Association of SDF1 and MMP12 with Atherosclerosis and Inflammation: Clinical and Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.1.1. Vascular Imaging
2.1.2. Blood Samples and Biochemical Analysis
2.2. Experimental Mouse Model
2.2.1. Quantitative Analysis at mRNA Level (qRT-PCR)
2.2.2. Histological and Immunohistochemical Analysis
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Association of Inflammatory Biomarkers with Cardiovascular Risk Factors
3.3. Inflammatory Biomarkers in Relation to Clinical Atherosclerosis Manifestations
3.4. Association of Inflammatory Biomarkers with Atherosclerotic Plaques
3.5. Follow-Up Analysis
3.6. Aortic Expression of SDF1, CXCR4 and MMP12
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report from the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.J.; Tabas, I. The Cellular Biology of Macrophages in Atherosclerosis. Cell 2011, 145, 341–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M.; MacFadyen, J.G.; Everett, B.M.; Libby, P.; Thuren, T.; Glynn, R.J. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: A secondary analysis from the CANTOS randomised controlled trial. Lancet 2018, 391, 319–328. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N. Engl. J. Med. 2012, 367, 1310–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folsom, A.R.; Pankow, J.S.; Tracy, R.P.; Arnett, D.K.; Peacock, J.M.; Hong, Y.; Djoussé, L.; Eckfeldt, J.H.; Investigators of the NHLBI Family Heart Study. Association of C-reactive protein with markers of prevalent atherosclerotic disease. Am. J. Cardiol. 2001, 88, 112–117. [Google Scholar] [CrossRef]
- Páramo, J.A.; Rodríguez Ja, J.A.; Orbe, J. Integrating soluble biomarkers and imaging technologies in the identification of vulnerable atherosclerotic patients. Biomark. Insights 2007, 1, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, P.J.; Baldán-Martín, M.; López, J.A.; Martín-Lorenzo, M.; Santiago-Hernández, A.; Agudiez, M.; Cabrerad, M.; Calvo, E.; Vázquezc, J.; Ruiz-Hurtadoe, G.; et al. Identification of six cardiovascular risk biomarkers in the young population: A promising tool for early prevention. Atherosclerosis 2019, 282, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Braunersreuther, V.; Mach, F.; Steffens, S. The specific role of chemokines in atherosclerosis. Thromb. Haemost. 2007, 97, 714–721. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.H.; Yu, X.H.; Tang, C.K. CXC chemokine ligand 12 (CXCL12) in atherosclerosis: An underlying therapeutic target. Clin. Chim. Acta 2019, 495, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Ferdousie, V.T.; Mohammadi, M.; Hassanshahi, G.; Khorramdelazad, H.; Falahati-Pour, S.K.; Mirzaei, M.; Tavakoli, M.A.; Kamiab, Z.; Ahmadi, Z.; Vazirinejad, R.; et al. Serum CXCL10 and CXCL12 chemokine levels are associated with the severity of coronary artery disease and coronary artery occlusion. Int. J. Cardiol. 2017, 233, 23–28. [Google Scholar] [CrossRef]
