Cross-Disorder Analysis of De Novo Variants Increases the Power of Prioritising Candidate Genes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Annotation
2.2. Overlap of Genes across NDDs Based on De Novo Variants
2.3. Candidate Genes Prioritization Based on TADA
2.4. Predicted Gene Discovery Rate
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willsey, A.J.; Morris, M.T.; Wang, S.; Willsey, H.R.; Sun, N.; Teerikorpi, N.; Baum, T.B.; Cagney, G.; Bender, K.J.; Desai, T.A.; et al. The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. Cell 2018, 174, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Heyne, H.O.; Singh, T.; Stamberger, H.; Abou Jamra, R.; Caglayan, H.; Craiu, D.; De Jonghe, P.; Guerrini, R.; Helbig, K.L.; Koeleman, B.P.C.; et al. De novo variants in neurodevelopmental disorders with epilepsy. Nat. Genet. 2018, 50, 1048–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brosig, C.L.; Bear, L.; Allen, S.; Hoffmann, R.G.; Pan, A.; Frommelt, M.; Mussatto, K.A. Preschool Neurodevelopmental Outcomes in Children with Congenital Heart Disease. J. Pediatr. 2017, 183, 80–86.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latal, B. Neurodevelopmental Outcomes of the Child with Congenital Heart Disease. Clin. Perinatol. 2016, 43, 173–185. [Google Scholar] [CrossRef]
- Homsy, J.; Zaidi, S.; Shen, Y.; Ware, J.S.; Samocha, K.E.; Karczewski, K.J.; DePalma, S.R.; McKean, D.; Wakimoto, H.; Gorham, J.; et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science 2015, 350, 1262–1266. [Google Scholar] [CrossRef] [Green Version]
- Marino, B.S.; Lipkin, P.H.; Newburger, J.W.; Peacock, G.; Gerdes, M.; Gaynor, J.W.; Mussatto, K.A.; Uzark, K.; Goldberg, C.S.; Johnson, W.H., Jr.; et al. Neurodevelopmental outcomes in children with congenital heart disease: Evaluation and management: A scientific statement from the American Heart Association. Circulation 2012, 126, 1143–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iossifov, I.; O’Roak, B.J.; Sanders, S.J.; Ronemus, M.; Krumm, N.; Levy, D.; Stessman, H.A.; Witherspoon, K.T.; Vives, L.; Patterson, K.E.; et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 2014, 515, 216–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.C.; Homsy, J.; Zaidi, S.; Lu, Q.; Morton, S.; DePalma, S.R.; Zeng, X.; Qi, H.; Chang, W.; Sierant, M.C.; et al. Contribution of rare inherited and de novo variants in 2871 congenital heart disease probands. Nat. Genet. 2017, 49, 1593–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deciphering Developmental Disorders, S. Prevalence and architecture of de novo mutations in developmental disorders. Nature 2017, 542, 433–438. [Google Scholar] [CrossRef]
- Epi, K.C.; Epilepsy Phenome/Genome, P.; Allen, A.S.; Berkovic, S.F.; Cossette, P.; Delanty, N.; Dlugos, D.; Eichler, E.E.; Epstein, M.P.; Glauser, T.; et al. De novo mutations in epileptic encephalopathies. Nature 2013, 501, 217–221. [Google Scholar]
