. Diagnostics 2020, 10, 762. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, J.; Kozioł, K.; Stasiak, M.; Obacz, J.; Guglas, K.; Poter, P.; Mackiewicz, A.; Kolenda, T. The role of NEAT1 lncRNA in squamous cell carcinoma of the head and neck is still difficult to define. Contemp. Oncol. 2020, 24, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, J.; Kolenda, T.; Poter, P.; Sobocińska, J.; Guglas, K.; Stasiak, M.; Bliźniak, R.; Teresiak, A.; Lamperska, K. Long Intergenic Non-Coding RNAs in HNSCC: From “Junk DNA” to Important Prognostic Factor. Cancers 2021, 13, 2949. [Google Scholar] [CrossRef]
- Denzler, R.; Agarwal, V.; Stefano, J.; Bartel, D.P.; Stoffel, M. Assessing the ceRNA Hypothesis with Quantitative Measurements of miRNA and Target Abundance. Mol. Cell 2014, 54, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Thomson, D.W.; Dinger, M.E. Endogenous microRNA sponges: Evidence and controversy. Nat. Rev. Genet. 2016, 17, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wan, L.; Wang, W.; Xi, W.-J.; Yang, A.-G.; Wang, T. Re-recognition of pseudogenes: From molecular to clinical applications. Theranostics 2020, 10, 1479–1499. [Google Scholar] [CrossRef]
- Kalyana-Sundaram, S.; Kumar-Sinha, C.; Shankar, S.; Robinson, D.R.; Wu, Y.-M.; Cao, X.; Asangani, I.A.; Kothari, V.; Prensner, J.R.; Lonigro, R.J.; et al. Expressed Pseudogenes in the Transcriptional Landscape of Human Cancers. Cell 2012, 149, 1622–1634. [Google Scholar] [CrossRef] [PubMed]
- Cooke, S.L.; Shlien, A.; Marshall, J.; Pipinikas, C.P.; Martincorena, I.; Tubio, J.; Li, Y.; Menzies, A.; Mudie, L.; ICGC Breast Cancer Group; et al. Processed pseudogenes acquired somatically during cancer development. Nat. Commun. 2014, 5, 3644. [Google Scholar] [CrossRef]
- Koda, Y.; Soejima, M.; Wang, B.; Kimura, H. Structure and Expression of the Gene Encoding Secretor-Type Galactoside 2-alpha-l-fucosyltransferase (FUT2). JBIC J. Biol. Inorg. Chem. 1997, 246, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Poliseno, L.; Marranci, A.; Pandolfi, P.P. Pseudogenes in Human Cancer. Front. Med. 2015, 2, 68. [Google Scholar] [CrossRef] [PubMed]
- Ganster, C.; Wernstedt, A.; Kehrer-Sawatzki, H.; Messiaen, L.; Schmidt, K.; Rahner, N.; Heinimann, K.; Fonatsch, C.; Zschocke, J.; Wimmer, K. FunctionalPMS2hybrid alleles containing a pseudogene-specific missense variant trace back to a single ancient intrachromosomal recombination event. Hum. Mutat. 2010, 31, 552–560. [Google Scholar] [CrossRef]
- Puget, N.; Gad, S.; Perrin-Vidoz, L.; Sinilnikova, O.M.; Stoppa-Lyonnet, D.; Lenoir, G.M.; Mazoyer, S. Distinct BRCA1 Rearrangements Involving the BRCA1 Pseudogene Suggest the Existence of a Recombination Hot Spot. Am. J. Hum. Genet. 2002, 70, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Suo, G.; Han, J.; Wang, X.; Zhang, J.; Zhao, Y.; Zhao, Y.; Dai, J. Oct4 pseudogenes are transcribed in cancers. Biochem. Biophys. Res. Commun. 2005, 337, 1047–1051. [Google Scholar] [CrossRef]
- Zhao, S.; Yuan, Q.; Hao, H.; Guo, Y.; Liu, S.; Zhang, Y.; Wang, J.; Liu, H.; Wang, F.; Liu, K.; et al. Expression of OCT4 pseudogenes in human tumours: Lessons from glioma and breast carcinoma. J. Pathol. 2010, 223, 672–682. [Google Scholar] [CrossRef]
- Zou, M.; Baitei, E.Y.; Alzahrani, A.S.; Al-Mohanna, F.; Farid, N.R.; Meyer, B.; Shi, Y. Oncogenic Activation of MAP Kinase by BRAF Pseudogene in Thyroid Tumors. Neoplasia 2009, 11, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Karreth, F.A.; Reschke, M.; Ruocco, A.; Ng, C.; Chapuy, B.; Léopold, V.; Sjoberg, M.; Keane, T.; Verma, A.; Ala, U.; et al. The BRAF Pseudogene Functions as a Competitive Endogenous RNA and Induces Lymphoma In Vivo. Cell 2015, 161, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Moreau-Aubry, A.; Le Guiner, S.; Labarrière, N.; Gesnel, M.-C.; Jotereau, F.; Breathnach, R. A Processed Pseudogene Codes for a New Antigen Recognized by a Cd8+ T Cell Clone on Melanoma. J. Exp. Med. 2000, 191, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liu, C.; Zhao, Q.; Lü, J.; Ding, X.; Luo, A.; He, J.; Wang, G.; Li, Y.; Cai, Z.; et al. Long non-coding RNA CCAT2 promotes oncogenesis in triple-negative breast cancer by regulating stemness of cancer cells. Pharmacol. Res. 2020, 152, 104628. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhao, Q.; Su, X.; Ke, J.; Yi, Y.; Yi, J.; Lin, J.; Qian, J.; Deng, Z. A three-gene signature might predict prognosis in patients with acute myeloid leukemia. Biosci. Rep. 2020, 40, BSR20193808. [Google Scholar] [CrossRef] [PubMed]
