Optimization of Chitosan Glutaraldehyde-Crosslinked Beads for Reactive Blue 4 Anionic Dye Removal Using a Surface Response Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Preparation of GA-Crosslinked CS Beads
2.3. Swelling Test of Crosslinked Beads
2.4. Calibration Curve of RB4 Dye
2.5. Adsorption Study of RB4 Dye
2.6. Characterization of GA-Crosslinked CS Beads
2.7. Kinetic Experiment
2.8. Isothermal Experiment
3. Results
3.1. Optimization for the Preparation of Cross-Linked CS Beads
3.2. Preparation of the GA-Crosslinked CS Beads
3.3. Optimization for the Adsorption of the RB4 Dye in an Aqueous Solution
3.4. Characterization of the GA-Crosslinked CS Beads
3.5. Kinetic Model Analysis
3.6. Adsorption Mechanism of RB4 Dye
3.7. Isothermal Adsorption Equilibrium
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alver, E.; Metin, A.Ü. Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chem. Eng. J. 2012, 200, 59–67. [Google Scholar] [CrossRef]
- Mezohegyi, G.; van der Zee, F.P.; Font, J.; Fortuny, A.; Fabregat, A. Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. J. Environ. Manag. 2012, 102, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Greluk, M.; Hubicki, Z. Efficient removal of Acid Orange 7 dye from water using the strongly basic anion exchange resin Amberlite IRA-958. Desalination 2011, 278, 219–226. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mishra, R.; Saha, P.; Kushwaha, P. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 2011, 265, 159–168. [Google Scholar] [CrossRef]
- Allen, S.J.; Mckay, G.; Porter, J.F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interface Sci. 2004, 280, 322–333. [Google Scholar] [CrossRef]
- Wakankar, D.M. Regulations relating to the use of textile dyes and chemicals. In Advances in the Dyeing and Finishing of Technical Textiles; Elsevier: Amsterdam, The Netherlands, 2013; pp. 105–132. [Google Scholar]
- Pierce, J. Colour in textile effluents-the origins of the problem. J. Soc. Dye. Colour. 1994, 110, 131–133. [Google Scholar] [CrossRef]
- Sakkayawong, N.; Thiravetyan, P.; Nakbanpote, W. Adsorption mechanism of synthetic reactive dye wastewater by chitosan. J. Colloid Interface Sci. 2005, 286, 36–42. [Google Scholar] [CrossRef]
- Ngah, W.S.W.; Liew, L.A.I. Chitosan and chemically modified chitosan beads for acid dyes sorption. J. Environ. Sci. 2009, 21, 296–302. [Google Scholar]
- Santos, P.B.; Santos, J.J.; Corrêa, C.C.; Corio, P.; Andrade, G.F.S. Plasmonic photodegradation of textile dye Reactive Black 5 under visible light: A vibrational and electronic study. J. Photochem. Photobiol. A Chem. 2019, 371, 159–165. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J. Environ. Manage. 2010, 91, 798–806. [Google Scholar] [CrossRef]
- Crini, G.; Badot, P.-M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 2008, 33, 399–447. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A.; Boudrant, J.; Meyer, D.; Manno, N.; DeMarchis, M.; Paoletti, M.G. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr. Polym. 2012, 87, 995–1012. [Google Scholar] [CrossRef]
- Luk, C.J.; Yip, J.; Yuen, C.M.; Kan, C.; Lam, K. A comprehensive study on adsorption behaviour of direct, reactive and acid dyes on crosslinked and non-crosslinked chitosan beads. J. Fiber Bioeng. Inform. 2014, 7, 35–52. [Google Scholar]
- Miretzky, P.; Cirelli, A.F. Hg (II) removal from water by chitosan and chitosan derivatives: A review. J. Hazard. Mater. 2009, 167, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Filipkowska, U. Effectiveness of dye adsorption onto non-cross-linked and cross-linked chitosan beads. Prog. Chem. Appl. Chitin Deriv. 2012, 17, 43–52. [Google Scholar]
- Ngah, W.S.W.; Fatinathan, S. Chitosan flakes and chitosan–GLA beads for adsorption of p-nitrophenol in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2006, 277, 214–222. [Google Scholar] [CrossRef]
- Chae, S.Y.; Jang, M.-K.; Nah, J.-W. Influence of molecular weight on oral absorption of water soluble chitosans. J. Control. Release 2005, 102, 383–394. [Google Scholar] [CrossRef]
- Bof, M.J.; Bordagaray, V.C.; Locaso, D.E.; García, M.A. Chitosan molecular weight effect on starch-composite film properties. Food Hydrocoll. 2015, 51, 281–294. [Google Scholar] [CrossRef]
- Statgraphics Centurion XVI. Statpoint Technologies. 2009. Available online: https://www.statgraphics.com (accessed on 15 December 2020).
