The Case (or Not) for Life in the Venusian Clouds
Abstract
:1. Introduction
2. The Environmental Conditions in the Venusian Clouds
3. Proposed Adaptations of Microbial Life to the Venusian Cloud Environment
4. The Claimed Detection of Phosphine
5. Discussion and Next Steps
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morowitz, H.; Sagan, C. Life in the Clouds of Venus? Nat. Cell Biol. 1967, 215, 1259–1260. [Google Scholar] [CrossRef]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Sagawa, H.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; et al. Phosphine gas in the cloud decks of Venus. Nat. Astron. 2020, 1–10. [Google Scholar] [CrossRef]
- Grinspoon, D.H. Venus Revealed: A New Look below the Clouds of Our Mysterious Twin Planet; Perseus Publishing: Cambridge, MA, USA, 1997. [Google Scholar]
- Cockell, C.S. Life on Venus Planet. Space Sci. 1999, 47, 1487–1501. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Irwin, L.N. Reassessing the Possibility of Life on Venus: Proposal for an Astrobiology Mission. Astrobiology 2002, 2, 197–202. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Grinspoon, D.H.; Abbas, O.; Irwin, L.N.; Bullock, M.A. A Sulfur-Based Survival Strategy for Putative Phototrophic Life in the Venusian Atmosphere. Astrobiology 2004, 4, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Schulze-Makuch, D.; Irwin, L.N. Life in the Universe: Expectations and Constraints, 3rd ed.; Springer Praxis: Cham, Switzerland, 2018. [Google Scholar]
- Grinspoon, D.H.; Bullock, M.A. Astrobiology and Venus exploration. Geophys. Monogr. Ser. 2007, 176, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Way, M.J.; Del Genio, A.D.; Kiang, N.Y.; Sohl, L.E.; Grinspoon, D.H.; Aleinov, I.; Kelley, M.; Clune, T. Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 2016, 43, 8376–8383. [Google Scholar] [CrossRef] [PubMed]
- Limaye, S.S.; Mogul, R.; Smith, D.J.; Ansari, A.H.; Słowik, G.P.; Vaishampayan, P. Venus’ Spectral Signatures and the Potential for Life in the Clouds. Astrobiology 2018, 18, 1181–1198. [Google Scholar] [CrossRef] [PubMed]
- Seager, S.; Petkowski, J.J.; Gao, P.; Bains, W.; Bryan, N.C.; Ranjan, S.; Greaves, J. The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere. Astrobiology 2020, 20. [Google Scholar] [CrossRef]
- Bryan, N.C.; Christner, B.C.; Guzik, T.G.; Granger, D.J.; Stewart, M.F. Abundance and survival of microbial aerosols in the troposphere and stratosphere. ISME 2019, 13, 2789–2799. [Google Scholar] [CrossRef] [PubMed]
- Irwin, L.N.; Schulze-Makuch, D. The Astrobiology of Alien Worlds: Known and Unknown Forms of Life. Universe 2020, 6, 130. [Google Scholar] [CrossRef]
- Amato, P.; Besaury, L.; Joly, M.; Penaud, B.; Deguillaume, L.; Delort, A.-M. Metatranscriptomic exploration of microbial functioning in clouds. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sattler, B.; Puxbaum, H.; Psenner, R. Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 2001, 28, 239–242. [Google Scholar] [CrossRef]
- Dimmick, R.L.; Wolochow, H.; Chatigny, M.A. Evidence that bacteria can form new cells in airborne particles. Appl. Environ. Microbiol. 1979, 37, 924–927. [Google Scholar] [CrossRef] [Green Version]
- Dimmick, R.L.; Wolochow, H.; Chatigny, M.A. Evidence for more than one division of bacteria within airborne particles. Appl. Environ. Microbiol. 1979, 38, 642–643. [Google Scholar] [CrossRef] [Green Version]
