Functional Analysis of Brain Imaging Suggests Changes in the Availability of mGluR5 and Altered Connectivity in the Cerebral Cortex of Long-Term Abstaining Males with Alcohol Dependence: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Assessments
2.3. Scan Protocol for [11C]ABP688 PET Imaging
2.4. Scan Protocol for Resting-State fMRI
2.5. Image Analysis
2.5.1. [11C]ABP688 PET Imaging
2.5.2. [11C]ABP688 BPND Seed-Based Resting-State fMRI
2.6. Statistical Analysis
2.6.1. [11C]ABP688 PET Imaging
2.6.2. Functional Connectivity Using Resting-State fMRI
3. Results
3.1. Between-Group Comparisons of Regional mGluR5 Availability
3.2. Correlation between Clinical Variables and Regional mGluR5 Availability
3.3. [11C]ABP688 BPND Seed-Based rs-Functional Connectivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krystal, J.H.; Petrakis, I.L.; Limoncelli, D.; Nappi, S.K.; Trevisan, L.; Pittman, B.; D’Souza, D.C. Characterization of the interactive effects of glycine and d-cycloserine in men: Further evidence for enhanced nmda receptor function associated with human alcohol dependence. Neuropsychopharmacology 2010, 36, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Frye, M.A.; Hinton, D.J.; Karpyak, V.M.; Biernacka, J.M.; Gunderson, L.J.; Geske, J.; Feeder, S.E.; Choi, D.; Port, J.D. Elevated glutamate levels in the left dorsolateral prefrontal cortex are associated with higher cravings for alcohol. Alcohol. Clin. Exp. Res. 2016, 40, 1609–1616. [Google Scholar] [CrossRef]
- Frischknecht, U.; Hermann, D.; Tunc-Skarka, N.; Wang, G.-Y.; Sack, M.; van Eijk, J.; Demirakca, T.; Falfan-Melgoza, C.; Krumm, B.; Dieter, S.; et al. Negative association between MR-spectroscopic glutamate markers and gray matter volume after alcohol withdrawal in the hippocampus: A translational study in humans and rats. Alcohol. Clin. Exp. Res. 2017, 41, 323–333. [Google Scholar] [CrossRef]
- Goldstein, R.Z.; Volkow, N.D. Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. Am. J. Psychiatry 2002, 159, 1642–1652. [Google Scholar] [CrossRef]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Nahar, L.; Grant, C.A.; Hewett, C.; Cortes, D.; Reker, A.N.; Kang, S.; Choi, D.; Nam, H.W. Regulation of Pv-specific interneurons in the medial prefrontal cortex and reward-seeking behaviors. J. Neurochem. 2021, 156, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Smiley, C.E.; McGonigal, J.T.; Valvano, T.; Newsom, R.J.; Otero, N.; Gass, J.T. The infralimbic cortex and mGlu5 mediate the effects of chronic intermittent ethanol exposure on fear learning and memory. Psychopharmacology 2020, 237, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Pfarr, S.; Meinhardt, M.W.; Klee, M.L.; Hansson, A.C.; Vengeliene, V.; Schönig, K.; Bartsch, D.; Hope, B.; Spanagel, R.; Sommer, W.H. Losing control: Excessive alcohol seeking after selective inactivation of cue-responsive neurons in the infralimbic cortex. J. Neurosci. 2015, 35, 10750–10761. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, C.M.; Cleva, R.M.; Hood, L.E.; Olive, M.F.; Gass, J.T. mGluR5 receptors in the basolateral amygdala and nucleus accumbens regulate cue-induced reinstatement of ethanol-seeking behavior. Pharmacol. Biochem. Behav. 2012, 101, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Holmes, A.; Spanagel, R.; Krystal, J.H. Glutamatergic targets for new alcohol medications. Psychopharmacology 2013, 229, 539–554. [Google Scholar] [CrossRef] [Green Version]
