Metabolic Phenotypes and Chronic Kidney Disease: A Cross-Sectional Assessment of Patients from a Large Federally Qualified Health Center
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Definition of Metabolic Risk Factors
2.3. Definition of Metabolic Phenotypes
2.4. Renal Outcome Measures
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Metabolic Phenotypes and CKD
4.2. Prevalence of Metabolic Phenotypes
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Chronic Kidney Disease Surveillance System—United States. Available online: http://www.cdc.gov/ckd (accessed on 5 October 2020).
- Centers for Disease Control and Prevention. Chronic Kidney Disease in the United States, 2019; US Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019.
- Hales, C.; Carroll, M.; Fryar, C.; Ogden, C. Prevalence of Obesity among Adults and Youth: United States, 2017–2018; National Center for Health Statistics: Hyattsville, MD, USA, 2020.
- Hirode, G.; Wong, R.J. Trends in the Prevalence of Metabolic Syndrome in the United States, 2011–2016. JAMA 2020, 323, 2526–2528. [Google Scholar] [CrossRef] [PubMed]
- Kouvari, M.; Panagiotakos, D.B.; Yannakoulia, M.; Georgousopoulou, E.; Critselis, E.; Chrysohoou, C.; Tousoulis, D.; Pitsavos, C. ATTICA Study Investigators Transition From Metabolically Benign to Metabolically Unhealthy Obesity and 10-Year Cardiovascular Disease Incidence: The ATTICA Cohort Study. Metabolism 2019, 93, 18–24. [Google Scholar] [CrossRef]
- Adair, K.E.; Padgett, R.N.; von Waaden, N.; Wilson, R.L.; Bowden, R.G. Metabolic Health, Obesity, and Cardiovascular Disease: 2015–2016 National Health and Nutrition Examination Survey. Am. J. Med. Sci. 2020. Available online: http://www.sciencedirect.com/science/article/pii/S0002962920304158 (accessed on 8 October 2020). [CrossRef]
- Alizadeh, S.; Esmaeili, H.; Alizadeh, M.; Daneshzad, E.; Sharifi, L.; Radfar, H.; Radaei, M.K. Metabolic phenotypes of obese, overweight, and normal weight individuals and risk of chronic kidney disease: A systematic review and meta-analysis. Arch Endocrinol. Metab. 2019, 63, 427–437. [Google Scholar] [CrossRef]
- Lavie, C.J.; Laddu, D.; Arena, R.; Ortega, F.B.; Alpert, M.A.; Kushner, R.F. Healthy Weight and Obesity Prevention: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018, 72, 1506–1531. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604. [Google Scholar] [CrossRef]
- Jung, C.H.; Lee, M.J.; Kang, Y.M.; Hwang, J.Y.; Kim, E.H.; Park, J.-Y.; Kim, H.-K.; Lee, W.J. The risk of chronic kidney disease in a metabolically healthy obese population. Kidney Int. 2015, 88, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, Y.; Tanaka, M.; Okada, H.; Senmaru, T.; Hamaguchi, M.; Asano, M.; Yamazaki, M.; Oda, Y.; Hasegawa, G.; Toda, H.; et al. Metabolically Healthy Obesity and Risk of Incident CKD. CJASN 2015, 10, 578–583. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Peng, K.; Du, R.; Huang, X.; Lu, J.; Xu, Y.; Xu, M.; Chen, Y.; Bi, Y.; Wang, W. Metabolically healthy obesity and incident chronic kidney disease: The role of systemic inflammation in a prospective study. Obesity 2017, 25, 634–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, K.H.; Yun, H.-R.; Joo, Y.S.; Kim, J.; Lee, S.; Lee, C.; Park, K.S.; Park, J.T.; Chang, T.-I.; Kang, E.W.; et al. Changes in obese metabolic phenotypes over time and risk of incident chronic kidney disease. Diabetes Obes. Metab. 2018, 20, 2778–2791. [Google Scholar] [CrossRef]