- Montgomery, C.D. Montgomery Design and Analysis of Experiments; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1997; ISBN 0471316490. [Google Scholar]
- Vakili, M.; Rafatullah, M.; Ibrahim, M.H.; Abdullah, A.Z.; Salamatinia, B.; Gholami, Z. Chitosan hydrogel beads impregnated with hexadecylamine for improved reactive blue 4 adsorption. Carbohydr. Polym. 2016, 137, 139–146. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Banu, H.A.T.; Meenakshi, S. Synthesis and characterization of metal loaded chitosan-alginate biopolymeric hybrid beads for the efficient removal of phosphate and nitrate ions from aqueous solution. Int. J. Biol. Macromol. 2019, 130, 407–418. [Google Scholar] [CrossRef]
- Nara, S.; Komiya, T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch-Stärke 1983, 35, 407–410. [Google Scholar] [CrossRef]
- Mohammad, A.-T.; Abdulhameed, A.S.; Jawad, A.H. Box-Behnken design to optimize the synthesis of new crosslinked chitosan-glyoxal/TiO2 nanocomposite: Methyl orange adsorption and mechanism studies. Int. J. Biol. Macromol. 2019, 129, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Sohbatzadeh, H.; Keshtkar, A.R.; Safdari, J.; Fatemi, F. U (VI) biosorption by bi-functionalized Pseudomonas putida@ chitosan bead: Modeling and optimization using RSM. Int. J. Biol. Macromol. 2016, 89, 647–658. [Google Scholar] [CrossRef]
- Gutiérrez Pulido, H.; de la Vara Salazar, R. Análisis y Diseño de Experimentos; McGraw Hill: New York, NY, USA, 2004. [Google Scholar]
- Jóźwiak, T.; Filipkowska, U. Sorption kinetics and isotherm studies of a Reactive Black 5 dye on chitosan hydrogel beads modified with various ionic and covalent cross-linking agents. J. Environ. Chem. Eng. 2020, 8, 103564. [Google Scholar] [CrossRef]
- Tasselli, F.; Mirmohseni, A.; Dorraji, M.S.S.; Figoli, A. Mechanical, swelling and adsorptive properties of dry–wet spun chitosan hollow fibers crosslinked with glutaraldehyde. React. Funct. Polym. 2013, 73, 218–223. [Google Scholar] [CrossRef]
- Zhao, F.; Yu, B.; Yue, Z.; Wang, T.; Wen, X.; Liu, Z.; Zhao, C. Preparation of porous chitosan gel beads for copper (II) ion adsorption. J. Hazard. Mater. 2007, 147, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Kildeeva, N.R.; Perminov, P.A.; Vladimirov, L.V.; Novikov, V.V.; Mikhailov, S.N. About mechanism of chitosan cross-linking with glutaraldehyde. Russ. J. Bioorganic Chem. 2009, 35, 360–369. [Google Scholar] [CrossRef]
- Bui, T.H.; Lee, W.; Jeon, S.; Kim, K.-W.; Lee, Y. Enhanced Gold (III) Adsorption Using Glutaraldehyde-Crosslinked Chitosan Beads: Effect of Crosslinking Degree on Adsorption Selectivity, Capacity, and Mechanism. Sep. Purif. Technol. 2020, 116989. [Google Scholar] [CrossRef]
- Poon, L.; Wilson, L.D.; Headley, J.V. Chitosan-glutaraldehyde copolymers and their sorption properties. Carbohydr. Polym. 2014, 109, 92–101. [Google Scholar] [CrossRef]
- Nematidil, N.; Sadeghi, M.; Nezami, S.; Sadeghi, H. Synthesis and characterization of Schiff-base based chitosan-g-glutaraldehyde/NaMMTNPs-APTES for removal Pb2+ and Hg2+ ions. Carbohydr. Polym. 2019, 222, 114971. [Google Scholar] [CrossRef]