- Goodwani, S.; Saternos, H.; Alasmari, F.; Sari, Y. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci. Biobehav. Rev. 2017, 77, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Lüscher, C.; Huber, K.M. Group 1 mGluR-dependent synaptic long-term depression: Mechanisms and implications for circuitry and disease. Neuron 2010, 65, 445–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyers, J.L.; Salling, M.C.; Almli, L.; Ratanatharathorn, A.; Uddin, M.; Galea, S.; Wildman, D.; Aiello, A.E.; Bradley, B.; Ressler, K.J.; et al. Frequency of alcohol consumption in humans; the role of metabotropic glutamate receptors and downstream signaling pathways. Transl. Psychiatry 2015, 5, e586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lominac, K.D.; Kapasova, Z.; Hannun, R.A.; Patterson, C.; Middaugh, L.D.; Szumlinski, K.K. Behavioral and neurochemical interactions between Group 1 mGluR antagonists and ethanol: Potential insight into their anti-addictive properties. Drug Alcohol Depend. 2006, 85, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.; Short, J.; Lawrence, A. Cue-conditioned alcohol seeking in rats following abstinence: Involvement of metabotropic glutamate 5 receptors. Br. J. Pharmacol. 2010, 159, 534–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, M.K.; Kirchhoff, J.; Djouma, E.; Lawrence, A.J. Metabotropic glutamate 5 receptors regulate sensitivity to ethanol in mice. Int. J. Neuropsychopharmacology 2008, 11, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Schumann, G.; Johann, M.; Frank, J.; Preuss, U.; Dahmen, N.; Laucht, M.; Rietschel, M.; Rujescu, D.; Lourdusamy, A.; Clarke, T.-K.; et al. Systematic analysis of glutamatergic neurotransmission genes in alcohol dependence and adolescent risky drinking behavior. Arch. Gen. Psychiatry 2008, 65, 826–838. [Google Scholar] [CrossRef]
- Akkus, F.; Ametamey, S.M.; Treyer, V.; Burger, C.; Johayem, A.; Umbricht, D.; Mancilla, B.G.; Sovago, J.; Buck, A.; Hasler, G. Marked global reduction in mGluR5 receptor binding in smokers and ex-smokers determined by [11C]ABP688 positron emission tomography. Proc. Natl. Acad. Sci. USA 2013, 110, 737–742. [Google Scholar] [CrossRef] [Green Version]
- Hulka, L.M.; Treyer, V.; Scheidegger, M.; Preller, K.H.; Vonmoos, M.; Baumgartner, M.R.; Johayem, A.; Ametamey, S.M.; Buck, A.; Seifritz, E.; et al. Smoking but not cocaine use is associated with lower cerebral metabotropic glutamate receptor 5 density in humans. Mol. Psychiatry 2013, 19, 625–632. [Google Scholar] [CrossRef] [Green Version]
- Martinez, D.; Slifstein, M.; Nabulsi, N.; Grassetti, A.; Urban, N.B.; Perez, A.; Liu, F.; Lin, S.-F.; Ropchan, J.; Mao, X.; et al. Imaging glutamate homeostasis in cocaine addiction with the metabotropic glutamate receptor 5 positron emission tomography radiotracer [11C]ABP688 and magnetic resonance spectroscopy. Biol. Psychiatry 2014, 75, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Kupila, J.; Kärkkäinen, O.; Laukkanen, V.; Tupala, E.; Tiihonen, J.; Storvik, M. mGluR1/5 receptor densities in the brains of alcoholic subjects: A whole-hemisphere autoradiography study. Psychiatry Res. Neuroimaging 2013, 212, 245–250. [Google Scholar] [CrossRef]