- Pisapia, L.; Terreri, S.; Barba, P.; Mastroianni, M.; Donnini, M.; Mercadante, V.; Palmieri, A.; Verze, P.; Mirone, V.; Altieri, V.; et al. Role of PA2G4P4 pseudogene in bladder cancer tumorigenesis. Biology 2020, 9, 66. [Google Scholar] [CrossRef]
- Roychowdhury, A.; Samadder, S.; Das, P.; Mazumder, D.I.; Chatterjee, A.; Addya, S.; Mondal, R.; Roy, A.; Roychoudhury, S.; Panda, C.K. Deregulation of H19 is associated with cervical carcinoma. Genomics 2019, 112, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Zhang, Q.W. The long noncoding RNA FTH1P3 promotes the proliferation and metastasis of cervical cancer through microRNA-145. Oncol. Rep. 2019, 43, 31–40. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, J.; Zhou, L.; Li, H.; Deng, Z.-Q.; Meng, B. The Octamer-Binding Transcription Factor 4 (OCT4) Pseudogene, POU Domain Class 5 Transcription Factor 1B (POU5F1B), is Upregulated in Cervical Cancer and Down-Regulation Inhibits Cell Proliferation and Migration and Induces Apoptosis in Cervical Cancer Cell Lines. Med Sci. Monit. 2019, 25, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Fan, M.; Yang, J.; Lang, J. Identification of Potential Oncogenic Long Non-Coding RNA Set as a Biomarker Associated with Colon Cancer Prognosis. J. Environ. Pathol. Toxicol. Oncol. 2020, 39, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Lapucci, A.; Perrone, G.; Di Paolo, A.; Napoli, C.; Landini, I.; Roviello, G.; Calosi, L.; Naccarato, A.G.; Falcone, A.; Bani, D.; et al. PNN and KCNQ1OT1 Can Predict the Efficacy of Adjuvant Fluoropyrimidine-Based Chemotherapy in Colorectal Cancer Patients. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2020, 28, 631–644. [Google Scholar] [CrossRef]
- Yari, H.; Jin, L.; Teng, L.; Wang, Y.; Wu, Y.; Liu, G.; Gao, W.; Liang, J.; Xi, Y.; Feng, Y.C.; et al. LncRNA REG1CP promotes tumorigenesis through an enhancer complex to recruit FANCJ helicase for REG3A transcription. Nat. Commun. 2019, 10, 5334. [Google Scholar] [CrossRef]
- Dai, X.; Xie, Y.; Dong, M.; Zhao, J.; Yu, H.; Zhou, B.; Xu, Y.; Yu, Y.; Cao, Y.; Zhang, Y. The long noncoding RNA TPTE2P1 promotes the viability of colorectal cancer cells. J. Cell Biochem. 2019, 120, 5268–5276. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Wang, H.-X.; Chen, P.; Chen, C.-H. STAT3-induced upregulation of lncRNA DUXAP8 functions as ceRNA for miR-577 to promote the migration and invasion in colorectal cancer through the regulation of RAB14. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6105–6118. [Google Scholar] [PubMed]
- Kovalenko, T.; Morozova, K.V.; Ozolinya, L.A.; Lapina, I.A.; Patrushev, L.I. The PTENP1 Pseudogene, Unlike the PTEN Gene, Is Methylated in Normal Endometrium, As Well As in Endometrial Hyperplasias and Carcinomas in Middle-Aged and Elderly Females. Acta Naturae 2018, 10, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Li, G.; Zhang, Z.; Liu, B. Downregulation of lncRNA PMS2L2 in patients with gastric adenocarcinoma predicts poor prognosis. Oncol. Lett. 2020, 20, 495–500. [Google Scholar] [CrossRef]
- Ma, H.; Ma, T.; Chen, M.; Zou, Z.; Zhang, Z. The pseudogene-derived long non-coding RNA SFTA1P suppresses cell proliferation, migration, and invasion in gastric cancer. Biosci. Rep. 2018, 38, BSR20171193. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhang, H.; Ma, R.; Liu, H.; Gao, P. Long non-coding RNA KRT19P3 suppresses proliferation and metastasis through COPS7A-mediated NF-κB pathway in gastric cancer. Oncogene 2019, 38, 7073–7088. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xu, Y.; Zou, C.; Tang, Y.; Lu, J.; Gong, Z.; Ma, G.; Zhang, W.; Jiang, P. Long noncoding RNA ARHGAP27P1 inhibits gastric cancer cell proliferation and cell cycle progression through epigenetically regulating p15 and p16. Aging 2019, 11, 9090–9110. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Zhang, L.-Z.; Chen, Z.-L.; Zhong, W.-J.; Fang, J.-H.; Zhu, Y.; Xiao, M.-H.; Guo, Z.-W.; Zhao, N.; He, X.; et al. A hMTR4-PDIA3P1-miR-125/124-TRAF6 Regulatory Axis and Its Function in NF kappa B Signaling and Chemoresistance. Hepatology 2019, 71, 1660–1677. [Google Scholar] [CrossRef]