- Lelieveld, S.H.; Reijnders, M.R.; Pfundt, R.; Yntema, H.G.; Kamsteeg, E.J.; de Vries, P.; de Vries, B.B.; Willemsen, M.H.; Kleefstra, T.; Lohner, K.; et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 2016, 19, 1194–1196. [Google Scholar] [CrossRef] [PubMed]
- Fromer, M.; Pocklington, A.J.; Kavanagh, D.H.; Williams, H.J.; Dwyer, S.; Gormley, P.; Georgieva, L.; Rees, E.; Palta, P.; Ruderfer, D.M.; et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014, 506, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Bernier, R.; Golzio, C.; Xiong, B.; Stessman, H.A.; Coe, B.P.; Penn, O.; Witherspoon, K.; Gerdts, J.; Baker, C.; Vulto-van Silfhout, A.T.; et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 2014, 158, 263–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bon, B.W.; Coe, B.P.; Bernier, R.; Green, C.; Gerdts, J.; Witherspoon, K.; Kleefstra, T.; Willemsen, M.H.; Kumar, R.; Bosco, P.; et al. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Mol. Psychiatry 2016, 21, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Sobreira, N.; Schiettecatte, F.; Valle, D.; Hamosh, A. GeneMatcher: A matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 2015, 36, 928–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Bettella, E.; Marcogliese, P.C.; Zhao, R.; Andrews, J.C.; Nowakowski, T.J.; Gillentine, M.A.; Hoekzema, K.; Wang, T.; Wu, H.; et al. Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nat. Commun. 2019, 10, 4679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Li, Y.; Shen, L.; Wang, T.; Jia, X.; Liu, L.; Xu, T.; Ou, M.; Hoekzema, K.; Wu, H.; et al. Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission. Sci. Adv. 2019, 5, eaax2166. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Cai, T.; Jiang, Y.; Chen, H.; He, X.; Chen, C.; Li, X.; Shao, Q.; Ran, X.; Li, Z.; et al. Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. Mol. Psychiatry 2016, 21, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Mantilla, A.J.; Moreno-De-Luca, A.; Ledbetter, D.H.; Martin, C.L. A Cross-Disorder Method to Identify Novel Candidate Genes for Developmental Brain Disorders. JAMA Psychiatry 2016, 73, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Coe, B.P.; Stessman, H.A.F.; Sulovari, A.; Geisheker, M.R.; Bakken, T.E.; Lake, A.M.; Dougherty, J.D.; Lein, E.S.; Hormozdiari, F.; Bernier, R.A.; et al. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat. Genet. 2019, 51, 106–116. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Li, J.; Shi, L.; Zhang, K.; Zhang, Y.; Hu, S.; Zhao, T.; Teng, H.; Li, X.; Jiang, Y.; Ji, L.; et al. VarCards: An integrated genetic and clinical database for coding variants in the human genome. Nucleic Acids Res. 2018, 46, D1039–D1048. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhao, T.; Zhang, Y.; Zhang, K.; Shi, L.; Chen, Y.; Wang, X.; Sun, Z. Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res. 2018, 46, 7793–7804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; Li, K.; Li, B.; Wang, Z.; Fang, Z.; Wang, X.; Zhang, Y.; Luo, T.; Zhou, Q.; Wang, L.; et al. Gene4Denovo: An integrated database and analytic platform for de novo mutations in humans. Nucleic Acids Res. 2020, 48, D913–D926. [Google Scholar] [CrossRef]