- Sjaarda, J.; Gerstein, H.; Chong, M.; Yusuf, S.; Meyre, D.; Anand, S.S.; Hess, S.; Paré, G. Blood CSF1 and CXCL12 as Causal Mediators of Coronary Artery Disease. J. Am. Coll. Cardiol. 2018, 72, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Michineau, S.; Franck, G.; Wagner-Ballon, O.; Dai, J.; Allaire, E.; Gervais, M. Chemokine (C-X-C Motif) receptor 4 blockade by AMD3100 inhibits experimental abdominal aortic aneurysm expansion through anti-inflammatory effects. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1747–1755. [Google Scholar] [CrossRef] [Green Version]
- Dean, R.A.; Cox, J.H.; Bellac, C.L.; Doucet, A.; Starr, A.E.; Overall, C.M. Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR + CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: Potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood 2008, 112, 3455–3464. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.L.; Bajpai, A.; Hawthorne, E.A.; Bae, Y.; Castagnino, P.; Monslow, J.; Puré, E.; Spiller, K.L.; Assoian, R.K. Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12. JCI Insight. 2019, 4, e122742. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, I.; Bengtsson, E.; Colhoun, H.M.; Shore, A.C.; Palombo, C.; Natali, A.; Edsfeldt, A.; Dunér, P.; Fredrikson, G.N.; Björkbacka, H.; et al. Elevated plasma levels of MMP-12 are associated with atherosclerotic burden and symptomatic cardiovascular disease in subjects with type 2 diabetes. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1723–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.L.; George, S.J.; Newby, A.C.; Jackson, C.L. Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries. Proc. Natl. Acad. Sci. USA 2005, 102, 15575–15580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purroy, A.; Roncal, C.; Orbe, J.; Meilhac, O.; Belzunce, M.; Zalba, G.; Villa-Bellosta, R.; Andrés, V.; Parks, W.C.; Páramo, J.A.; et al. Matrix metalloproteinase-10 deficiency delays atherosclerosis progression and plaque calcification. Atherosclerosis 2018, 278, 124–134. [Google Scholar] [CrossRef]
- Orbe, J.; Montero, I.; Rodríguez, J.A.; Beloqui, O.; Roncal, C.; Páramo, J.A. Independent association of matrix metalloproteinase-10, cardiovascular risk factors and subclinical atherosclerosis. J. Thromb. Haemost. 2007, 5, 91–97. [Google Scholar] [CrossRef]
- Bobadilla, M.; Sainz, N.; Abizanda, G.; Orbe, J.; Rodriguez, J.A.; Páramo, J.A.; Prósper, F.; Pérez-Ruiz, A. The CXCR4/SDF1 axis improves muscle regeneration through MMP-10 activity. Stem. Cells Dev. 2014, 23, 1417–1427. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-item mediterranean diet assessment tool and obesity indexes among high-risk subjects: The PREDIMED trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teicher, B.A.; Fricker, S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res. 2010, 16, 2927–2931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, G.; Wang, N.; Zhou, Y.; Leng, J.; Gao, W.; Tong, X.; Shen, Y.; Yang, J.; Ye, X.; Zhou, L.; et al. Role of Stromal Cell-Derived Factor-1 in Patients With Non-ST Elevation Acute Coronary Syndrome. Int. Heart J. 2014, 55, 219–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuoka, S.; Uematsu, M.; Nakamura, T.; Shimizu, T.; Futamata, M.; Obata, J.