- Akkus, F.; Mihov, Y.; Treyer, V.; Ametamey, S.M.; Johayem, A.; Senn, S.; Rösner, S.; Buck, A.; Hasler, G. Metabotropic glutamate receptor 5 binding in male patients with alcohol use disorder. Transl. Psychiatry 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Leurquin-Sterk, G.; Ceccarini, J.; Crunelle, C.L.; De Laat, B.; Verbeek, J.; Deman, S.; Neels, H.; Bormans, G.; Peuskens, H.; Van Laere, K. Lower limbic metabotropic glutamate receptor 5 availability in alcohol dependence. J. Nucl. Med. 2018, 59, 682–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccarini, J.; Leurquin-Sterk, G.; Crunelle, C.L.; De Laat, B.; Bormans, G.; Peuskens, H.; Van Laere, K. Recovery of decreased metabotropic glutamate receptor 5 availability in abstinent alcohol-dependent patients. J. Nucl. Med. 2019, 61, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Sebold, M.; Nebe, S.; Garbusow, M.; Guggenmos, M.; Schad, D.J.; Beck, A.; Kuitunen-Paul, S.; Sommer, C.; Frank, R.; Neu, P.; et al. When habits are dangerous: Alcohol expectancies and habitual decision making predict relapse in alcohol dependence. Biol. Psychiatry 2017, 82, 847–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camchong, J.; Endres, M.; Fein, G. Chapter 14—Decision making, risky behavior, and alcoholism. In Handbook of Clinical Neurology; Sullivan, E.V., Pfefferbaum, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 125, pp. 227–236. [Google Scholar]
- Lui, S.; Li, T.; Deng, W.; Jiang, L.; Wu, Q.; Tang, H.; Yue, Q.; Huang, X.; Chan, R.C.; Collier, D.A.; et al. Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging. Arch. Gen. Psychiatry 2010, 67, 783–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abi-Dargham, A.; Horga, G. The search for imaging biomarkers in psychiatric disorders. Nat. Med. 2016, 22, 1248–1255. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV, 4th ed.; American Psychiatric Press: Washington, DC, USA, 1994. [Google Scholar]
- First, M.B.; Spitzer, R.L.; Gibbon, M.; Williams, J.B.W. Structured Clinical Interview for DSM-IV Axis I Disorders Research Version (SCID-I); New York State Psychiatric Institute: New York, NY, USA, 1996. [Google Scholar]
- US Department of Health and Human Services. Helping Patients Who Drink Too Much: A Clinician’s Guide; National Institutes of Health: Bethesda, MD, USA, 2005.
- Selzer, M.L. The michigan alcoholism screening test: The quest for a new diagnostic instrument. Am. J. Psychiatry 1971, 127, 1653–1658. [Google Scholar] [CrossRef]
- Anton, R.F.; Moak, D.H.; Latham, P. The obsessive compulsive drinking scale: A self-rated instrument for the quantification of thoughts about alcohol and drinking behavior. alcohol. Clin. Exp. Res. 1995, 19, 92–99. [Google Scholar] [CrossRef]
- Chang, H.; Cheon, J. The Preliminary Study for the Application of the Michigan Alcoholism Screening Test in Korea. J. Korean Neuropsychiatr. Assoc. 1985, 24, 46–53. [Google Scholar]
- Choi, M.J.; Lee, E.; Lee, B.O.; Lee, P.G.; Oh, B.H.; Lee, C.H.; Namkoong, K. The study on reliability and validity of korean versions of obsessive compulsive drinking scale for outpatient of alcohol dependence. J. Korean Neuropsychiatr. Assoc. 2002, 41, 98–109. [Google Scholar]