- Shohat, S.; Ben-David, E.; Shifman, S. Varying Intolerance of Gene Pathways to Mutational Classes Explain Genetic Convergence across Neuropsychiatric Disorders. Cell Rep. 2017, 18, 2217–2227. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Sanders, S.J.; Liu, L.; De Rubeis, S.; Lim, E.T.; Sutcliffe, J.S.; Schellenberg, G.D.; Gibbs, R.A.; Daly, M.J.; Buxbaum, J.D.; et al. Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet. 2013, 9, e1003671. [Google Scholar] [CrossRef] [Green Version]
- De Rubeis, S.; He, X.; Goldberg, A.P.; Poultney, C.S.; Samocha, K.; Cicek, A.E.; Kou, Y.; Liu, L.; Fromer, M.; Walker, S.; et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014, 515, 209–215. [Google Scholar] [CrossRef]
- Zhao, W.; Quan, Y.; Wu, H.; Han, L.; Bai, T.; Ma, L.; Li, B.; Xun, G.; Ou, J.; Zhao, J.; et al. POGZ de novo missense variants in neuropsychiatric disorders. Mol. Genet. Genomic Med. 2019, 7, e900. [Google Scholar] [CrossRef] [Green Version]
- Kaplanis, J.; Samocha, K.E.; Wiel, L.; Zhang, Z.; Arvai, K.J.; Eberhardt, R.Y.; Gallone, G.; Lelieveld, S.H.; Martin, H.C.; McRae, J.F.; et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 2020, 586, 757–762. [Google Scholar] [CrossRef]
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.-Y.; Peng, M.; Collins, R.L.; Grove, J.; Klei, L.; et al. Novel genes for autism implicate both excitatory and inhibitory cell lineages in risk. bioRxiv 2018. [Google Scholar] [CrossRef]
- Ruzzo, E.K.; Perez-Cano, L.; Jung, J.Y.; Wang, L.K.; Kashef-Haghighi, D.; Hartl, C.; Singh, C.; Xu, J.; Hoekstra, J.N.; Leventhal, O.; et al. Inherited and De Novo Genetic Risk for Autism Impacts Shared Networks. Cell 2019, 178, 850–866.e26. [Google Scholar] [CrossRef] [Green Version]
- Abrahams, B.S.; Arking, D.E.; Campbell, D.B.; Mefford, H.C.; Morrow, E.M.; Weiss, L.A.; Menashe, I.; Wadkins, T.; Banerjee-Basu, S.; Packer, A. SFARI Gene 2.0: A community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 2013, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020, 180, 568–584.e23. [Google Scholar] [CrossRef]
- Doherty, J.L.; Owen, M.J. Genomic insights into the overlap between psychiatric disorders: Implications for research and clinical practice. Genome Med. 2014, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Song, N.N.; Ma, P.; Zhang, Q.; Zhang, L.; Wang, H.; Zhang, L.; Zhu, L.; He, C.H.; Mao, B.; Ding, Y.Q. Rnf220/Zc4h2-mediated monoubiquitylation of Phox2 is required for noradrenergic neuron development. Development 2020, 147, 6. [Google Scholar] [CrossRef]
- Kim, J.; Choi, T.I.; Park, S.; Kim, M.H.; Kim, C.H.; Lee, S. Rnf220 cooperates with Zc4h2 to specify spinal progenitor domains. Development 2018, 145, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawley, J.N.; Heyer, W.D.; LaSalle, J.M. Autism and Cancer Share Risk Genes, Pathways, and Drug Targets. Trends Genet. 2016, 32, 139–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.G.; Dasouki, M.J.; Zhou, X.P.; Talebizadeh, Z.; Brown, M.; Takahashi, T.N.; Miles, J.H.; Wang, C.H.; Stratton, R.; Pilarski, R.; et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J. Med. Genet. 