Similar Biomechanical Behavior in Gait Analysis between Ceramic-on-Ceramic and Ceramic-on-XLPE Total Hip Arthroplasties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects—Clinical Examination
2.2. Hip Range of Motion Measurements
2.3. Gait Analysis
- ➢
- Crosstalk less than 1%;
- ➢
- Linearity less than 0.5% of full scale;
- ➢
- Hysteresis less than 0.5% of full scale.
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Kinetic Data
3.1.1. Peak Abduction Moment
3.1.2. Peak Extension Moments
3.1.3. Peak Flexion Moments
3.2. Kinematic Data
3.2.1. Flexion–Extension ROMs
3.2.2. Abduction–Adduction ROMs
4. Discussion
4.1. Proposition for Further Work
4.2. Sources of Errors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
THA | total hip arthroplasty |
CoC | ceramic on ceramic |
CoXLPE | ceramic on highly cross-linked polyethylene |
CoP | ceramic on polyethylene |
HoH | hard on hard |
ISO | International Standardization Organization |
ROM | range of motion |
SD | standard deviation |
OHS | Oxford Hip Score |
ASIS | anterior superior iliac spine |
3D | three-dimensional |
UHMWPE | ultra-high molecular weight polyethylene |
HMWP | high molecular weight polyethylene |
SAM | step activity monitor |
sEMG | surface electromyography |
References
- Zagra, L.; Gallazzi, E. Bearing surfaces in primary total hip arthroplasty. EFORT Open Rev. 2018, 3, 217–224. [Google Scholar] [CrossRef]
- Merola, M.; Affatato, S. Materials for Hip Prostheses: A Review of Wear and Loading Considerations. Materials 2019, 12, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseinzadeh, H.R.S.; Eajazi, A.; Sina, A. The Bearing Surfaces in Total Hip Arthroplasty—Options, Material Characteristics and Selection. In Recent Advances in Arthroplasty; Fokter, S.K., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Boutin, P. Arthroplastie totale de la hanche par prothèse en alumine frittée. Etude expérimentale et premières applications cliniques. Rev. Chir. Orthop. Reparatrice Appar. Mot. 1972, 58, 229–246. [Google Scholar] [CrossRef] [PubMed]
- Boutin, P.; Blanquaert, D. Le frottement alumine-alumine en chirurgie de la hanche. 1205 arthroplasties totales. Rev. Chir. Orthop. Reparatrice Appar. Mot. 1981, 67, 279–287. [Google Scholar] [PubMed]
- Shetty, V.; Shitole, B.; Shetty, G.; Thakur, H.; Bhandari, M. Optimal bearing surfaces for total hip replacement in the young patient: A meta-analysis. Int. Orthop. 2011, 35, 1281–1287. [Google Scholar] [CrossRef] [Green Version]
- Saikko, V.; Calonius, O. Slide track analysis of the relative motion between femoral head and acetabular cup in walking and in hip simulators. J. Biomech. 2002, 35, 455–464. [Google Scholar] [CrossRef]
- Affatato, S.; Goldoni, M.; Testoni, M.; Toni, A. Mixed oxides prosthetic ceramic ball heads. Part 3: Effect of the ZrO2 fraction on the wear of ceramic on ceramic hip joint prostheses. A long-term in vitro wear study. Biomaterials 2001, 22, 717–723. [Google Scholar] [CrossRef]
- Yang, C.C.; Kim, R.H.; Dennis, D.A. The Squeaking Hip: A Cause for Concern-Disagrees. Orthopedics 2007, 30, 739–742. [Google Scholar] [CrossRef] [Green Version]
- Macek, W.; Branco, R.; Costa, J.D.; Pereira, C. Strain sequence effect on fatigue life and fracture surface topography of 7075-T651 aluminium alloy. Mech. Mater. 2021, 160, 103972. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Gawel, H.A.; Patel, J.D. History and systematic review of wear and osteolysis outcomes for first-generation highly cross-linked polyethylene. Clin. Orthop. Relat. Res. 2011, 469, 2262–2277. [Google Scholar] [CrossRef] [Green Version]