-E.; Fujioka, D.; Nakamura, K.; Yoshizaki, T.; Kugiyama, K. High levels of stromal cell-derived factor-1α predict secondary cardiac events in stable patients with a history of myocardial infarction. J. Cardiol. 2017, 69, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Mahdessian, H.; Perisic Matic, L.; Lengquist, M.; Gertow, K.; Sennblad, B.; Baldassarre, D.; Veglia, F.; Humphries, S.E.; Rauramaa, R.; de Faire, U.; et al. Integrative studies implicate matrix metalloproteinase-12 as a culprit gene for large-artery atherosclerotic stroke. J. Intern. Med. 2017, 282, 429–444. [Google Scholar] [CrossRef]
- Jguirim-Souissi, I.; Jelassi, A.; Addad, F.; Hassine, M.; Najah, M.; Ben Hamda, K.; Maatouk, F.; Ben Farhat, M.; Bouslema, A.; Rouis, M.; et al. Plasma Metalloproteinase-12 and Tissue Inhibitor of Metalloproteinase-1 Levels and Presence, Severity, and Outcome of Coronary Artery Disease. Am. J. Cardiol. 2007, 100, 23–27. [Google Scholar] [CrossRef]
- Cummings, D.M.; King, D.E.; Mainous, A.G.; Geesey, M.E. Combining serum biomarkers: The association of C-reactive protein, insulin sensitivity, and homocysteine with cardiovascular disease history in the general US population. Eur. J. Cardiovasc. Prev. Rehabil. 2006, 13, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Vassalle, C. New biomarkers and traditional cardiovascular risk scores: Any crystal ball for current effective advice and future exact prediction? Clin. Chem. Lab. Med. 2018, 56, 1803–1805. [Google Scholar] [CrossRef]
- Wang, J.; Tan, G.-J.; Han, L.-N.; Bai, Y.-Y.; He, M.; Liu, H.-B. Novel biomarkers for cardiovascular risk prediction. J. Geriatr. Cardiol. 2017, 14, 135–150. [Google Scholar]
- Cozlea, D.; Farcas, D.; Nagy, A.; Keresztesi, A.; Tifrea, R.; Cozlea, L.; Carașca, E. The impact of C reactive protein on global cardiovascular risk on patients with coronary artery disease. Curr. Heal Sci. J. 2013, 39, 225–231. [Google Scholar]
- Döring, Y.; Pawig, L.; Weber, C.; Noels, H. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol. 2014, 5, 212. [Google Scholar] [PubMed]
- Irvine, K.M.; Andrews, M.R.; Fernandez-Rojo, M.A.; Schroder, K.; Burns, C.J.; Su, S.; Wilks, A.F.; Parton, R.G.; Hume, D.A.; Sweet, M.J. Colony-stimulating factor-1 (CSF-1) delivers a proatherogenic signal to human macrophages. J. Leukoc. Biol. 2009, 85, 278–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döring, Y.; Noels, H.; van der Vorst, E.P.C.; Neideck, C.; Egea, V.; Drechsler, M.; Mandl, M.; Pawig, L.; Jansen, Y.; Schröder, K.; et al. Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial IntegrityClinical Perspective. Circulation 2017, 136, 388–403. [Google Scholar] [CrossRef] [PubMed]
- Merckelbach, S.; Van Der Vorst, E.P.C.; Kallmayer, M.; Rischpler, C.; Burgkart, R.; Döring, Y.; de Borst, G.J.; Schwaiger, M.; Eckstein, H.-H.; Weber, C.; et al. Expression and Cellular Localization of CXCR4 and CXCL12 in Human Carotid Atherosclerotic Plaques. Thromb. Haemost. 2018, 118, 195–206. [Google Scholar] [CrossRef] [PubMed]
No Clinical Atherosclerosis (n = 178) | Clinical Atherosclerosis (n = 120) | p | |
---|---|---|---|
Sex (male) | 123 (69.1) | 88 (73.3) | 0.43 |
Age (years) | 61 (56–68) | 74 (68–82) | <0.001 |