2005, 42, 318–321. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhou, K.; Fu, Z.; Yu, D.; Huang, H.; Zang, X.; Mo, X. Brain Development and Akt Signaling: The Crossroads of Signaling Pathway and Neurodevelopmental Diseases. J. Mol. Neurosci. 2017, 61, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Madsen, R.R.; Vanhaesebroeck, B.; Semple, R.K. Cancer-Associated PIK3CA Mutations in Overgrowth Disorders. Trends Mol. Med. 2018, 24, 856–870. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.; Yang, X.; Kong, Q.; Li, C.; Yang, S.; Li, Y.; Mao, B. The ubiquitin ligase RNF220 enhances canonical Wnt signaling through USP7-mediated deubiquitination of beta-catenin. Mol. Cell Biol. 2014, 34, 4355–4366. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Li, K.; Tian, D.; Zhou, Q.; Xie, Y.; Fang, Z.; Wang, X.; Luo, T.; Wang, Z.; Zhang, Y.; et al. De novo mutation of cancer-related genes associates with particular neurodevelopmental disorders. J. Mol. Med. 2020, 98, 1701–1712. [Google Scholar] [CrossRef] [PubMed]
- Dang, X.; Qin, Y.; Gu, C.; Sun, J.; Zhang, R.; Peng, Z. Knockdown of Tripartite Motif 8 Protects H9C2 Cells Against Hypoxia/Reoxygenation-Induced Injury Through the Activation of PI3K/Akt Signaling Pathway. Cell Transpl. 2020, 29, 963689720949247. [Google Scholar] [CrossRef]
- Wu, Y.; Tan, X.; Liu, P.; Yang, Y.; Huang, Y.; Liu, X.; Meng, X.; Yu, B.; Wu, M.; Jin, H. ITGA6 and RPSA synergistically promote pancreatic cancer invasion and metastasis via PI3K and MAPK signaling pathways. Exp. Cell Res. 2019, 379, 30–47. [Google Scholar] [CrossRef]
- Chou, S.J.; O’Leary, D.D. Role for Lhx2 in corticogenesis through regulation of progenitor differentiation. Mol. Cell. Neurosci. 2013, 56, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, P.S.; Chuang, C.Y.; Kao, C.F.; Chou, S.J.; Stone, L.; Ho, H.N.; Chien, C.L.; Kuo, H.C. LHX2 regulates the neural differentiation of human embryonic stem cells via transcriptional modulation of PAX6 and CER1. Nucleic Acids Res. 2013, 41, 7753–7770. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M.; Tsukamoto, Y.; Kai, T.; Tokunaga, A.; Nakada, C.; Hijiya, N.; Uchida, T.; Daa, T.; Nomura, T.; Sato, F.; et al. Downregulation of WDR20 due to loss of 14q is involved in the malignant transformation of clear cell renal cell carcinoma. Cancer Sci. 2016, 107, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Guerrini-Rousseau, L.; Dufour, C.; Varlet, P.; Masliah-Planchon, J.; Bourdeaut, F.; Guillaud-Bataille, M.; Abbas, R.; Bertozzi, A.I.; Fouyssac, F.; Huybrechts, S.; et al. Germline SUFU mutation carriers and medulloblastoma: Clinical characteristics, cancer risk, and prognosis. Neuro Oncol. 2018, 20, 1122–1132. [Google Scholar] [CrossRef] [Green Version]
- Korshunov, A.; Sahm, F.; Stichel, D.; Schrimpf, D.; Ryzhova, M.; Zheludkova, O.; Golanov, A.; Lichter, P.; Jones, D.T.W.; von Deimling, A.; et al. Molecular characterization of medulloblastomas with extensive nodularity (MBEN). Acta Neuropathol. 2018, 136, 303–313. [Google Scholar] [CrossRef]