- Burrows, S.M.; Butler, T.; Jöckel, P.; Tost, H.; Kerkweg, A.; Pöschl, U.; Lawrence, M.G. Bacteria in the global atmosphere–Part 2: Modeling of emissions and transport between different ecosystems. Atmos. Chem. Phys. Discuss. 2009, 9, 9281–9297. [Google Scholar] [CrossRef] [Green Version]
- Schulze-Makuch, D.; Irwin, L.N.; Fairén, A.G. Drastic environmental change and its effects on a planetary biosphere. Icarus 2013, 225, 775–780. [Google Scholar] [CrossRef]
- Baker, V.R.; Strom, R.G.; Gulick, V.C.; Kargel, J.S.; Komatsu, G.; Kale, V.S. Ancient oceans, ice sheets and the hydrological cycle on Mars. Nat. Cell Biol. 1991, 352, 589–594. [Google Scholar] [CrossRef]
- Way, M.J.; Del Genio, A.D. Venusian Habitable Climate Scenarios: Modeling Venus through Time and Applications to Slowly Rotating Venus-Like Exoplanets. J. Geophys. Res. Planets 2020, 125. [Google Scholar] [CrossRef] [Green Version]
- Limaye, S.S.; Lebonnois, S.; Mahieux, A.; Pätzold, M.; Bougher, S.; Bruinsma, S.; Chamberlain, S.; Clancy, R.T.; Gérard, J.-C.; Gilli, G.; et al. The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles. Icarus 2017, 294, 124–155. [Google Scholar] [CrossRef]
- Johnson, D.B.; de Oliveira, M.R. Venus atmospheric composition in situ data: A compilation. Earth Space Sci. 2019, 6, 1299–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasnopolsky, V.A. Chemical composition of Venus atmosphere and clouds: Some unsolved problems. Planet. Space Sci. 2006, 54, 1352–1359. [Google Scholar] [CrossRef]
- Krasnopolsky, V.A. High-resolution spectroscopy of Venus: Detection of OCS, upper limit to H2S, and latitudinal variations of CO and HF in the upper cloud layer. Icarus 2008, 197, 377–385. [Google Scholar] [CrossRef]
- Donahue, T.M.; Hodges, R.R. Venus methane and water. Geophys. Res. Lett. 1993, 20, 591–594. [Google Scholar] [CrossRef]
- Wilson, C.F.; the Venus Clouds Team of the International Space Sciences Institute. Beyond sulphuric acid–what else is in the clouds of Venus? In Venus Exploration Targets Workshop; Lunar Planetary Institute (LPI): Houston, TX, USA, 2014. [Google Scholar]
- Stevenson, A.; Cray, J.A.; Williams, J.P.; Santos, R.S.; Sahay, R.; Neuenkirchen, N.; McClure, C.D.; Grant, I.R.; Houghton, J.D.; Quinn, J.P.; et al. Is there a common water-activity limit for the three domains of life? ISME J. 2015, 9, 1333–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, A.; Burkhardt, J.; Cockell, C.S.; Cray, J.A.; Dijksterhuis, J.; Fox-Powell, M.; Kee, T.P.; Kminek, G.; McGenity, T.J.; Timmis, K.N.; et al. Multiplication of microbes below 0.690 water activity: Implications for terrestrial and extraterrestrial life. Environ. Microbiol. 2015, 17, 257–277. [Google Scholar] [CrossRef]
- De Vera, J.-P.; Schulze-Makuch, D.; Khan, A.; Lorek, A.; Koncz, A.; Möhlmann, D.; Spohn, T. Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet. Space Sci. 2014, 98, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Schulze-Makuch, D.; Haque, S.; Antonio, M.R.D.S.; Ali, D.; Hosein, R.; Song, Y.C.; Yang, J.; Zaikova, E.; Beckles, D.M.; Guinan, E.; et al. Microbial Life in a Liquid Asphalt Desert. Astrobiology 2011, 11, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Meckenstock, R.U.; von Netzer, F.; Stumpp, C.; Lueders, T.; Himmelberg, A.M.; Hertkorn, N.; Schmitt-Kopplin, P.; Harir, M.; Hosein, R.; Haque, S.; et al. Water inclusions in oil are microhabitats for microbial life. Science 2014, 345, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Limaye, S.S.; Mogul, R.; Baines, K.; Bullock, M.; Cockell, C.; Cutts, J.; Gentry, D.; Grinspoon, D.H.; Head, J.; Jessup, K.-L.; et al. Venus, an astrobiology target. Astrobiology 2021, in press. [Google Scholar]