BMI (kg/m2) | 28.7 (25.7–31.5) | 28.6 (26.4–32.3) | 0.39 |
Abdominal perimeter (cm) | 102.2 ± 11.8 | 105.1 ± 11.5 | 0.04 |
Hypertension (yes) | 117 (65.7) | 98 (81.7) | 0.003 |
Diabetes (yes) | 46 (25.8) | 73 (60.8) | <0.001 |
Dyslipidaemia (yes) | 136 (76.4) | 106 (88.3) | 0.016 |
Systolic BP (mmHg) | 136 ± 18 | 137 ± 20 | 0.75 |
Diastolic BP (mmHg) | 84 ± 10 | 72 ± 16 | <0.001 |
HbA1c (yes) | 5.6 (5.4–5.9) | 6 (5.5–6.8) | <0.001 |
Cholesterol (mg/dL) | 184 (158–207) | 154 (130–175) | <0.001 |
HDL-C (mg/dL) | 57 (44–68) | 45 (36.5–56) | <0.001 |
LDL-C (mg/dL) | 107 (80–134) | 79 (59–99) | <0.001 |
Triglycerides (mg/dL) | 100 (72–136) | 110 (81–193) | 0.01 |
Creatinine (mg/dL) | 0.9 (0.8–1) | 1.16 (0.9–1.5) | <0.001 |
Smoking (yes) | 32 (18) | 15 (12.5) | 0.2 |
Alcohol (yes) | 38 (21.3) | 14 (11.9) | 0.031 |
PREDIMED score | 9 (7–11) | 8 (7–10) | 0.05 |
SDF1 (ng/mL) | 2.30 ± 0.49 | 2.72 ± 0.94 | <0.001 |
MMP12 (pg/mL) a | 358.5 (241.5–553.5) | 501 (282–768) | 0.002 |
CRP (mg/dL) a | 0.12 (0.07–0.31) | 0.24 (0.13–1) | <0.001 |
SDF1 OR (95%IC), p | MMP12a OR (95%IC), p | CRPa OR (95%IC), p | |
Hypertension | 1.23 (0.85–1.76) 0.26 | 1.56 (1.12–2.17) 0.008 | 1.22 (1.04–1.41) 0.012 |
Diabetes mellitus | 0.63 (0.45–0.89) 0.008 | 1.56 (1.13–2.15) 0.007 | 1.34 (1.17–1.52) <0.001 |
Dyslipidaemia | 0.96 (0.64–1.44) 0.856 | 1.29 (0.9–1.86) 0.17 | 1.4 (1.08–1.82) 0.012 |
Obesity (BMI > 35) | 0.82 (0.54–1.25) 0.36 | 1.35 (0.91–2) 0.13 | 1.09 (0.97–1.23) 0.14 |
Smoking (current) | 0.54 (0.33–0.87) 0.54 | 0.75 (0.51–1.1) 0.14 | 0.9 (0.76–1.1) 0.29 |
Alcohol (>5/week) | 0.82 (0.39–0.97) 0.035 | 0.84 (0.58–1.22) 0.37 | 0.81 (0.67–0.98) 0.028 |
SDF1 (ng/mL) | MMP12 (pg/mL) a | CRP (mg/dL) a | ||||
---|---|---|---|---|---|---|
R | P | R | P | R | P | |
Cholesterol (mg/dL) | 0.12 | 0.03 | ||||
HDL-C (mg/dL) | −0.17 | 0.003 | −0.26 | <0.001 | −0.42 | <0.001 |
HbA1c (%) | −0.12 | 0.035 | 0.25 | <0.001 | 0.28 | <0.001 |
Diastolic BP (mmHg) | 0.24 | <0.001 | −0.17 | 0.004 | −0.49 | <0.001 |
Waist (cm) | 0.16 | 0.008 | 0.14 | 0.024 | ||
BMI | 0.17 | 0.003 | 0.17 | 0.005 | ||
Creatinine (mg/dL) | 0.27 | <0.001 | 0.26 | <0.001 | 0.53 | <0.001 |
CRP (mg/dL) a | 0.42 | <0.001 | 0.31 | <0.001 | - | - |
SDF1 (ng/mL) | - | - | 0.1 | NS | - | - |
PREDIMED score | −0.013 | 0.024 | −0.13 | 0.03 | −0.14 | 0.019 |
OR (IC 95%) | p | ||
---|---|---|---|
SDF1 | Crude | 2.4 (1.6–3.5) | <0.001 |
Model 1 | 1.6 (1.1–2.4) | 0.018 | |
Model 2 | 2.3 (1.4–3.6) | <0.001 | |
Model 3 | 2.4 (1.5–3.9) | 0.001 | |
MMP12 a | Crude | 1.6 (1.2–2.3) | 0.002 |
Model 1 | 1.5 (1.1–2.2) | 0.027 | |
Model 2 | 1.4 (0.9–2.0) | 0.1 | |
Model 3 | 1.3 (0.9–2.3) | 0.17 | |
CRP a | Crude | 1.9 (1.6–2.3) | <0.001 |
Model 1 | 1.6 (1.3–2.0) | <0.001 | |
Model 2 | 1.6 (1.3–1.9) | <0.001 | |
Model 3 | 1.6 (1.3–1.9) | <0.001 |
SDF1 | ||||
<2.46 ng/mL OR (95% CI) | >2.46 ng/mL OR (95% CI) | p | ||
N | 162 | 136 | ||
Crude | 1 (ref) | 2.8 (1.8–4.6) | <0.001 | |
Model 1 | 1 (ref) | 1.6 (0.9–2.9) | 0.088 | |
Model 2 | 1 (ref) | 2.4 (1.3–4.5) | 0.006 | |
Model 3 | 1 (ref) | 2.3 (1.2–4.4) | 0.012 | |
CRP | ||||
<0.24 mg/dL OR (95% CI) | >0.24 mg/dL OR (95% CI) | p | ||