- Wang, N.; Hao, F.; Ren, J.; Fei, X.; Chen, Y.; Xu, W.; Wang, J. Positive feedback loop of AKR1B10P1/miR-138/SOX4 promotes cell growth in hepatocellular carcinoma cells. Am. J. Transl. Res. 2020, 15, 5465–5480. [Google Scholar]
- Hao, F.; Fei, X.; Ren, X.; Xiao, J.X.; Chen, Y.; Wang, J. Pseudogene AKR1B10P1 enhances tumorigenicity and regulates epithelial-mesenchymal transition in hepatocellular carcinoma via stabilizing SOX4. J. Cell. Mol. Med. 2020, 24, 11779–11790. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Yue, C.; Xu, Y.; Jiang, X.; Zhang, L.; Wu, J. Prognostic Value and Molecular Regulatory Mechanism of MSTO2P in Hepatocellular Carcinoma: A Comprehensive Study Based on Bioinformatics, Clinical Analysis and in vitro Validation. OncoTargets Ther. 2020, 13, 2583–2598. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Li, W.; Zhao, J.; Huang, Z.; Zhao, J.; Chen, S.; Wang, C.; Xue, Y.; Huang, F.; Fang, Q.; et al. lnc RNA - PDPK 2P promotes hepatocellular carcinoma progression through the PDK 1/AKT/Caspase 3 pathway. Mol. Oncol. 2019, 13, 2246–2258. [Google Scholar] [CrossRef]
- Zhou, Y.; He, P.; Xie, X.; Sun, C. Knockdown of SUMO1P3 represses tumor growth and invasion and enhances radiosensitivity in hepatocellular carcinoma. Mol. Cell. Biochem. 2018, 450, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-Y.; Chen, D.-P.; Qi, B.; Li, M.-Y.; Zhu, Y.-Y.; Yin, W.-J.; He, L.; Yu, Y.; Li, Z.-Y.; Lin, L.; et al. Pseudogene RACGAP1P activates RACGAP1/Rho/ERK signalling axis as a competing endogenous RNA to promote hepatocellular carcinoma early recurrence. Cell Death Dis. 2019, 10, 426. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-S.; Shi, L.; Sun, F.; Zhang, Y.-F.; Chen, R.-W.; Yang, S.-L.; Hu, J.-L. High Expression of ANXA2 Pseudogene ANXA2P2 Promotes an Aggressive Phenotype in Hepatocellular Carcinoma. Dis. Markers 2019, 2019, 9267046. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, W.; Xue, W.; Xu, P.; Deng, Z.; Zhang, D.; Zheng, S.; Qiu, X. Long noncoding RNA AURKAPS1 potentiates malignant hepatocellular carcinoma progression by regulating miR-142, miR-155 and miR-182. Sci. Rep. 2019, 9, 19645. [Google Scholar] [CrossRef]
- Guo, X.-C.; Li, L.; Gao, Z.-H.; Zhou, H.-W.; Li, J.; Wang, Q.-Q. The long non-coding RNA PTTG3P promotes growth and metastasis of cervical cancer through PTTG1. Aging 2019, 11, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhan, L.; Chen, L.; Zhang, H.; Sun, C.; Xing, C. POU5F1B promotes hepatocellular carcinoma proliferation by activating AKT. Biomed. Pharmacother. 2018, 100, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Yang, L.; Jiang, D.; Pan, M.; Tang, G.; Huang, M.; Zhang, J. Long noncoding RNA DUXAP8 contributes to the progression of hepatocellular carcinoma via regulating miR-422a/PDK2 axis. Cancer Med. 2020, 9, 2480–2490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chu, K.; Zheng, C.; Ren, L.; Tian, R. Pseudogene DUXAP8 Promotes Cell Proliferation and Migration of Hepatocellular Carcinoma by Sponging MiR-490-5p to Induce BUB1 Expression. Front. Genet. 2020, 11, 666. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.-F.; Huang, Q.-L.; Ai, Y.-L.; Chen, Q.-T.; Zhao, W.-X.; Wang, X.-M.; Wu, Q.; Chen, H.-Z. Nur77-activated lncRNA WFDC21P attenuates hepatocarcinogenesis via modulating glycolysis. Oncogene 2020, 39, 2408–2423. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Huang, X.; Wang, S.; Ou, H.; Chen, Z.; Hu, Z.; Huang, Y.; Li, X.; Yuan, Y.; Yang, D. Deficiency of pseudogene UPAT leads to hepatocellular carcinoma progression and forms a positive feedback loop with ZEB1. Cancer Sci. 2020, 111, 4102–4117. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-Z.; Fu, T.; Chen, J.-X.; Lin, Y.-Y.; Yang, J.-E.; Zhuang, S.