- Cappi, C.; Oliphant, M.E.; Peter, Z.; Zai, G.; Conceicao do Rosario, M.; Sullivan, C.A.W.; Gupta, A.R.; Hoffman, E.J.; Virdee, M.; Olfson, E.; et al. De Novo Damaging DNA Coding Mutations Are Associated With Obsessive-Compulsive Disorder and Overlap With Tourette’s Disorder and Autism. Biol. Psychiatry 2020, 87, 1035–1044. [Google Scholar] [CrossRef]
- Willsey, A.J.; Fernandez, T.V.; Yu, D.; King, R.A.; Dietrich, A.; Xing, J.; Sanders, S.J.; Mandell, J.D.; Huang, A.Y.; Richer, P.; et al. De Novo Coding Variants Are Strongly Associated with Tourette Disorder. Neuron 2017, 94, 486–499.e9. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Wang, T.; Wu, H.; Long, M.; Coe, B.P.; Li, H.; Xun, G.; Ou, J.; Chen, B.; Duan, G.; et al. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol. Autism 2018, 9, 64. [Google Scholar] [CrossRef]
- Girirajan, S.; Rosenfeld, J.A.; Cooper, G.M.; Antonacci, F.; Siswara, P.; Itsara, A.; Vives, L.; Walsh, T.; McCarthy, S.E.; Baker, C.; et al. A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat. Genet. 2010, 42, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Schaaf, C.P.; Sabo, A.; Sakai, Y.; Crosby, J.; Muzny, D.; Hawes, A.; Lewis, L.; Akbar, H.; Varghese, R.; Boerwinkle, E.; et al. Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders. Hum. Mol. Genet. 2011, 20, 3366–3375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Li, Z.; Liu, Z.; Zhang, N.; Wang, R.; Li, F.; Zhang, T.; Jiang, Y.; Zhi, X.; Wang, Z.; et al. Nonrandom occurrence of multiple de novo coding variants in a proband indicates the existence of an oligogenic model in autism. Genet Med. 2020, 22, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Gifford, C.A.; Ranade, S.S.; Samarakoon, R.; Salunga, H.T.; de Soysa, T.Y.; Huang, Y.; Zhou, P.; Elfenbein, A.; Wyman, S.K.; Bui, Y.K.; et al. Oligogenic inheritance of a human heart disease involving a genetic modifier. Science 2019, 364, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548.e24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.T.; Bryois, J.; Kim, A.; Dobbyn, A.; Huckins, L.M.; Munoz-Manchado, A.B.; Ruderfer, D.M.; Genovese, G.; Fromer, M.; Xu, X.; et al. Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Med. 2017, 9, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Phenotypes | Study | Trios | DNVs | Coding DNVs | PTVs | Dmis | Pfun | Pfun per Individual |
---|---|---|---|---|---|---|---|---|
ASD | 14 | 10,318 | 287,444 | 12,141 | 1580 | 2507 | 4087 | 0.40 |
SCZa | 11 | 3402 | 3422 | 3357 | 358 | 716 | 1074 | 0.32 |
EE | 9 | 973 | 1248 | 1191 | 170 | 364 | 534 | 0.55 |
DD/ID | 6 | 31,260 | 45,541 | 44,825 | 7078 | 11,683 | 18,761 | 0.60 |
CHD | 1 | 2645 | 2990 | 2981 | 369 | 654 | 1023 | 0.39 |
TD | 3 | 909 | 842 | 818 | 85 | 199 | 284 | 0.31 |
BPa | 3 | 219 | 6995 | 199 | 34 | 21 | 55 | 0.25 |
OCD | 1 | 118 | 134 | 128 | 48 | 20 | 68 | 0.58 |
CMS | 1 | 184 | 205 | 198 | 27 | 12 | 39 | 0.21 |