N | 184 | 114 | ||
Crude | 1 (ref) | 2.2 (1.3–3.5) | 0.002 | |
Model 1 | 1 (ref) | 1.3 (0.7–2.3) | 0.4 | |
Model 2 | 1 (ref) | 1.2 (0.6–2.1) | 0.62 | |
Model 3 | 1 (ref) | 1.3 (0.7–2.5) | 0.37 | |
Categories of Combination Inflammatory Biomarker | ||||
G1 OR (95% CI) | G2 OR (95% CI) | G3 OR (95% CI) | p | |
N | 115 | 116 | 67 | |
Crude | 1 (ref) | 1.8 (1.0–3.1) | 4.9 (2.5–9.3) | <0.001 |
Model 1 | 1 (ref) | 1.2 (0.7–2.3) | 2.0 (0.9–4.3) | 0.09 |
Model 2 | 1 (ref) | 1.5 (0.8–3.0) | 2.5 (1.1–5.6) | 0.032 |
Model 3 | 1 (ref) | 1.7 (0.8–3.4) | 2.8 (1.2–6.8) | 0.022 |
Without Plaque (n = 64) | With Plaque (n = 234) | p | |
---|---|---|---|
Sex (male) | 36 (53) | 175 (76) | 0.32 |
Age (years) | 63 (55–76) | 67 (60–76) | 0.15 |
BMI (kg/m2) | 27.3 (25.7–30.4) | 28.6 (26.1–32.0) | 0.13 |
Abdominal perimeter (cm) | 101.5 ± 13.6 | 104.0 ± 11.1 | 0.13 |
Hypertension (yes) | 50 (73.5) | 165 (71.7) | 0.64 |
Diabetes (yes) | 23 (33.8) | 96 (41.7) | 0.28 |
Dyslipidaemia (yes) | 49 (72.1) | 193 (83.9) | 0.07 |
Systolic BP (mmHg) | 135.6 ± 18.3 | 136.3 ± 19 | 0.77 |
Diastolic BP (mmHg) | 77.6 ± 13.3 | 79.1 ± 13.9 | 0.43 |
HbA1c (%) | 5.7 (5.4–6.3) | 5.7 (5.5–6.3) | 0.81 |
Cholesterol (mg/dL) | 168 (147–203) | 169 (148–198) | 0.74 |
HDL-C (mg/dL) | 55 (39–67) | 50 (42–62) | 0.71 |
LDL-C (mg/dL) | 94 (70–127) | 91 (72–120) | 0.52 |
Triglycerides (mg/dL) | 98 (70–130) | 108 (78–149,5) | 0.16 |
Creatinine (mg/dL) | 1 (0.8–1.18) | 1 (0.8–1) | 0.8 |
Smoking (yes) | 9 (13.2) | 38 (16.5) | 0.51 |
Alcohol (yes) | 7 (10.3) | 45 (6.5) | 0.08 |
PREDIMED score | 9 (8–10) | 9 (7–10) | 0.98 |
SDF1 (ng/mL) | 2.5 ± 0.9 | 2.5 ± 0.7 | 0.85 |
MMP12 a (pg/mL) | 381 (228–591) | 424 (261–666) | 0.11 |
CRP a (mg/dL) | 0.18 (0.07–0.54) | 0.17 (0.08–0.4) | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos-Jubilar, M.; Orbe, J.; Roncal, C.; Machado, F.J.D.; Rodriguez, J.A.; Fernández-Montero, A.; Colina, I.; Rodil, R.; Pastrana, J.C.; Páramo, J.A. Association of SDF1 and MMP12 with Atherosclerosis and Inflammation: Clinical and Experimental Study. Life 2021, 11, 414. https://doi.org/10.3390/life11050414
Marcos-Jubilar M, Orbe J, Roncal C, Machado FJD, Rodriguez JA, Fernández-Montero A, Colina I, Rodil R, Pastrana JC, Páramo JA. Association of SDF1 and MMP12 with Atherosclerosis and Inflammation: Clinical and Experimental Study. Life. 2021; 11(5):414. https://doi.org/10.3390/life11050414
Chicago/Turabian StyleMarcos-Jubilar, María, Josune Orbe, Carmen Roncal, Florencio J. D. Machado, José Antonio Rodriguez, Alejandro Fernández-Montero, Inmaculada Colina, Raquel Rodil, Juan C. Pastrana, and José A. Páramo. 2021. "Association of SDF1 and MMP12 with Atherosclerosis and Inflammation: Clinical and Experimental Study" Life 11, no. 5: 414. https://doi.org/10.3390/life11050414
APA StyleMarcos-Jubilar, M., Orbe, J., Roncal, C., Machado, F. J. D., Rodriguez, J. A., Fernández-Montero, A., Colina, I., Rodil, R., Pastrana, J. C., & Páramo, J. A. (2021). Association of SDF1 and MMP12 with Atherosclerosis and Inflammation: Clinical and Experimental Study. Life, 11(5), 414. https://doi.org/10.3390/life11050414