-M. LncRNA GOLGA2P10 is induced by PERK/ATF4/CHOP signaling and protects tumor cells from ER stress-induced apoptosis by regulating Bcl-2 family members. Cell Death Dis. 2020, 11, 276. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Song, H. A disparate role of RP11-424C20.2/UHRF1 axis through control of tumor immune escape in liver hepatocellular carcinoma and thymoma. Aging 2019, 11, 6422–6439. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Cao, S.; Wang, Y.; Hu, Y.; Liu, H.; Li, J.; Chen, J.; Li, P.; Liu, J.; Wang, Q.; et al. Long non-coding RNA UBE2CP3 enhances HCC cell secretion of VEGFA and promotes angiogenesis by activating ERK1/2/HIF-1α/VEGFA signalling in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2018, 37, 113. [Google Scholar] [CrossRef]
- Yang, X.; Ye, H.; He, M.; Zhou, X.; Sun, N.; Guo, W.; Lin, X.; Huang, H.; Lin, Y.; Yao, R.; et al. LncRNA PDIA3P interacts with c-Myc to regulate cell proliferation via induction of pentose phosphate pathway in multiple myeloma. Biochem. Biophys. Res. Commun. 2018, 498, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Xing, L.; Zhang, X. A Four-Pseudogene Classifier Identified by Machine Learning Serves as a Novel Prognostic Marker for Survival of Osteosarcoma. Genes 2019, 10, 414. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Huang, C.-M.; Wang, B.; Sun, T.-F.; Zhu, A.-X.; Zhu, Y.-C. Pseudogene MSTO2P enhances hypoxia-induced osteosarcoma malignancy by upregulating PD-L1. Biochem. Biophys. Res. Commun. 2020, 530, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Ganapathi, M.K.; Jones, W.D.; Sehouli, J.; Michener, C.M.; Braicu, I.E.; Norris, E.J.; Biscotti, C.V.; Vaziri, S.A.; Ganapathi, R.N. Expression profile of COL2A1 and the pseudogene SLC6A10P predicts tumor recurrence in high-grade serous ovarian cancer. Int. J. Cancer 2015, 138, 679–688. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, A.; Zhang, Z. LncRNA SDHAP1 confers paclitaxel resistance of ovarian cancer by regulating EIF4G2 expression via miR-4465. J. Biochem. 2020, 168, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.; Yang, J.; Lian, Y.; Xiao, C.; Hu, X.; Xu, H. DUXAP8, a pseudogene derived lncRNA, promotes growth of pancreatic carcinoma cells by epigenetically silencing CDKN1A and KLF2. Cancer Commun. 2018, 38, 64. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.; Xiao, C.; Yan, C.; Chen, D.; Huang, Q.; Fan, Y.; Li, Z.; Xu, H. Knockdown of pseudogene derived from lncRNA DUXAP10 inhibits cell proliferation, migration, invasion, and promotes apoptosis in pancreatic cancer. J. Cell. Biochem. 2018, 119, 3671–3682. [Google Scholar] [CrossRef]
- Tian, C.; Jin, Y.; Shi, S. Long non-coding RNA SUMO1P3 may promote cell proliferation, migration, and invasion of pancreatic cancer via EMT signaling pathway. Oncol. Lett. 2018, 16, 6109–6115. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthi, B.V.; Dedigama-Arachchige, P.; Carskadon, S.; Sundaram, S.K.; Li, J.; Wu, K.-H.H.; Chandrashekar, D.S.; Peabody, J.O.; Stricker, H.; Hwang, C.; et al. Pseudogene Associated Recurrent Gene Fusion in Prostate Cancer. Neoplasia 2019, 21, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Smerekanych, S.; Johnson, T.S.; Huang, K.; Zhang, Y. Pseudogene-gene functional networks are prognostic of patient survival in breast cancer. BMC Med. Genom. 2020, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Lyu, L.; Yao, J.; Wang, M.; Zheng, Y.; Xu, P.; Wang, S.; Zhang, D.; Deng, Y.; Wu, Y.; Yang, S.; et al. Overexpressed Pseudogene HLA-DPB2 Promotes Tumor Immune Infiltrates by Regulating HLA-DPB1 and Indicates a Better Prognosis in Breast Cancer. Front. Oncol. 2020, 10, 1245. [Google Scholar] [CrossRef]
- Lou, W.; Ding, B.; Zhong, G.; Yao, J.; Fan, W.; Fu, P. RP11-480I12.5-004 Promotes Growth and Tumorigenesis of Breast Cancer by Relieving miR-29c-3p-Mediated AKT3 and CDK6 Degradation. Mol. Ther. Nucleic Acids 2020, 21, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; He, Y.; Shao, Y.; Chen, Q.; Liu, H. lncRNA PCNAP1 predicts poor prognosis in breast cancer and promotes cancer metastasis via miR-340-5p-dependent upregulation of SOX4. Oncol. Rep. 2020, 44, 1511–1523. [Google Scholar] [CrossRef]