- Petrova, E.V. Glory on Venus and selection among the unknown UV absorbers. Icarus 2018, 306, 163–170. [Google Scholar] [CrossRef]
- Krasnopolsky, V. Chemical composition of venus clouds. Planet. Space Sci. 1985, 33, 109–117. [Google Scholar] [CrossRef]
- Davila, A.F.; Gómez-Silva, B.; Rios, A.D.L.; Ascaso, C.; Olivares, H.; McKay, C.P.; Wierzchos, J. Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Schulze-Makuch, D.; Airo, A.; Schirmack, J. The Adaptability of Life on Earth and the Diversity of Planetary Habitats. Front. Microbiol. 2017, 8, 2011. [Google Scholar] [CrossRef] [PubMed]
- Toon, O.B.; Turco, R.P.; Pollack, J.B. The ultraviolet absorber on Venus: Amorphous sulfur. Icarus 1982, 51, 358–373. [Google Scholar] [CrossRef]
- Prinn, R.G. The sulfur cycle and clouds of Venus. In Recent Advances in Planetary Meteorology; Hunt, G.E., Ed.; Cambridge University Press: Cambridge, UK, 1985; pp. 1–15. [Google Scholar]
- Grinspoon, D.; Pollack, J.; Sitton, B.; Carlson, R.; Kamp, L.; Baines, K.; Encrenaz, T.; Taylor, F. Probing Venus’s cloud structure with Galileo NIMS. Planet. Space Sci. 1993, 41, 515–542. [Google Scholar] [CrossRef]
- Read, P.L.; Lebonnois, S. Superrotation on Venus, on Titan, and elsewhere. Ann. Rev. Earth Planet. Sci. 2018, 46, 175–202. [Google Scholar] [CrossRef]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; Fraser, H.J. Re-analysis of phosphine in Venus’clouds. arXiv 2020, arXiv:2011.08176. [Google Scholar]
- Snellen, I.A.G.; Guzman-Ramirez, L.; Hogerheijde, M.R.; Hygate, A.P.S.; Van der Tak, F.F.S. Re-analysis of the 267-GHz ALMA observations of Venus: No statistically significant detection of phosphine. Astron. Astrophys. 2021, in press. [Google Scholar]
- Villanueva, G.; Cordiner, M.; Irwin, P.; de Pater, I.; Butler, B.; Gurwell, M.; Milam, S.; Nixon, C.; Luszcz-Cook, S.; Wilson, C.; et al. No phosphine in the atmosphere of Venus. arXiv 2020, arXiv:2010.14305. [Google Scholar]
- Akins, A.B.; Lincowski, A.; Meadows, V.S.; Steffes, P.G. Complications in the ALMA detection of phosphine at Venus. arXiv 2021, arXiv:2101.09831. [Google Scholar]
- Lincowski, A.P.; Meadows, V.S.; Crisp, D.; Akins, A.B.; Schwieterman, W.; Arney, G.N.; Wong, M.L.; Steffes, P.G.; Parenteau, M.N.; Domagal-Goldman, S. Claimed detection of PH3 in the clouds of Venus is consistent with mesopheric SO2. arXiv 2021, arXiv:2101.09837. [Google Scholar]
- Greaves, J.S.; Bains, W.; Petkowski, J.J.; Seager, S.; Sousa-Silva, C.; Ranjan, S.; Clements, D.L.; Rimmer, P.B.; Fraser, H.J.; Mairs, S.; et al. On the robustness of phosphine signatures in Venus’clouds. arXiv 2020, arXiv:2012.05844. [Google Scholar]
- Rimmer, P.B.; Jordan, S.; Constantinou, T.; Woitke, P.; Shorttl, O.; Hobbs, R.; Paschodimas, A. Three different ways to explain sulfur depletion in the clouds of Venus. arXiv 2021, arXiv:2101.08582v1. [Google Scholar]
- Krasnopolsky, V. Vega mission results and chemical composition of Venusian clouds. Icarus 1989, 80, 202–210. [Google Scholar] [CrossRef]
- Milojevic, T.; Treiman, A.; Limaye, S. Phosphorus in Venus clouds. Rev. Astrobiol. under review.