Disorders (N) | Genetic Similarity | Category | Type | FDR < 0.0001 | 0.0001 < FDR < 0.001 | 0.001 < FDR < 0.01 | 0.01 < FDR < 0.05 | |
---|---|---|---|---|---|---|---|---|
p-Value | OE | |||||||
ASD (10,318) | 1.00 × 10−4 | 3.72 | Before | 24 | 7 | 23 | 50 | |
After | Pfun | 229 | 31 | 47 | 55 | |||
LoF | 141 | 16 | 24 | 30 | ||||
Dmis | 175 | 21 | 31 | 33 | ||||
SCZ (3402) | 1.00 × 10−4 | 1.67 | Before | 0 | 0 | 3 | 5 | |
After | Pfun | 68 | 9 | 17 | 18 | |||
LoF | 29 | 1 | 8 | 13 | ||||
Dmis | 47 | 9 | 11 | 6 | ||||
EE (973) | 1.00 × 10−4 | 6.54 | Before | 7 | 4 | 5 | 8 | |
After | Pfun | 87 | 6 | 10 | 6 | |||
LoF | 38 | 1 | 9 | 2 | ||||
Dmis | 58 | 5 | 1 | 5 | ||||
DD/ID (31,260) | 1.00 × 10−4 | 6.80 | Before | 278 | 53 | 81 | 115 | |
After | Pfun | 287 | 56 | 79 | 96 | |||
LoF | 237 | 46 | 64 | 65 | ||||
Dmis | 267 | 50 | 70 | 73 | ||||
CHD (2645) | 1.00 × 10−4 | 2.84 | Before | 3 | 3 | 4 | 12 | |
After | Pfun | 78 | 14 | 16 | 20 | |||
LoF | 45 | 6 | 8 | 14 | ||||
Dmis | 46 | 8 | 11 | 10 | ||||
TD (909) | 1.00 × 10−4 | 2.02 | Before | 0 | 0 | 0 | 0 | |
After | Pfun | 21 | 1 | 6 | 0 | |||
LoF | 7 | 0 | 2 | 0 | ||||
Dmis | 14 | 1 | 4 | 0 | ||||
BP (219) | 2.89 × 10−2 | 1.90 | Before | 0 | 0 | 0 | 0 | |
After | Pfun | 3 | 1 | 1 | 0 | |||
LoF | 2 | 0 | 0 | 0 | ||||
Dmis | 2 | 1 | 1 | 0 | ||||
OCD (118) | 2.00 × 10−4 | 3.20 | Before | 0 | 0 | 0 | 0 | |
After | Pfun | 10 | 1 | 3 | 0 | |||
LoF | 2 | 0 | 0 | 0 | ||||
Dmis | 9 | 1 | 3 | 0 | ||||
CMS (184) | 1.00 × 10−2 | 2.49 | Before | 0 | 0 | 0 | 1 | |
After | Pfun | 4 | 1 | 1 | 3 | |||
LoF | 3 | 0 | 0 | 0 | ||||
Dmis | 1 | 1 | 1 | 3 |
Rank (FDR) | Unique Disorders n = 173, 26.45% | Two Disorders n = 239, 36.54% | Three Disorders n = 167, 25.54% | Four Disorders n = 59, 9.02% | Five Disorders n = 13, 1.99% | Six Disorders n = 3, 0.46% |
---|---|---|---|---|---|---|
[0, 0.0001) (48.32%) | 42 | 113 | 98 | 50 | 10 | 3 |
[0.0001, 0.001) (9.17%) | 14 | 26 | 18 | 2 | 0 | 0 |
[0.001, 0.01) (15.44%) | 31 | 41 | 21 | 6 | 2 | 0 |
[0.01, 0.05) (27.06%) | 86 | 59 | 30 | 1 | 1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Ling, Z.; Luo, T.; Zhao, G.; Zhou, Q.; Wang, X.; Xia, K.; Li, J.; Li, B. Cross-Disorder Analysis of De Novo Variants Increases the Power of Prioritising Candidate Genes. Life 2021, 11, 233. https://doi.org/10.3390/life11030233
Li K, Ling Z, Luo T, Zhao G, Zhou Q, Wang X, Xia K, Li J, Li B. Cross-Disorder Analysis of De Novo Variants Increases the Power of Prioritising Candidate Genes. Life. 2021; 11(3):233. https://doi.org/10.3390/life11030233
Chicago/Turabian StyleLi, Kuokuo, Zhengbao Ling, Tengfei Luo, Guihu Zhao, Qiao Zhou, Xiaomeng Wang, Kun Xia, Jinchen Li, and Bin Li. 2021. "Cross-Disorder Analysis of De Novo Variants Increases the Power of Prioritising Candidate Genes" Life 11, no. 3: 233. https://doi.org/10.3390/life11030233
APA StyleLi, K., Ling, Z., Luo, T., Zhao, G., Zhou, Q., Wang, X., Xia, K., Li, J., & Li, B. (2021). Cross-Disorder Analysis of De Novo Variants Increases the Power of Prioritising Candidate Genes. Life, 11(3), 233. https://doi.org/10.3390/life11030233