- Vakili, M.; Rafatullah, M.; Salamatinia, B.; Ibrahim, M.H.; Abdullah, A.Z. Elimination of reactive blue 4 from aqueous solutions using 3-aminopropyl triethoxysilane modified chitosan beads. Carbohydr. Polym. 2015, 132, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Sohni, S.; Hashim, R.; Nidaullah, H.; Lamaming, J.; Sulaiman, O. Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions. Int. J. Biol. Macromol. 2019, 132, 1304–1317. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Liu, Q.; Huo, J.; Yang, B. Adsorption of methyl orange onto protonated cross-linked chitosan. Arab. J. Chem. 2017, 10, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Pakdel, P.M.; Peighambardoust, S.J. Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr. Polym. 2018, 201, 264–279. [Google Scholar] [CrossRef]
- Correia, V.M.; Stephenson, T.; Judd, S.J. Characterisation of textile wastewaters-a review. Environ. Technol. 1994, 15, 917–929. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, Y.; Liu, L.; Wang, S.; Tian, X. Adsorption of CI Reactive Blue 19 from aqueous solutions by porous particles of the grafted chitosan. Chem. Eng. J. 2014, 235, 151–157. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 2009, 150, 366–373. [Google Scholar] [CrossRef]
- Chang, M.-Y.; Juang, R.-S. Equilibrium and kinetic studies on the adsorption of surfactant, organic acids and dyes from water onto natural biopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2005, 269, 35–46. [Google Scholar] [CrossRef]
- Jaafari, J.; Barzanouni, H.; Mazloomi, S.; Farahani, N.A.A.; Sharafi, K.; Soleimani, P.; Haghighat, G.A. Effective adsorptive removal of reactive dyes by magnetic chitosan nanoparticles: Kinetic, isothermal studies and response surface methodology. Int. J. Biol. Macromol. 2020, 164, 344–355. [Google Scholar] [CrossRef]
- Salem, M.A.; Elsharkawy, R.G.; Ayad, M.I.; Elgendy, M.Y. Silver nanoparticles deposition on silica, magnetite, and alumina surfaces for effective removal of Allura red from aqueous solutions. J. Sol-Gel Sci. Technol. 2019, 91, 523–538. [Google Scholar] [CrossRef]
- Kamari, A.; Ngah, W.S.W.; Chong, M.Y.; Cheah, M.L. Sorption of acid dyes onto GLA and H2SO4 cross-linked chitosan beads. Desalination 2009, 249, 1180–1189. [Google Scholar] [CrossRef]
- Jawad, A.H.; Mubarak, N.S.A.; Abdulhameed, A.S. Tunable Schiff‘s base-cross-linked chitosan composite for the removal of reactive red 120 dye: Adsorption and mechanism study. Int. J. Biol. Macromol. 2020, 142, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Hansraj, G.P.; Singh, S.K.; Kumar, P. Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential. Int. J. Biol. Macromol. 2015, 81, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Omidi, S.; Kakanejadifard, A. Eco-friendly synthesis of graphene–chitosan composite hydrogel as efficient adsorbent for Congo red. RSC Adv. 2018, 8, 12179–12189. [Google Scholar] [CrossRef] [Green Version]