- Shih, J.-H.; Chen, H.-Y.; Lin, S.-C.; Yeh, Y.-C.; Shen, R.; Lang, Y.-D.; Wu, D.-C.; Chen, C.-Y.; Chen, R.-H.; Chou, T.-Y.; et al. Integrative analyses of noncoding RNAs reveal the potential mechanisms augmenting tumor malignancy in lung adenocarcinoma. Nucleic Acids Res. 2019, 48, 1175–1191. [Google Scholar] [CrossRef] [PubMed]
- Lou, W.; Ding, B.; Fan, W. High Expression of Pseudogene PTTG3P Indicates a Poor Prognosis in Human Breast Cancer. Mol. Ther. Oncolytics 2019, 14, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Barrow, M.A.; Martin, M.E.; Coffey, A.; Andrews, P.L.; Jones, G.S.; Reaves, D.K.; Parker, J.S.; Troester, M.A.; Fleming, J.M. A functional role for the cancer disparity-linked genes, CRYβB2 and CRYβB2P1, in the promotion of breast cancer. Breast Cancer Res. 2019, 21, 105. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Li, X.; Gu, Y.; Lv, X.; Xi, T. The 3′UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1. Breast Cancer Res. Treat. 2015, 150, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Guo, Q.; Xiang, C.; Liu, S.; Jiang, Y.; Gao, L.; Ni, H.; Wang, T.; Zhao, Q.; Liu, H.; et al. Transcriptional factor six2 promotes the competitive endogenous RNA network between CYP4Z1 and pseudogene CYP4Z2P responsible for maintaining the stemness of breast cancer cells. J. Hematol. Oncol. 2019, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, S.; Chen, H.; Li, L.; He, C.; Fang, L. Long noncoding RNA PDIA3P promotes breast cancer development by regulating miR-183/ITGB1/FAK/PI3K/AKT/β-catenin signals. Int. J. Clin. Exp. Pathol. 2019, 12, 1284–1294, Retraction in Int. J. Clin. Exp. Pathol. 2020, 13, 2718. [Google Scholar]
- Liu, Y.; Wang, W.; Li, Y.; Sun, F.; Lin, J.; Li, L. CKS1BP7, a Pseudogene of CKS1B, is Co-Amplified with IGF1R in Breast Cancers. Pathol. Oncol. Res. 2017, 24, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Qin, T.; Mao, J.; Zhang, J.; Fan, S.; Lu, Y.; Sun, Z.; Zhang, Q.; Song, B.; Li, L. PTENP1/miR-20a/PTEN axis contributes to breast cancer progression by regulating PTEN via PI3K/AKT pathway. J. Exp. Clin. Cancer Res. 2019, 38, 256. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, T.; Yang, Z.; Jiang, C.; Seng, J. Long non-codingRNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1. J. Cell. Mol. Med. 2018, 22, 4068–4075. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-Q.; Tufman, A.; Kiefl, R.; Li, G.-F.; Ma, Q.-L.; Huber, R.M. Identification of lung adenocarcinoma-specific exosome RNAs in peripheral blood by RNA-Seq analysis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1877–1886. [Google Scholar] [PubMed]
- Yuan, K.; Gao, Z.-J.; Yuan, W.-D.; Yuan, J.-Q.; Wang, Y. High expression of SLC6A10P contributes to poor prognosis in lung adenocarcinoma. Int. J. Clin. Exp. Pathol. 2018, 11, 720–726. [Google Scholar] [PubMed]
- Shen, X.-Q.; Wu, Q.-M.; Yang, C.-H.; Yan, Q.-D.; Cao, P.-J.; Chen, F.-L. Four Low Expression LncRNAs are Associated with Prognosis of Human Lung Adenocarcinoma. Clin. Lab. 2020, 66. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wan, Y.; Xie, L.; Lin, X.; Zhao, H.; Ju, X.; Fang, A. Expression of SUMO1P3 Compared with SUMO1 is an Independent Predictor of Patient Outcome in Lung Adenocarcinoma. Med Sci. Monit. 2019, 25, 6691–6701. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Han, L.; Zhang, P.; Sun, S. SUMO1P3 is associated clinical progression and facilitates cell migration and invasion through regulating miR-136 in non-small cell lung cancer. Biomed. Pharmacother. 2019, 113, 108686. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Tao, R.; Sun, L.-Y.; Xu, X.-L.; Ling, W. Down-regulation of long non-coding RNA DUXAP8 suppresses proliferation, metastasis and EMT by modulating miR-498 through TRIM44-mediated AKT/mTOR pathway in non-small-cell lung cancer. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3152–3165. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Hua, L.; Wang, J.; Liu, Y.; Li, X. Long Non-Coding RNA DUXAP8 Facilitates Cell Viability, Migration, and Glycolysis in Non-Small-Cell Lung Cancer via Regulating HK2 and LDHA by Inhibition of miR-409-3p. OncoTargets Ther. 2020, 13, 7111–7123. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, C.; Yang, G.; Wang, B.; Hua, P.; Zhang, Y. LncRNA WTAPP1 promotes cancer cell invasion and migration in NSCLC by downregulating lncRNA HAND2-AS1. BMC Pulm. Med. 2020, 20, 153. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y. Long non-coding RNA FTH1P3 promotes the metastasis and aggressiveness of non-small cell lung carcinoma by inducing epithelial-mesenchymal transition. Int. J. Clin. Exp. Pathol. 2019, 12, 3782–3790. [Google Scholar]