- Triantafyllou, A.; Papagiannis, G.; Stasi, S.; Georgios, P.; Koulouvaris, P.; Papagelopoulos, P.J.; Babis, G.C. Biomechanical assessment of wear in ceramic on ceramic and ceramic on xlpe THAs. J. Mech. Med. Biol. 2021, 21, 2150023. [Google Scholar] [CrossRef]
- Ardestani, M.M.; Amenábar Edwards, P.P.; Wimmer, M.A. Prediction of Polyethylene Wear Rates from Gait Biomechanics and Implant Positioning in Total Hip Replacement. Clin. Orthop. Relat. Res. 2017, 475, 2027–2042. [Google Scholar] [CrossRef] [Green Version]
- Affatato, S. The history of biomaterials used in total hip arthroplasty (THA). In Perspectives in Total Hip Arthroplasty: Advances in Biomaterials and Their Tribological Interactions; Woodhead Publishing: Sawston, UK, 2014; pp. 19–36. [Google Scholar]
- Hamilton, W.G.; Hopper, R.H.; Ginn, S.D.; Hammell, N.P.; Engh, C.A. The Effect of Total Hip Arthroplasty Cup Design on Polyethylene Wear Rate. J. Arthroplast. 2005, 20, 63–72. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Ong, K.L. Contemporary total hip arthroplasty: Alternative bearings. In UHMWPE Biomaterials Handbook: Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices, 3rd ed.; William Andrew Publishing/Elsevier: Oxford, UK, 2016; pp. 72–105. [Google Scholar]
- Liao, Y.; Hoffman, E.; Wimmer, M.; Fischer, A.; Jacobs, J.; Marks, L. CoCrMo metal-on-metal hip replacements. Phys. Chem. Chem. Phys. 2012, 15, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Mihalko, W.M.; Wimmer, M.A.; Pacione, C.A.; Laurent, M.P.; Murphy, R.F.; Rider, C. How Have Alternative Bearings and Modularity Affected Revision Rates in Total Hip Arthroplasty? Clin. Orthop. Relat. Res. 2014, 472, 3747–3758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delaunay, C.; Hamadouche, M.; Girard, J.; Duhamel, A. The SoFCOT Group. What Are the Causes for Failures of Primary Hip Arthroplasties in France? Clin. Orthop. Relat. Res. 2013, 471, 3863–3869. [Google Scholar] [CrossRef] [Green Version]
- Domb, B.G.; El Bitar, Y.F.; Sadik, A.Y.; Stake, C.E.; Botser, I.B. Comparison of Robotic-Assisted and Conventional Acetabular Cup Placement in THA: A Matched-Pair Controlled Study. Clin. Orthop. Relat. Res. 2014, 472, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Bennett, D.; Humphreys, L.; O’Brien, S.; Kelly, C.; Orr, J.F.; Beverland, D.E. Wear paths produced by individual hip-replacement patients—A large-scale, long-term follow-up study. J. Biomech. 2008, 41, 2474–2482. [Google Scholar] [CrossRef]
- Davey, S.M.; Orr, J.F.; Buchanan, F.J.; Nixon, J.R.; Bennett, D. The effect of patient gait on the material properties of UHMWPE in hip replacements. Biomaterials 2005, 26, 4993–5001. [Google Scholar] [CrossRef]
- Foucher, K.C.; Hurwitz, D.E.; Wimmer, M.A. Do gait adaptations during stair climbing result in changes in implant forces in subjects with total hip replacements compared to normal subjects? Clin. Biomech. 2008, 23, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Foucher, K.C.; Hurwitz, D.E.; Wimmer, M.A. Relative importance of gait vs. joint positioning on hip contact forces after total hip replacement. J. Orthop. Res. 2009, 27, 1576–1582. [Google Scholar] [CrossRef]
- Ngai, V.; Kunze, J.; Cip, J.; Laurent, M.P.; Jacobs, J.J.; Wimmer, M.A. Backside wear of tibial polyethylene components is affected by gait pattern: A knee simulator study using rare earth tracer technology. J. Orthop. Res. 2020, 38, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization (ISO). ISO 14242-1:2014. Implants for Surgery—Wear of Total Hip-Joint Prostheses—Part 1: Loading and Displacement Parameters for Wear-Testing Environmental Conditions for Test. Last Reviewed and Confirmed in 2020. Available online: https://www.iso.org/standard/MachinesandCorresponding63073.html (accessed on 5 August 2021).