- Echouffo-Tcheugui, J.B.; Short, M.I.; Xanthakis, V.; Field, P.; Sponholtz, T.R.; Larson, M.G.; Vasan, R.S. Natural History of Obesity Subphenotypes: Dynamic Changes Over Two Decades and Prognosis in the Framingham Heart Study. J. Clin. Endocrinol. Metab. 2019, 104, 738–752. [Google Scholar] [CrossRef]
- Mottaghi, A.; Mirmiran, P.; Delshad, H.; Azizi, F. Effect of Different Obesity Phenotypes on Incidence of Chronic Kidney Disease in Tehranian Adults. J. Am. Coll. Nutr. 2016, 35, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Zhou, J.; Yuan, H.; Wu, L.; Chen, Z. Chronic kidney disease among overweight and obesity with and without metabolic syndrome in an urban Chinese cohort. BMC Nephrol. 2015, 16, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribstein Jean; du Cailar Guilhem; Mimran Albert Combined Renal Effects of Overweight and Hypertension. Hypertension 1995, 26, 610–615. [CrossRef]
- Chagnac, A.; Weinstein, T.; Korzets, A.; Ramadan, E.; Hirsch, J.; Gafter, U. Glomerular hemodynamics in severe obesity. Am. J. Physiol. Ren. Physiol. 2000, 278, F817–F822. [Google Scholar] [CrossRef] [Green Version]
- Satirapoj, B.; Supasyndh, O.; Mayteedol, N.; Punpanich, D.; Chaiprasert, A.; Nata, N.; Ruangkanchanasetr, P.; Kanjanakul, I.; Choovichian, P. Obesity and its relation to chronic kidney disease: A population-based, cross-sectional study of a Thai army population and relatives. Nephrology 2013, 18, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Agnani, S.; Vachharajani, V.T.; Gupta, R.; Atray, N.K.; Vachharajani, T.J. Does treating obesity stabilize chronic kidney disease? BMC Nephrol. 2005, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishizaka, Y.; Ishizaka, N.; Tani, M.; Toda, A.; Toda, E.-I.; Koike, K.; Nagai, R.; Yamakado, M. Association between Changes in Obesity Parameters and Incidence of Chronic Kidney Disease in Japanese Individuals. KBR 2009, 32, 141–149. [Google Scholar] [CrossRef]
- Bavbek, N.; Isik, B.; Kargili, A.; Uz, E.; Uz, B.; Kanbay, M.; Turgut, F.; Karakurt, F.; Akcay, A. Association of obesity with inflammation in occult chronic kidney disease. J. Nephrol. 2008, 21, 761–767. [Google Scholar] [PubMed]
- Gelber, R.P.; Kurth, T.; Kausz, A.T.; Manson, J.E.; Buring, J.E.; Levey, A.S.; Gaziano, J.M. Association Between Body Mass Index and CKD in Apparently Healthy Men. Am. J. Kidney Dis. 2005, 46, 871–880. [Google Scholar] [CrossRef]
- Bradshaw, P.T.; Monda, K.L.; Stevens, J. Metabolic syndrome in healthy obese, overweight, and normal weight individuals: The atherosclerosis risk in communities study. Obesity 2013, 21, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Aung, K.; Lorenzo, C.; Hinojosa, M.A.; Haffner, S.M. Risk of Developing Diabetes and Cardiovascular Disease in Metabolically Unhealthy Normal-Weight and Metabolically Healthy Obese Individuals. J. Clin. Endocrinol. Metab. 2014, 99, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Wildman, R.P.; Muntner, P.; Reynolds, K.; McGinn, A.P.; Rajpathak, S.; Wylie-Rosett, J.; Sowers, M.R. The Obese Without Cardiometabolic Risk Factor Clustering and the Normal Weight With Cardiometabolic Risk Factor Clustering: Prevalence and Correlates of 2 Phenotypes Among the US Population (NHANES 1999–2004). Arch Intern. Med. 2008, 168, 1617–1624. [Google Scholar] [CrossRef] [Green Version]
- Kramer, C.K.; Zinman, B.; Retnakaran, R. Are Metabolically Healthy Overweight and Obesity Benign Conditions? Ann. Intern. Med. 2013, 159, 758–769. [Google Scholar] [CrossRef]