- Zheng, G.; Chen, W.; Li, W.; Ding, Y.; Tu, P. E2F1-induced ferritin heavy chain 1 pseudogene 3 (FTH1P3) accelerates non-small cell lung cancer gefitinib resistance. Biochem. Biophys. Res. Commun. 2020, 530, 624–631. [Google Scholar] [CrossRef]
- Yang, X.; Yang, B. lncRNA PDIA3P regulates cell proliferation and invasion in non-small cell lung cancer. Exp. Ther. Med. 2019, 18, 3184–3190. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, J.; Zhang, Q.; Wang, F.; Fang, L.; Song, B.; Xie, C.; Liu, J. Methylation-driven genes PMPCAP1, SOWAHC and ZNF454 as potential prognostic biomarkers in lung squamous cell carcinoma. Mol. Med. Rep. 2020, 21, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Dong-Li, H.; Zou, H.; Shao, Y.-Y.; Mei, Y.; Cheng, Y.; Hu, D.-L.; Tan, Z.-R.; Zhou, H.-H. Pseudogenes of annexin A2, novel prognosis biomarkers for diffuse gliomas. Oncotarget 2017, 8, 106962–106975. [Google Scholar] [CrossRef]
- Du, P.; Liao, Y.; Zhao, H.; Zhang, J.; Muyiti; Keremu; Mu, K. ANXA2P2/miR-9/LDHA axis regulates Warburg effect and affects glioblastoma proliferation and apoptosis. Cell. Signal. 2020, 74, 109718. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.; Qian, Z.; Zhang, S.; Chen, B.; Li, Z.; Huang, R.; Cheng, L.; Wang, T.; Yang, R.; Lan, J.; et al. The LGMN pseudogene promotes tumor progression by acting as a miR-495-3p sponge in glioblastoma. Cancer Lett. 2020, 490, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Li, C.; Zhao, T.; Wang, Y.; Liu, J. LncRNA double homeobox A pseudogene 8 (DUXAP8) facilitates the progression of neuroblastoma and activates Wnt/β-catenin pathway via microRNA-29/nucleolar protein 4 like (NOL4L) axis. Brain Res. 2020, 1746, 146947. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lou, J.; Yang, S.; Lou, J.; Liao, W.; Zhou, R.; Qiu, C.; Ding, G. MT1JP inhibits glioma progression via negative regulation of miR-24. Oncol. Lett. 2019, 19, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Qi, Y.; Gao, X.; Qiu, W.; Liu, Q.; Guo, X.; Qian, M.; Chen, Z.; Zhang, Z.; Wang, H.; et al. Hypoxia-induced lncRNA PDIA3P1 promotes mesenchymal transition via sponging of miR-124-3p in glioma. Cell Death Dis. 2020, 11, 168. [Google Scholar] [CrossRef]
- Wang, S.; Guo, X.; Lv, W.; Li, Y.; Zhang, L.; Dong, C.; Zhang, J.; Cheng, G. LncRNA RPSAP52 Upregulates TGF-β1 to Increase Cancer Cell Stemness and Predict Postoperative Survival in Glioblastoma. Cancer Manag. Res. 2020, 12, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J.; Liu, K.; Huang, H.; Li, Y.; Hu, X.; Wang, K.; Cao, H.; Cheng, Q. A prognostic signature of five pseudogenes for predicting lower-grade gliomas. Biomed. Pharmacother. 2019, 117, 109116. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.; Guan, G.; Xiao, Z.; Zhao, W.; Zhuang, M. Identification of a Five-Pseudogene Signature for Predicting Survival and Its ceRNA Network in Glioma. Front. Oncol. 2019, 9, 1059. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, L.; Sun, J.; Zhou, J.-H.; Tan, Y.-L.; Wang, Y.; You, H.; Wang, Q.-X.; Kang, C.-S. Identification of long non-coding RNA HERC2P2 as a tumor suppressor in glioma. Carcinogenesis 2019, 40, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Wang, J.; Lei, P. Long non-coding RNA ferritin heavy polypeptide 1 pseudogene 3 controls glioma cell proliferation and apoptosis via regulation of the microRNA-224-5p/tumor protein D52 axis. Mol. Med. Rep. 2018, 18, 4239–4246. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Xu, L.; Li, L.; Luo, D.; Zhao, H.; Li, D.; Peng, B. Overexpression of lncRNA PTENP1 suppresses glioma cell proliferation and metastasis in vitro. OncoTargets Ther. 2018, 12, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Z.