- Hemmerich, A.; Brown, H.; Smith, S.; Marthandam, S.; Wyss, U. Hip, knee, and ankle kinematics of high range of motion activities of daily living. J. Orthop. Res. 2006, 24, 770–781. [Google Scholar] [CrossRef] [PubMed]
- Mulholland, S.J.; Wyss, U.P. Activities of daily living in non-Western cultures: Range of motion requirements for hip and knee joint implants. Int. J. Rehabil. Res. 2001, 24, 191–198. [Google Scholar] [CrossRef]
- D’Lima, D.D.; Urquhart, A.G.; Buehler, K.O.; Walker, R.H.; Colwell, C.W. The Effect of the Orientation of the Acetabular and Femoral Components on the Range of Motion of the Hip at Different Head-Neck Ratios. J. Bone Jt. Surg.-Am. Vol. 2000, 82, 315–321. [Google Scholar] [CrossRef]
- Widmer, K.-H.; Zurfluh, B. Compliant positioning of total hip components for optimal range of motion. J. Orthop. Res. 2004, 22, 815–821. [Google Scholar] [CrossRef]
- Papagiannis, G.I.; Triantafyllou, A.I.; Roumpelakis, I.M.; Papagelopoulos, P.J.; Babis, G.C. Gait analysis methodology for the measurement of biomechanical parameters in total knee arthroplasties. A literature review. J. Orthop. 2018, 15, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Papagiannis, G.; Roumpelakis, I.; Triantafyllou, A.; Makris, I.; Babis, G.C. No Differences Identified in Transverse Plane Biomechanics between Medial Pivot and Rotating Platform Total Knee Implant Designs. J. Arthroplast. 2016, 8, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Lucchetti, L.; Cappozzo, A.; Cappello, A.; Della Croce, U. Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics. J. Biomech. 1998, 31, 977–984. [Google Scholar] [CrossRef]
- Vardaxis, V.G.; Allard, P.; Lachance, R.; Duhaime, M. Classification of able-bodied gait using 3-D muscle powers. Hum. Mov. Sci. 1998, 17, 121–136. [Google Scholar] [CrossRef]
- Petersen, M.; Andersen, N.; Mogensen, P.; Soeballe, K.; Voigt, M. Gait analysis after total hip replacement with hip resurfacing implant or mallory-head exeter prosthesis: A randomized controlled trial. In Orthopaedic Proceedings EFFORT, Proceedings of the European Federation of National Associations of Orthopaedics and Traumatology (10th Congress) 30/5-1/6 2018, Barcelona, Spain, 30 May–1 June 2018; The British Editorial Society of Bone & Joint Surgery: London, UK, 2018. [Google Scholar]
- Ristanis, S.; Stergiou, N.; Siarava, E.; Ntoulia, A.; Mitsionis, G.; Georgoulis, A.D. Effect of Femoral Tunnel Placement for Reconstruction of the Anterior Cruciate Ligament on Tibial Rotation. J. Bone Jt. Surg.-Am. Vol. 2009, 91, 2151–2158. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, G.L.; Hubley-Kozey, C.L.; Astephen Wilson, J.L.; Dumbar, M.J. The effect of total knee arthroplasty on knee joint kinematics and kinetics during gait. J. Arthroplast. 2011, 26, 309. [Google Scholar] [CrossRef] [PubMed]
- Mundt, M.; Koeppe, A.; David, S.; Witter, T.; Bamer, F.; Potthast, W.; Markert, B. Estimation of Gait Mechanics Based on Simulated and Measured IMU Data Using an Artificial Neural Network. Front. Bioeng. Biotechnol. 2020, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods towards Developing a Markerless System. Sports Med.-Open 2018, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Benson, L.C.; Clermont, C.A.; Bošnjak, E.; Ferber, R. The use of wearable devices for walking and running gait analysis out-side of the lab: A systematic review. Gait Posture 2018, 63, 124–138. [Google Scholar] [CrossRef]
- Kuo, A.D.; Donelan, J.M. Dynamic Principles of Gait and Their Clinical Implications. Phys. Ther. 2010, 90, 157–174. [Google Scholar] [CrossRef] [Green Version]