- Pajunen, P.; Kotronen, A.; Korpi-Hyövälti, E.; Keinänen-Kiukaanniemi, S.; Oksa, H.; Niskanen, L.; Saaristo, T.; Saltevo, J.T.; Sundvall, J.; Vanhala, M.; et al. Metabolically healthy and unhealthy obesity phenotypes in the general population: The FIN-D2D Survey. BMC Public Health 2011, 11, 754. [Google Scholar] [CrossRef] [PubMed]
- Eckel, N.; Mühlenbruch, K.; Meidtner, K.; Boeing, H.; Stefan, N.; Schulze, M.B. Characterization of metabolically unhealthy normal-weight individuals: Risk factors and their associations with type 2 diabetes. Metabolism 2015, 64, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Sahakyan, K.R.; Somers, V.K.; Rodriguez-Escudero, J.P.; Hodge, D.O.; Carter, R.E.; Sochor, O.; Coutinho, T.; Jensen, M.D.; Roger, V.L.; Singh, P.; et al. Normal-Weight Central Obesity: Implications for Total and Cardiovascular Mortality. Ann. Intern. Med. 2015, 163, 827–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Criteria | Cut-Off Values for Each Criterion |
---|---|---|
Metabolic Risk Factors | Obesity | BMI ≥ 30 kg/m2 |
Hyperglycemia | “Diabetes” tag in FQHC Registry | |
Dyslipidemia | TG ≥ 150 mg/dL | |
Dyslipidemia (2nd criteria) | HDL-C: <40 mg/dL (M), <50 mg/dL (F) | |
Hypertension | SBP > 130 mmHg or DBP > 85 mmHg or Registry | |
Metabolic Phenotypes | MHN | BMI < 30 and 0 metabolic risk factors |
MHO | BMI ≥ 30 and 0 metabolic risk factors | |
MUN | BMI < 30 and ≥1 metabolic risk factors | |
MUO | BMI ≥ 30 and ≥1 metabolic risk factors | |
CKD | Normal or high (G1) | ≥90 mL/min/1.73 m2 |
Mildly decreased (G2) | 60–89 mL/min/1.73 m2 | |
Mildly to moderately decreased (G3a) | 45–59 mL/min/1.73 m2 | |
Moderately to severely decreased (G3b) | 30–44 mL/min/1.73 m2 | |
Severely decreased (G4) | 15–29 mL/min/1.73 m2 | |
Kidney failure (G5) | <15 mL/min/1.73 m2 |
Total | MHN | MHO | MUN | MUO | p-Value | |
---|---|---|---|---|---|---|
(n = 9599) | 379 (3.95%) | 236 (2.46%) | 3437 (35.81%) | 5547 (57.79%) | ||
Age (years) | 53.53 (14.32) | 44.89 (14.41) | 41.54 (13.56) | 57.43 (14.29) | 52.22 (13.56) | <0.001 |
BMI (kg/m2) | 33.06 (8.46) | 24.69 (3.42) | 36.05 (6.07) | 25.81 (3.07) | 37.99 (7.33) | <0.001 |
Sex n, (%) | ||||||
Male | 3491 (36.37) | 123 (32.45) | 51 (21.61) | 1468 (42.71) | 1849 (33.33) | <0.001 |
Female | 6108 (63.63) | 256 (67.55) | 185 (78.39) | 1969 (57.29) | 3698 (66.67) | |
Race n, (%) | ||||||
Caucasian | 2953 (30.76) | 134 (35.36) | 64 (27.12) | 1087 (31.63) | 1668 (30.07) | 0.053 |
Hispanic or Mexican American | 4041 (42.20) | 164 (43.39) | 117 (49.79) | 1447 (42.20) | 2313 (41.80) | 0.106 |
African American | 2427 (25.28) | 72 (19.00) | 48 (20.34) | 811 (23.60) | 1496 (26.97) | <0.001 |
Asian American | 90 (0.94) | 4 (1.06) | 0 | 63 (1.83) | 23 (0.41) | <0.001 |
Other/Multi-Racial | 13 (0.14) | 1 (0.26) | 0 | 5 (0.15) | 7 (0.13) | 0.839 |
Smoking n, (%) | ||||||
Never | 5173 (53.89) | 207 (54.62) | 155 (65.68) | 1670 (48.59) | 3141 (56.63) | <0.001 |
Quit | 2298 (23.94) | 73 (19.26) | 49 (20.76) | 819 (23.83) | 1357 (24.46) | |
Current | 2128 (22.17) | 99 (26.12) | 32 (13.56) | 948 (27.58) | 1049 (18.91) | |
Diabetes | 4093 (42.64) | 0 | 0 | 1364 (39.69) | 2729 (49.20) | <0.001 |
HbA1C | 7.05 (4.37) | 6.23 (8.74) | 5.45 (0.60) | 7.10 (4.27) | 7.12 (4.19) | <0.001 |
CAD | 878 (9.15) | 12 (3.17) | 3 (1.27) | 362 (10.53) | 501 (9.03) | <0.001 |
CHF | 353 (3.68) | 2 (0.53) | 1 (0.42) | 120 (3.49) | 230 (4.15) | <0.001 |
Blood Pressure (SBP/DBP) | 131/79 | 114/73 | 117/75 | 132/77 | 133/80 | <0.001 |
Total Cholesterol | 180.95 (42.79) | 185.88 (34.80) | 186.87 (32.25) | 181.28 (45.34) | 180.15 (42.01) | 0.0085 |