- Abdelkrim, S.; Mokhtar, A.; Djelad, A.; Bennabi, F.; Souna, A.; Bengueddach, A.; Sassi, M. Chitosan/Ag-bentonite nanocomposites: Preparation, characterization, swelling and biological properties. J. Inorg. Organomet. Polym. Mater. 2020, 30, 831–840. [Google Scholar] [CrossRef]
- Cestari, A.R.; Vieira, E.F.S.; Dos Santos, A.G.P.; Mota, J.A.; de Almeida, V.P. Adsorption of anionic dyes on chitosan beads. 1. The influence of the chemical structures of dyes and temperature on the adsorption kinetics. J. Colloid Interface Sci. 2004, 280, 380–386. [Google Scholar] [CrossRef]
- Garnica-Palafox, I.M.; Sánchez-Arévalo, F.M. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels. Carbohydr. Polym. 2016, 151, 1073–1081. [Google Scholar] [CrossRef]
- Saita, K.; Nagaoka, S.; Shirosaki, T.; Horikawa, M.; Matsuda, S.; Ihara, H. Preparation and characterization of dispersible chitosan particles with borate crosslinking and their antimicrobial and antifungal activity. Carbohydr. Res. 2012, 349, 52–58. [Google Scholar] [CrossRef]
- Li, B.; Shan, C.-L.; Zhou, Q.; Fang, Y.; Wang, Y.-L.; Xu, F.; Han, L.-R.; Ibrahim, M.; Guo, L.-B.; Xie, G.-L. Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar. Drugs 2013, 11, 1534–1552. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, O.A.C., Jr.; Airoldi, C. Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. Int. J. Biol. Macromol. 1999, 26, 119–128. [Google Scholar] [CrossRef]
- Tu, N.; Shou, J.; Dong, H.; Huang, J.; Li, Y. Improved catalytic performance of lipase supported on clay/chitosan composite beads. Catalysts 2017, 7, 302. [Google Scholar] [CrossRef] [Green Version]
- Dotto, G.L.; Pinto, L.A.A. Adsorption of food dyes onto chitosan: Optimization process and kinetic. Carbohydr. Polym. 2011, 84, 231–238. [Google Scholar] [CrossRef]
- Dotto, G.L.; Pinto, L.A.A. Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: Stirring rate effect in kinetics and mechanism. J. Hazard. Mater. 2011, 187, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Kyzas, G.Z.; Kostoglou, M.; Lazaridis, N.K. Relating interactions of dye molecules with chitosan to adsorption kinetic data. Langmuir 2010, 26, 9617–9626. [Google Scholar] [CrossRef]
- Abdulhameed, A.S.; Mohammad, A.-T.; Jawad, A.H. Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. J. Clean. Prod. 2019, 232, 43–56. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chatterjee, S.; Chatterjee, B.P.; Guha, A.K. Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics. Colloids Surf. A Physicochem. Eng. Asp. 2007, 299, 146–152. [Google Scholar] [CrossRef]
- Jawad, A.H.; Mubarak, N.S.A.; Abdulhameed, A.S. Hybrid Crosslinked Chitosan-Epichlorohydrin/TiO2 Nanocomposite for Reactive Red 120 Dye Adsorption: Kinetic, Isotherm, Thermodynamic, and Mechanism Study. J. Polym. Environ. 2020, 28, 624–637. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S.; Abd Malek, N.N.; ALOthman, Z.A. Statistical optimization and modeling for color removal and COD reduction of reactive blue 19 dye by mesoporous chitosan-epichlorohydrin/kaolin clay composite. Int. J. Biol. Macromol. 2020, 164, 4218–4230. [Google Scholar] [CrossRef]