-X.; Wu, Q.-N.; Lu, Y.-X.; Wong, C.-W.; Miao, L.; Wang, Y.; Wang, Z.; Jin, Y.; He, M.-M.; et al. Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nat. Commun. 2020, 11, 1507–1516. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, X.; Guo, M.; Zhang, X.; Liu, F. Application of Machine Learning in Developing a Novelty Five-Pseudogene Signature to Predict Prognosis of Head and Neck Squamous Cell Carcinoma: A New Aspect of “Junk Genes” in Biomedical Practice. DNA Cell Biol. 2020, 39, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Grzechowiak, I.; Graś, J.; Szymańska, D.; Biernacka, M.; Guglas, K.; Poter, P.; Mackiewicz, A.; Kolenda, T. The Oncogenic Roles of PTTG1 and PTTG2 Genes and Pseudogene PTTG3P in Head and Neck Squamous Cell Carcinomas. Diagnostics 2020, 10, 606. [Google Scholar] [CrossRef]
- Jia, H.; Wang, X.; Sun, Z. Exploring the long noncoding RNAs-based biomarkers and pathogenesis of malignant transformation from dysplasia to oral squamous cell carcinoma by bioinformatics method. Eur. J. Cancer Prev. 2020, 29, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-F.; Feng, L.; Shi, Q.; Ma, H.-Z.; He, S.-Z.; Hou, L.-Z.; Wang, R.; Fang, J.-G. Silencing novel long non-coding RNA FKBP9P1 represses malignant progression and inhibits PI3K/AKT signaling of head and neck squamous cell carcinoma in vitro. Chin. Med. J. 2020, 133, 2037–2043. [Google Scholar] [CrossRef]
- Yuan, H.; Jiang, H.; Wang, Y.; Dong, Y. Increased expression of lncRNA FTH1P3 predicts a poor prognosis and promotes aggressive phenotypes of laryngeal squamous cell carcinoma. Biosci. Rep. 2019, 39, BSR20181644. [Google Scholar] [CrossRef] [PubMed]
- Rutnam, Z.J.; Du, W.W.; Yang, W.; Yang, X.; Yang, B.B. The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat. Commun. 2014, 5, 2914. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Gong, R.; He, B.; Chen, F.; Hu, Z. TUSC2P suppresses the tumor function of esophageal squamous cell carcinoma by regulating TUSC2 expression and correlates with disease prognosis. BMC Cancer 2018, 18, 894. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Yuan, Z.; Huang, R.; Wu, Z.; Li, Y. The long noncoding RNA EMBP1 inhibits the tumor suppressor miR-9-5p and promotes renal cell carcinoma tumorigenesis. Nefrologia 2020, 40, 429–439. [Google Scholar] [CrossRef]
- Chen, J.; Lou, W.; Ding, B.; Wang, X. Overexpressed pseudogenes, DUXAP8 and DUXAP9, promote growth of renal cell carcinoma and serve as unfavorable prognostic biomarkers. Aging 2019, 11, 5666–5688. [Google Scholar] [CrossRef]
- Chen, B.; Wang, C.; Zhang, J.; Zhou, Y.; Hu, W.; Guo, T. New insights into long noncoding RNAs and pseudogenes in prognosis of renal cell carcinoma. Cancer Cell Int. 2018, 18, 157. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Wang, X.; Yang, X.; Ji, J.; Wang, Q.; Yue, X.; Dong, Z. Long Non-Coding RNA DUXAP8 Enhances Renal Cell Carcinoma Progression via Downregulating miR-126. Med. Sci. Monit. 2018, 24, 7340–7347. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Song, J.; Zhang, X.; Yan, M.; Wang, S.; Wang, Y.; Xu, L.; Zhao, L.; Wei, J.-J.; Shao, C.; et al. MYC-regulated pseudogene HMGA1P6 promotes ovarian cancer malignancy via augmenting the oncogenic HMGA1/2. Cell Death Dis. 2020, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Meng, Y.; Cao, C.; Wu, P.; Gao, P.; Zhi, W.; Peng, T.; Wu, P. Comprehensive analysis of LDHAP5 pseudogene expression and potential pathogenesis in ovarian serous cystadenocarcinoma. Cancer Cell Int. 2020, 20, 229. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yu, X.; Wei, C.; Nie, F.; Huang, M.; Sun, M. Over-expression of oncigenic pesudogene DUXAP10 promotes cell proliferation and invasion by regulating LATS1 and β-catenin in gastric cancer. J. Exp. Clin. Cancer Res. 2018, 37, 13. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Zhao, X.; Zhang, L.; Wang, C. Comprehensive analysis of pseudogene HSPB1P1 and its potential roles in hepatocellular carcinoma. J. Cell. Physiol. 2020, 235, 6515–6527. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Gao, Y. Development and validation of a novel pseudogene pair-based prognostic signature for prediction of overall survival in patients with hepatocellular carcinoma. BMC Cancer 2020, 20, 887. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Rong, T.; Cao, G.; Zhai, C.; Li, Q.; Gong, R.; Li, G. AOC4P suppresses viability and invasion and induces apoptosis in NSCLC cells by inhibiting the Wnt/β-catenin pathway. Chem. Interact. 2020, 325, 109110. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Wang, Z.; Feng, Y.; Zhu, H.; Yang, M.; Zhang, S.; Wang, X. lncRNA TPTEP1 competitively sponges miR-328-5p to inhibit the proliferation of non-small cell lung cancer cells. Oncol. Rep. 2020, 43, 1606–1618. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, X.; Lin, Z.; Xiong, A.; Xie, S.; Liang, J.; Zhang, W. SFTA1P, LINC00968, GATA6-AS1, TBX5-AS1, and FEZF1-AS1 are crucial long non-coding RNAs associated with the prognosis of lung squamous cell carcinoma. Oncol. Lett. 2019, 18, 3985–3993. [Google Scholar] [CrossRef]
- Yang, L.; Sun, K.; Chu, J.; Qu, Y.; Zhao, X.; Yin, H.; Ming, L.; Wan, J.; He, F. Long non-coding RNA FTH1P3 regulated metastasis and invasion of esophageal squamous cell carcinoma through SP1/NF-kB pathway. Biomed. Pharmacother. 2018, 106, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ren, B.; Huang, J.; Yin, R.; Jiang, F.; Zhang, Q. LncRNA DUXAP10 modulates cell proliferation in esophageal squamous cell carcinoma through epigenetically silencing p21. Cancer Biol. Ther. 2018, 19, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Gao, X.; Liu, C.-L. Increased expression of lncRNA FTH1P3 promotes oral squamous cell carcinoma cells migration and invasion by enhancing PI3K/Akt/GSK3b/Wnt/β-catenin signaling. Eur. Rev. Med Pharmacol. Sci. 2018, 22, 8306–8314. [Google Scholar] [PubMed]
- Chen, M.; Zheng, Y.; Xie, J.; Zhen, E.; Zhou, X. Integrative profiling analysis identifies the oncogenic long noncoding RNA DUXAP8 in oral cancer. Anti-Cancer Drugs 2020, 31, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Silva-Malta, M.C.F.; Santos, C.C.S.; Gonçalves, P.C.; Schmidt, L.C.; Martins, M.L. Molecular analysis of theRHDpseudogene by duplex real-time polymerase chain reaction. Transfus. Med. 2019, 29, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Valdes, C.; Capobianco, E. Methods to Detect Transcribed Pseudogenes: RNA-Seq Discovery Allows Learning through Features. Hum. Press 2014, 1167, 157–183. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Guttman, M.; Garber, M.; Levin, J.; Donaghey, J.; Robinson, J.T.; Adiconis, X.; Fan, L.; Koziol, M.; Gnirke, A.; Nusbaum, C.; et al. Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol. 2010, 28, 503–510. [Google Scholar] [CrossRef]
- Gloss, B.S.; Dinger, M.E. The specificity of long noncoding RNA expression. Biochim. Biophys. Acta (BBA) Bioenerg. 2016, 1859, 16–22. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasiak, M.; Kolenda, T.; Kozłowska-Masłoń, J.; Sobocińska, J.; Poter, P.; Guglas, K.; Paszkowska, A.; Bliźniak, R.; Teresiak, A.; Kazimierczak, U.; et al. The World of Pseudogenes: New Diagnostic and Therapeutic Targets in Cancers or Still Mystery Molecules? Life 2021, 11, 1354. https://doi.org/10.3390/life11121354
Stasiak M, Kolenda T, Kozłowska-Masłoń J, Sobocińska J, Poter P, Guglas K, Paszkowska A, Bliźniak R, Teresiak A, Kazimierczak U, et al. The World of Pseudogenes: New Diagnostic and Therapeutic Targets in Cancers or Still Mystery Molecules? Life. 2021; 11(12):1354. https://doi.org/10.3390/life11121354
Chicago/Turabian StyleStasiak, Maciej, Tomasz Kolenda, Joanna Kozłowska-Masłoń, Joanna Sobocińska, Paulina Poter, Kacper Guglas, Anna Paszkowska, Renata Bliźniak, Anna Teresiak, Urszula Kazimierczak, and et al. 2021. "The World of Pseudogenes: New Diagnostic and Therapeutic Targets in Cancers or Still Mystery Molecules?" Life 11, no. 12: 1354. https://doi.org/10.3390/life11121354
APA StyleStasiak, M., Kolenda, T., Kozłowska-Masłoń, J., Sobocińska, J., Poter, P., Guglas, K., Paszkowska, A., Bliźniak, R., Teresiak, A., Kazimierczak, U., & Lamperska, K. (2021). The World of Pseudogenes: New Diagnostic and Therapeutic Targets in Cancers or Still Mystery Molecules? Life, 11(12), 1354. https://doi.org/10.3390/life11121354