- Hooper, G.J.; Rothwell, A.G.; Stringer, M.; Frampton, C. Revision following cemented and uncemented primary total hip re-placement: A seven-1 analysis from the New Zealand Joint Registry. J. Bone Jt. Surg. Br. Vol. 2009, 91, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Mullins, M.M.; Norbury, W.; Dowell, J.K.; Heywood-Waddington, M. Thirty-Year Results of a Prospective Study of Charnley Total Hip Arthroplasty by the Posterior Approach. J. Arthroplast. 2007, 22, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Maloney, W.J.; Jasty, M.; Harris, W.H.; Galante, J.O.; Callaghan, J.J. Endosteal erosion in association with stable uncemented femoral components. J. Bone Jt. Surg.-Am. Vol. 1990, 72, 1025–1034. [Google Scholar] [CrossRef]
- Maloney, W.J.; Jasty, M.; Rosenberg, A.; Harris, W.H. Bone lysis in well-fixed cemented femoral components. J. Bone Jt. Surg. Br. Vol. 1990, 72, 966–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bizot, P.; Banallec, L.; Sedel, L.; Nizard, R. Alumina-on-Alumina Total Hip Prostheses in Patients 40 Years of Age or Younger. Clin. Orthop. Relat. Res. 2000, 379, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M. The UHMWPE Handbook; Elsevier Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Australian Orthopedic Association. National Joint Registry 2017. Available online: https://aoanjrr.sahmri.com/annual-reports-2017 (accessed on 15 March 2021).
- Papagiannis, G.I.; Triantafyllou, A.I.; Roumpelakis, I.M.; Zampeli, F.; Eleni, P.G.; Koulouvaris, P.; Papadopoulos, E.C.; Papagelopoulos, P.J.; Babis, G.C. Methodology of surface electromyography in gait analysis: Review of the literature. J. Med. Eng. Technol. 2019, 43, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Papagiannis, G.I.; Triantafyllou, A.I.; Konstantina, Y.G.; Koulouvaris, P.; Anastasiou, A.; Papadopoulos, E.C.; Papagelopoulos, P.J.; Babis, G.C. Biomechanical Factors could Affect Lumbar Disc Reherniation after Microdiscectomy. J. Orthop. Sports Med. 2019, 1, 46–50. [Google Scholar] [CrossRef]
- Papagiannis, G.I.; Roumpelakis, I.M.; Triantafyllou, A.I.; Makris, I.N.; Babis, G.C. Response to Letter to the Editor on “No Differences Identified in Transverse Plane Biomechanics between Medial Pivot and Rotating Platform Total Knee Implant Designs”. J. Arthroplast. 2016, 31, 2373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triantafyllou, A.; Papagiannis, G.; Nikolaou, V.S.; Papagelopoulos, P.J.; Babis, G.C. Similar Biomechanical Behavior in Gait Analysis between Ceramic-on-Ceramic and Ceramic-on-XLPE Total Hip Arthroplasties. Life 2021, 11, 1366. https://doi.org/10.3390/life11121366
Triantafyllou A, Papagiannis G, Nikolaou VS, Papagelopoulos PJ, Babis GC. Similar Biomechanical Behavior in Gait Analysis between Ceramic-on-Ceramic and Ceramic-on-XLPE Total Hip Arthroplasties. Life. 2021; 11(12):1366. https://doi.org/10.3390/life11121366
Chicago/Turabian StyleTriantafyllou, Athanasios, Georgios Papagiannis, Vasileios S. Nikolaou, Panayiotis J. Papagelopoulos, and George C. Babis. 2021. "Similar Biomechanical Behavior in Gait Analysis between Ceramic-on-Ceramic and Ceramic-on-XLPE Total Hip Arthroplasties" Life 11, no. 12: 1366. https://doi.org/10.3390/life11121366
APA StyleTriantafyllou, A., Papagiannis, G., Nikolaou, V. S., Papagelopoulos, P. J., & Babis, G. C. (2021). Similar Biomechanical Behavior in Gait Analysis between Ceramic-on-Ceramic and Ceramic-on-XLPE Total Hip Arthroplasties. Life, 11(12), 1366. https://doi.org/10.3390/life11121366