- Saha, T.K.; Bhoumik, N.C.; Karmaker, S.; Ahmed, M.G.; Ichikawa, H.; Fukumori, Y. Adsorption characteristics of reactive black 5 from aqueous solution onto chitosan. CLEAN Soil Air Water 2011, 39, 984–993. [Google Scholar] [CrossRef]
- Zeldowitsch, J. Adsorption site energy distribution. Acta Physicochim. URSS 1934, 1, 961–973. [Google Scholar]
- Pérez-Calderón, J.; Santos, M.V.; Zaritzky, N. Reactive RED 195 dye removal using chitosan coacervated particles as bio-sorbent: Analysis of kinetics, equilibrium and adsorption mechanisms. J. Environ. Chem. Eng. 2018, 6, 6749–6760. [Google Scholar] [CrossRef] [Green Version]
- Mckay, G.; Blair, H.S.; Gardner, J.R. Adsorption of dyes on chitin. I. Equilibrium studies. J. Appl. Polym. Sci. 1982, 27, 3043–3057. [Google Scholar] [CrossRef]
- Karaer, H.; Kaya, I. Synthesis, characterization of magnetic chitosan/active charcoal composite and using at the adsorption of methylene blue and reactive blue4. Microporous Mesoporous Mater. 2016, 232, 26–38. [Google Scholar] [CrossRef]
- Sirajudheen, P.; Karthikeyan, P.; Ramkumar, K.; Nisheetha, P.; Meenakshi, S. Magnetic carbon-biomass from the seeds of Moringa oleifera@ MnFe2O4 composite as an effective and recyclable adsorbent for the removal of organic pollutants from water. J. Mol. Liq. 2020, 114829. [Google Scholar] [CrossRef]
- Zhai, Y.; Qu, H.; Li, Z.; Zhang, B.; Cheng, J.; Zhang, J. Rapid and Efficient Adsorption Removal of Reactive Blue 4 from Aqueous Solution by Cross-Linked Microcrystalline Cellulose–Epichlorohydrin Polymers: Isothermal, Kinetic, and Thermodynamic Study. Trans. Tianjin Univ. 2020. [Google Scholar] [CrossRef]
- Nascimento, M.A.; Cruz, J.C.; Rodrigues, G.D.; de Oliveira, A.F.; Lopes, R.P. Synthesis of polymetallic nanoparticles from spent lithium-ion batteries and application in the removal of reactive blue 4 dye. J. Clean. Prod. 2018, 202, 264–272. [Google Scholar] [CrossRef]
- Pal, S.; Patra, A.S.; Ghorai, S.; Sarkar, A.K.; Mahato, V.; Sarkar, S.; Singh, R.P. Efficient and rapid adsorption characteristics of templating modified guar gum and silica nanocomposite toward removal of toxic reactive blue and Congo red dyes. Bioresour. Technol. 2015, 191, 291–299. [Google Scholar] [CrossRef]
- Aguayo-Villarreal, I.A.; Ramírez-Montoya, L.A.; Hernández-Montoya, V.; Bonilla-Petriciolet, A.; Montes-Morán, M.A.; Ramírez-López, E.M. Sorption mechanism of anionic dyes on pecan nut shells (Carya illinoinensis) using batch and continuous systems. Ind. Crops Prod. 2013, 48, 89–97. [Google Scholar] [CrossRef]
- Hong, G.-B.; Wang, Y.-K. Synthesis of low-cost adsorbent from rice bran for the removal of reactive dye based on the response surface methodology. Appl. Surf. Sci. 2017, 423, 800–809. [Google Scholar] [CrossRef]
- Vakili, M.; Rafatullah, M.; Ibrahim, M.H.; Abdullah, A.Z.; Gholami, Z.; Salamatinia, B. Enhancing reactive blue 4 adsorption through chemical modification of chitosan with hexadecylamine and 3-aminopropyl triethoxysilane. J. Water Process Eng. 2017, 15, 49–54. [Google Scholar] [CrossRef]