LDL, per 1 mg/dL | 100.76 (35.98) | 106.12 (31.18) | 108.78 (29.51) | 99.88 (36.96) | 100.58 (35.86) | <0.001 |
HDL | 46.83 (14.24) | 61.93 (13.72) | 58.16 (10.89) | 48.88 (15.73) | 44.05 (12.17) | <0.001 |
Triglycerides | 173.03 (131.38) | 89.12 (30.27) | 99.69 (29.96) | 168.34 (131.38) | 184.79 (134.96) | <0.001 |
SCr | 0.88 (0.63) | 0.77 (0.21) | 0.73 (0.18) | 0.93 (0.76) | 0.87 (0.56) | <0.001 |
eGFR, mL/min/1.73 m2 | 93.69 (32.18) | 101.54 (26.37) | 104.86 (28.76) | 91.34 (33.28) | 94.14 (31.79) | <0.001 |
CKD n, (%) | 1166 (12.15) | 17 (4.49) | 5 (2.12) | 501 (14.58) | 643 (11.59) | <0.001 |
CVD Risk | 15.70 (13.90) | 4.84 (4.49) | 3.69 (3.40) | 17.41 (14.56) | 15.90 (13.63) | <0.001 |
Model 1 a | Model 2 b | Model 3 c | Model 4 d | |
---|---|---|---|---|
Coefficient | B (SE) | B (SE) | B (SE) | B (SE) |
MHN (Reference) | 101.54 † (1.65) | 93.38 † (1.49) | 93.40 † (1.55) | 95.58 † (1.59) |
MHO | 3.23 (2.66) | −0.14 (2.40) | −0.13 (2.40) | −0.42 (2.39) |
MUN | −10.20 † (1.74) | 2.42 (1.58) | 2.42 (1.59) | 2.44 (1.58) |
MUO | −7.40 † (1.70) | −0.02 (1.54) | −0.02 (1.54) | −0.17 (1.54) |
Age | −1.01 † (0.02) | −1.01 † (0.02) | −0.99 † (0.02) | |
Female Sex | −0.06 (0.62) | −0.72 (0.62) | ||
Former Smoker | −3.65 † (0.74) | |||
Current Smoker | −3.56 † (0.75) | |||
R2 | 0.007 | 0.195 | 0.195 | 0.198 |
F value, Pr > F | 23.50, <0.0001 | 582.55, <0.0001 | 465.99, <0.0001 | 339.13, <0.0001 |
Sample (n) | 9599 | 9599 | 9599 | 9599 |
Model 1 a | Model 2 b | Model 3 c | Model 4 d | |
---|---|---|---|---|
Coefficient | OR (95% Wald CL) | OR (95% Wald CL) | OR (95% Wald CL) | OR (95% Wald CL) |
MHN (Reference) | 1.00 † | 1.00 † | 1.00 † | 1.00 † |
MHO | 0.461 (0.168, 1.267) | 0.584 (0.207, 1.644) | 0.561 (0.199, 1.577) | 0.558 (0.199, 1.568) |
MUN | 3.634 † (2.214, 5.964) | 1.573 (0.940, 2.631) | 1.603 (0.958, 2.682) | 1.612 (0.963, 2.698) |
MUO | 2.792 † (1.705, 4.573) | 1.827 * (1.098, 3.042) | 1.807 * (1.086, 3.008) | 1.798 * (1.079, 2.996) |
Age | 1.082 † (1.076, 1.089) | 1.082 † (1.076, 1.088) | 1.081 † (1.075, 1.087) | |
Female Sex | 1.390 † (1.209, 1.598) | 1.439 † (1.248, 1.659) | ||
Former Smoker | 1.289 * (1.107, 1.501) | |||
Current Smoker | 1.018 (0.853, 1.216) | |||
AIC | 7102.296 | 7102.296 | 7102.296 | 7102.296 |
LR Chi-Sq | 78.7828 | 973.5845 | 995.4835 | 1006.8432 |
Sample (n) | 9599 | 9599 | 9599 | 9599 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adair, K.E.; von Waaden, N.; Rafalski, M.; Hess, B.W.; Weaver, S.P.; Bowden, R.G. Metabolic Phenotypes and Chronic Kidney Disease: A Cross-Sectional Assessment of Patients from a Large Federally Qualified Health Center. Life 2021, 11, 175. https://doi.org/10.3390/life11020175
Adair KE, von Waaden N, Rafalski M, Hess BW, Weaver SP, Bowden RG. Metabolic Phenotypes and Chronic Kidney Disease: A Cross-Sectional Assessment of Patients from a Large Federally Qualified Health Center. Life. 2021; 11(2):175. https://doi.org/10.3390/life11020175
Chicago/Turabian StyleAdair, Kathleen E., Nicholas von Waaden, Matthew Rafalski, Burritt W. Hess, Sally P. Weaver, and Rodney G. Bowden. 2021. "Metabolic Phenotypes and Chronic Kidney Disease: A Cross-Sectional Assessment of Patients from a Large Federally Qualified Health Center" Life 11, no. 2: 175. https://doi.org/10.3390/life11020175
APA StyleAdair, K. E., von Waaden, N., Rafalski, M., Hess, B. W., Weaver, S. P., & Bowden, R. G. (2021). Metabolic Phenotypes and Chronic Kidney Disease: A Cross-Sectional Assessment of Patients from a Large Federally Qualified Health Center. Life, 11(2), 175. https://doi.org/10.3390/life11020175