- Sousa-Silva, C.; Seager, S.; Ranjan, S.; Petkowski, J.J.; Zhan, Z.; Hu, R.; Bains, W. Phosphine as a Biosignature Gas in Exoplanet Atmospheres. Astrobiology 2020, 20, 235–268. [Google Scholar] [CrossRef]
- Mogul, R.; Limaye, S.S.; Way, M.J.; Cordova, J.A. Venus’ Mass Spectra Show Signs of Disequilibria in the Middle Clouds. Geophys. Res. Lett. 2021. [Google Scholar] [CrossRef]
- Gassmann, G.; Glindemann, D. Phosphane (PH3) in der Biosphäre. Angew. Chem. Int. Ed. Engl. 1993, 32, 761–763. [Google Scholar] [CrossRef]
- Glindemann, D.; Edwards, M.; Kuschk, P. Phosphine gas in the upper troposphere. Atmos. Environ. 2003, 37, 2429–2433. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Sousa-Silva, C.; Seager, S. Trivalent Phosphorus and Phosphines as Components of Biochemistry in Anoxic Environments. Astrobiology 2019, 19, 885–902. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Sousa-Silva, C.; Seager, S. New environmental model for thermodynamic ecology of biological phosphine production. Sci. Total Environ. 2019, 658, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Bains, W.; Petkowski, J.J.; Seager, S.; Ranjan, S.; Sousa-Silva, C.; Rimmer, P.B.; Zhan, Z.; Greaves, J.; Richards, A.M.S. Phos-phine on Venus cannot be explained by conventional processes. arXiv 2020, arXiv:2009.06499. [Google Scholar]
- Cockell, C.S.; Higgins, P.M.; Johnstone, A.A. Biologically available chemical energy in the temperate but uninhabitable Venu-sian cloud layer: What do we want to know. Astrobiology 2021, 8. in press. [Google Scholar]
- Izenberg, N.R.; Gentry, D.M.; Smith, D.J.; Gilmore, M.S.; Grinspoon, D.H.; Bullock, M.A.; Boston, P.J.; Słowik, G.P. The Venus Life Equation. Astrobiology 2021, 8. [Google Scholar] [CrossRef]
- Catling, D.; Professor in Earth and Space Sciences at the University of Washington, Washington, DC, USA. Personal communication, 24 September 2020.
- Bains, W.; Research Scientist at Massachusetts Institute of Technology, Cambridge, MA, USA. Personal communication, 16 September 2020.
- Davies, J.H. Did a mega-collision dry Venus’interior? Earth Planet. Sci. Lett. 2008, 268, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Gómez, F.; Cavalazzi, B.; Rodriguez, N.; Amils, R.; Ori, G.G.; Olsson-Francis, K.; Escudero, C.; Martinez, J.M.; Miruts, H. Ultra-small microorganisms in the polyextreme conditions of Dallol volcano, Northern Afar, Ethiopia. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockell, C.S.; McMahon, S.; Biddle, J.F. When is Life a Viable Hypothesis? The Case of Venusian Phosphine. Astrobiology 2021, 21, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Cleland, C.E. The Quest for a Universal Theory of Life: Searching for Life as We Don’t Know It; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Ferris, J.P.; Benson, R. Diphosphine is an intermediate in the photolysis of phosphine to phosphorus and hydrogen. Nat. Cell Biol. 1980, 285, 156–157. [Google Scholar] [CrossRef]
- Maus, D.; Heinz, J.; Schirmack, J.; Airo, A.; Kounaves, S.P.; Wagner, D.; Schulze-Makuch, D. Methanogenic Archaea Can Produce Methane in Deliquescence-Driven Mars Analog Environments. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Heinz, J.; Krahn, T.; Schulze-Makuch, D. A New Record for Microbial Perchlorate Tolerance: Fungal Growth in NaClO4 Brines and its Implications for Putative Life on Mars. Life 2020, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Makuch, D.; Irwin, L.N.; Irwin, T. Astrobiological Relevance and Feasibility of a Sample Collection Mission to the Atmosphere of Venus; ESA Special Publication SP-518; European Space Agency (ESA): Graz, Austria, 2002; pp. 247–252. [Google Scholar]
- Dorrington, G. Venus atmospheric platform options revisited. Adv. Space Res. 2010, 46, 310–326. [Google Scholar] [CrossRef]
- Cutts, J.A.; Matthies, L.A.; Thompson, T.W. Aerial Platforms for the Scientific Exploration of Venus; Summary Report JPL D-102569; NASA Jet Propulsion Laboratory: Pasadena, CA, USA, 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulze-Makuch, D. The Case (or Not) for Life in the Venusian Clouds. Life 2021, 11, 255. https://doi.org/10.3390/life11030255
Schulze-Makuch D. The Case (or Not) for Life in the Venusian Clouds. Life. 2021; 11(3):255. https://doi.org/10.3390/life11030255
Chicago/Turabian StyleSchulze-Makuch, Dirk. 2021. "The Case (or Not) for Life in the Venusian Clouds" Life 11, no. 3: 255. https://doi.org/10.3390/life11030255
APA StyleSchulze-Makuch, D. (2021). The Case (or Not) for Life in the Venusian Clouds. Life, 11(3), 255. https://doi.org/10.3390/life11030255