- Landin-Sandoval, V.J.; Mendoza-Castillo, D.I.; Seliem, M.K.; Mobarak, M.; Villanueva-Mejia, F.; Bonilla-Petriciolet, A.; Navarro-Santos, P.; Reynel-Ávila, H.E. Physicochemical analysis of multilayer adsorption mechanism of anionic dyes on lignocellulosic biomasses via statistical physics and density functional theory. J. Mol. Liq. 2020, 114511. [Google Scholar] [CrossRef]
- Bagchi, M.; Ray, L. Adsorption behavior of Reactive Blue 4, a tri-azine dye on dry cells of Rhizopus oryzae in a batch system. Chem. Speciat. Bioavailab. 2015, 27, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Sirajudheen, P.; Karthikeyan, P.; Vigneshwaran, S.; Meenakshi, S. Synthesis and characterization of La(III) supported carboxymethylcellulose-clay composite for toxic dyes removal: Evaluation of adsorption kinetics, isotherms and thermodynamics. Int. J. Biol. Macromol. 2020, 161, 1117–1126. [Google Scholar] [CrossRef]
- Ma, C.M.; Hong, G.B.; Wang, Y.K. Performance evaluation and optimization of dyes removal using Rice bran-based magnetic composite adsorbent. Materials 2020, 13, 2764. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.A.; da Cruz, J.C.; dos Reis, M.F.; Alpino, C.T.C.; Marcelo, C.R.; Rodrigues, G.D.; de Oliveira, A.F.; Lopes, R.P. Synthesis of materials produced from spent batteries with environmental application. Quim. Nova 2020, 43, 1017–1025. [Google Scholar] [CrossRef]
- Binupriya, A.R.; Sathishkumar, M.; Ku, C.S.; Yun, S.-I. Sequestration of Reactive Blue 4 by free and immobilized Bacillus subtilis cells and its extracellular polysaccharides. Colloids Surf. B Biointerfaces 2010, 76, 179–185. [Google Scholar] [CrossRef]
- Karmaker, S.; Nag, A.J.; Saha, T.K. Adsorption of Reactive Blue 4 Dye onto Chitosan 10B in Aqueous Solution: Kinetic Modeling and Isotherm Analysis. Russ. J. Phys. Chem. A 2020, 94, 2349–2359. [Google Scholar] [CrossRef]
- Rastgordani, M.; Zolgharnein, J. Simultaneous Determination and Optimization of Titan Yellow and Reactive Blue 4 Dyes Removal Using Chitosan@hydroxyapatite Nanocomposites. J. Polym. Environ. 2021. [Google Scholar] [CrossRef]
Factors | Response | ||||
---|---|---|---|---|---|
Run | CS (% w/v) | GA (% v/v) | NaOH (M) | Swelling Degree (%) | |
1 | 2.5 | 2.5 | 1.5 | 19.23 | 18.83 |
2 | 3.0 | 3.0 | 2.0 | 25.73 | 25.00 |
3 | 2.5 | 3.3 | 1.5 | 22.50 | 21.34 |
4 | 3.0 | 3.0 | 1.0 | 23.58 | 23.06 |
5 | 2.0 | 2.0 | 1.0 | 30.07 | 29.82 |
6 | 2.0 | 3.0 | 1.0 | 24.15 | 26.15 |
7 | 2.5 | 2.5 | 2.3 | 17.57 | 17.23 |
8 | 2.5 | 2.5 | 1.5 | 18.06 | 19.51 |
9 | 3.0 | 2.0 | 1.0 | 33.99 | 35.01 |
10 | 1.7 | 2.5 | 1.5 | 23.15 | 21.80 |
11 | 2.5 | 2.5 | 0.7 | 18.92 | 19.32 |
12 | 2.0 | 3.0 | 2.0 | 24.88 | 25.12 |
13 | 2.0 | 2.0 | 2.0 | 28.47 | 26.11 |
14 | 3.0 | 2.0 | 2.0 | 33.16 | 34.03 |
15 | 2.5 | 1.7 | 1.5 | 40.54 | 40.12 |
16 | 3.3 | 2.5 | 1.5 | 39.71 | 39.88 |
Factors | Sum of Squares | df a | Mean Square | F | Value-p b |
---|---|---|---|---|---|
A: (CS) | 215.986 | 1 | 215.986 | 30.47 | 0.0000 |
B: (GA) | 481.445 | 1 | 481.445 | 67.93 | 0.0000 |
C: (NaOH) | 2.88398 | 1 | 2.88398 | 0.410 | 0.5304 |
AA | 373.589 | 1 | 373.589 | 52.71 | 0.0000 |
AB | 38.7195 | 1 | 38.7195 | 5.460 | 0.0294 |
AC | 3.65766 | 1 | 3.65766 | 0.520 | 0.4804 |
BB | 373.001 | 1 | 373.001 | 52.63 | 0.0000 |
BC | 7.77016 | 1 | 7.77016 | 1.100 | 0.3070 |
CC | 0.07039 | 1 | 0.07039 | 0.010 | 0.9216 |
Blocks | 0.49252 | 1 | 0.49252 | 0.070 | 0.7946 |
Total error | 148.836 | 21 | 7.08744 | ||
Total (corrected) | 1608.0 | 31 | |||
R2 | 90.74 | ||||
Adj.-R2 | 86.34 | ||||
Adequate Precision | 14.11 |
Factors | Response | ||||
---|---|---|---|---|---|
Run | AD (g) | pH | [RB4] (mg/L) | Removal Efficiency (%) | |
1 | 2 | ||||
1 | 0.35 | 4.5 | 55 | 31.81 | 32.71 |
2 | 0.50 | 3.0 | 45 | 74.05 | 73.39 |
3 | 0.50 | 6.0 | 15 | 90.00 | 79.59 |
4 | 0.35 | 4.5 | 5,0 | 78.22 | 70.99 |
5 | 0.20 | 6.0 | 15 | 42.84 | 47.98 |
6 | 0.20 | 3.0 | 45 | 46.06 | 42.62 |
7 | 0.35 | 2.0 | 30 | 98.34 | 96.19 |
8 | 0.35 | 4.5 | 30 | 28.87 | 28.48 |
9 | 0.60 | 4.5 | 30 | 50.06 | 49.72 |
10 | 0.20 | 6.0 | 45 | 14.75 | 13.21 |
11 | 0.35 | 7.0 | 30 | 7.465 | 9.566 |
12 | 0.50 | 3.0 | 15 | 100.0 | 99.72 |
13 | 0.35 | 4.5 | 30 | 53.76 | 43.41 |
14 | 0.20 | 3.0 | 15 | 97.49 | 94.77 |
15 | 0.10 | 4.5 | 30 | 9.525 | 9.853 |
16 | 0.50 | 6.0 | 45 | 21.11 | 24.46 |
Factors | Sum of Squares | Df a | Mean Square | F | Value-p b |
---|---|---|---|---|---|
A: Adsorbent dose | 3247.78 | 1 | 3247.78 | 18.92 | 0.0003 |
B: pH | 12,860.1 | 1 | 12,860.1 | 74.93 | 0.0000 |
C: (RB4) | 8618.51 | 1 | 8618.51 | 50.22 | 0.0000 |
AA | 0.878497 | 1 | 0.878497 | 0.01 | 0.9436 |
AB | 56.9199 | 1 | 56.9199 | 0.33 | 0.5708 |
AC | 6.09537 | 1 | 6.09537 | 0.04 | 0.8523 |
BB | 1302.50 | 1 | 1302.50 | 7.59 | 0.0119 |
BC | 60.1373 | 1 | 60.1373 | 0.35 | 0.5602 |
CC | 1362.49 | 1 | 1362.49 | 7.94 | 0.0103 |
Blocks | 23.9524 | 1 | 23.9524 | 0.14 | |
Total error | 3604.16 | 21 | 171.627 | ||
Total | 30,923.8 | 31 | |||
R2 | 88.35 | ||||
Adj.-R2 | 82.80 | ||||
Adequate Precision | 14.03 |
Model | Parameters | Adj.-R2 | |
---|---|---|---|
PFO | qe (mg/g) | K1 (min−1) | 0.9287 |
1.08558 | 0.01522 | ||
PSO | qe (mg/g) | K2 (g∗(mg∗min)−1) | 0.9720 |
1.23559 | 0.01646 | ||
Intraparticle diffusion | Ki (mg/g∗min−0.5) | C (mg/g) | 0.9484 |
0.04812 | 0.19723 | ||
Elovich | α (mg/g∗min) | β (mg/g) | 0.9893 |
0.07708 | 4.42261 |
Model | Parameters | Adj.-R2 | |
---|---|---|---|
Langmuir | qm (mg/g) | KL (L/mg) | 0.7736 |
1.756 | 0.747 | ||
Freundlich | n | KF [(mg/g)(mg∗L−1/n] | 0.9708 |
5.121 | 0.933 | ||
Temkin | Kt (L/mg) | bt | 0.8597 |
223.668 | 12,827.383 |
Adsorbent | Kinetic | Isotherm | Ref. |
---|---|---|---|
CS/activated charcoal | Pseudo-second order | Langmuir | [67] |
Seeds of Moringa oleifera@MnFe2O4 | Pseudo-second order | Freundlich | [68] |
Microcrystalline cellulose–epichlorohydrin | Pseudo-second order | Langmuir | [69] |
Polymetallic nanoparticles | Pseudo-second order | Langmuir | [70] |
guar gum and silica nanocomposite | Pseudo-second order and intraparticle diffusion | Langmuir | [71] |
Pecan nutshells | Pseudo-second order | Langmuir | [72] |
Rice bran/Fe3O4 | Pseudo-second order | Langmuir | [73] |
CS/hexadecylamine | Pseudo-second order | Freundlich | [20] |
CS/hexadecylamine /3-aminopropyl triethoxysilane | Pseudo-second order | Freundlich | [74] |
CS/3-aminopropyl triethoxysilane | Pseudo-second order | Freundlich | [35] |
GA-crosslinked CS beads | Elovich | Freundlich | This study |
Adsorbent | Adsorbent Concentration (g/L) | Adsorbate Concentration (mg/L) | pH | Maximum Adsorption Capacity (mg/g) | Ref. |
---|---|---|---|---|---|
Coconut shells (biomass) | 10 | 1.274 | 5 | 0.0064 | [75] |
Cauliflower cores (biomass) | 10 | 1.274 | 5 | 0.032 | [75] |
CS/activated Charcoal | 0.1/0.1 | 100 | 7 | 250 | [67] |
Microcrystalline cellulose–epichlorohydrin | 1.0 | 200 | 3 | 70 | [69] |
Dry cells of Rhizopus oryzae | 4.0 | 100 | 3 | 24 | [76] |
Polymetallic nanoparticles | 0.4 | 200 | 8.5 | 345 | [70] |
guar gum and silica nanocomposite | 0.03/0.025 | 200 | 2 | 579 | [71] |
Pecan nut shells | 10 | 1000 | 6.5 | 5 | [72] |
La(III) supported carboxymethylcellulose-clay | 0.1 | 50 | 3 | 43.65 | [77] |
Rice bran/Fe3O4 | 1.5 | 200 | 2 | 185.2 | [73] |
Rice bran/SnO2/Fe3O4 | 1.5 | 200 | 2 | 218.8 | [78] |
Nickel-metal hydride spent batteries | 0.80 | 200 | 3 | 331 | [79] |
Seeds of moringa oleifera@MnFe2O4 | 0.1/0.05 | 50 | 3 | 32.45 | [68] |
CS/hexadecylamine | 0.2/0.2 | 500 | 4 | 454 | [22] |
CS/3-aminopropyl triethoxysilane Beads | 0.2/0.2 | 500 | 4 | 433.7 | [35] |
CS/hexadecylamine/3-aminopropyl triethoxysilane | 0.2/0.2 | 500 | 4 | 468.8 | [74] |
Extracellular polymeric substances | 0.1/0.05 | 50 | 2 | 42.93 | [80] |
CS 10B (100% deacetylated chitin) | 0.05/0.025 | 63.74 | 4 | 54,01 | [81] |
CS/hydroxyapatite | 0.03 | 950 | 4 | 118.4 | [82] |
GA-crosslinked CS beads | 0.4/0.025 | 55 | 3 | 1.56 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galan, J.; Trilleras, J.; Zapata, P.A.; Arana, V.A.; Grande-Tovar, C.D. Optimization of Chitosan Glutaraldehyde-Crosslinked Beads for Reactive Blue 4 Anionic Dye Removal Using a Surface Response Methodology. Life 2021, 11, 85. https://doi.org/10.3390/life11020085
Galan J, Trilleras J, Zapata PA, Arana VA, Grande-Tovar CD. Optimization of Chitosan Glutaraldehyde-Crosslinked Beads for Reactive Blue 4 Anionic Dye Removal Using a Surface Response Methodology. Life. 2021; 11(2):85. https://doi.org/10.3390/life11020085
Chicago/Turabian StyleGalan, Johanna, Jorge Trilleras, Paula A. Zapata, Victoria A. Arana, and Carlos David Grande-Tovar. 2021. "Optimization of Chitosan Glutaraldehyde-Crosslinked Beads for Reactive Blue 4 Anionic Dye Removal Using a Surface Response Methodology" Life 11, no. 2: 85. https://doi.org/10.3390/life11020085
APA StyleGalan, J., Trilleras, J., Zapata, P. A., Arana, V. A., & Grande-Tovar, C. D. (2021). Optimization of Chitosan Glutaraldehyde-Crosslinked Beads for Reactive Blue 4 Anionic Dye Removal Using a Surface Response Methodology. Life, 11(2), 85. https://doi.org/10.3390/life11020085