- Ametamey, S.M.; Kessler, L.J.; Honer, M.; Wyss, M.T.; Buck, A.; Hintermann, S.; Auberson, Y.P.; Gasparini, F.; Schubiger, P.A. Radiosynthesis and preclinical evaluation of 11C-ABP688 as a probe for imaging the metabotropic glutamate receptor subtype 5. J. Nucl. Med. 2006, 47, 698–705. [Google Scholar] [PubMed]
- Innis, R.B.; Cunningham, V.J.; Delforge, J.; Fujita, M.; Gjedde, A.; Gunn, R.N.; Holden, J.; Houle, S.; Huang, S.-C.; Ichise, M.; et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. Br. J. Pharmacol. 2007, 27, 1533–1539. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Carson, R.E. Noise Reduction in the Simplified Reference Tissue Model for Neuroreceptor Functional Imaging. Br. J. Pharmacol. 2002, 22, 1440–1452. [Google Scholar] [CrossRef] [Green Version]
- DeLorenzo, C.; Kumar, J.S.D.; Mann, J.J.; Parsey, R.V. In vivo variation in metabotropic glutamate receptor subtype 5 binding using positron emission tomography and [11C]ABP688. Br. J. Pharmacol. 2011, 31, 2169–2180. [Google Scholar] [CrossRef] [Green Version]
- DeLorenzo, C.; Milak, M.S.; Brennan, K.G.; Kumar, J.S.D.; Mann, J.J.; Parsey, R.V. In vivo positron emission tomography imaging with [11C]ABP688: Binding variability and specificity for the metabotropic glutamate receptor subtype 5 in baboons. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1083–1094. [Google Scholar] [CrossRef] [Green Version]
- Dubois, J.M.; Rousset, O.G.; Rowley, J.; Porras-Betancourt, M.; Reader, A.J.; Labbe, A.; Massarweh, G.; Soucy, J.-P.; Rosa-Neto, P.; Kobayashi, E. Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [11C]ABP688 PET. Eur. J. Nucl. Med. Mol. Imaging 2015, 43, 152–162. [Google Scholar] [CrossRef]
- Elmenhorst, D.; Minuzzi, L.; Aliaga, A.; Rowley, J.; Massarweh, G.; Diksic, M.; Bauer, A.; Rosa-Neto, P. In vivo and in vitro Validation of Reference Tissue Models for the mGluR5 Ligand [11C]ABP688. Br. J. Pharmacol. 2010, 30, 1538–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathews, W.B.; Kuwabara, H.; Stansfield, K.; Valentine, H.; Alexander, M.; Kumar, A.; Hilton, J.; Dannals, R.F.; Wong, D.F.; Gasparini, F. Dose-dependent, saturable occupancy of the metabotropic glutamate subtype 5 receptor by fenobam as measured with [11C]ABP688 PET imaging. Synapse 2014, 68, 565–573. [Google Scholar] [CrossRef]
- Daggett, L.; Sacaan, A.; Akong, M.; Rao, S.; Hess, S.; Liaw, C.; Urrutia, A.; Jachec, C.; Ellis, S.; Dreessen, J.; et al. Molecular and functional characterization of recombinant human metabotropic glutamate receptor subtype 5. Neuropharmacology 1995, 34, 871–886. [Google Scholar] [CrossRef]
- Berthele, A.; Platzer, S.; Laurie, D.J.; Weis, S.; Sommer, B.; Zieglgänsberger, W.; Conrad, B.; Tölle, T.R. Expression of metabotropic glutamate receptor subtype mRNA (mGluR1–8) in human cerebellum. NeuroReport 1999, 10, 3861–3867. [Google Scholar] [CrossRef]
- Deschwanden, A.; Karolewicz, B.; Feyissa, A.M.; Treyer, V.; Ametamey, S.M.; Johayem, A.; Burger, C.; Auberson, Y.P.; Sovago, J.; Stockmeier, C.A.; et al. Reduced metabotropic glutamate Receptor 5 density in major depression determined by [11C]ABP688 PET and postmortem study. Am. J. Psychiatry 2011, 168, 727–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazoyera, N.-; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Mawlawi, O.; Martinez, D.; Slifstein, M.; Broft, A.; Chatterjee, R.; Hwang, D.-R.; Huang, Y.; Simpson, N.; Ngo, K.; Van Heertum, R.; et al. Imaging human mesolimbic dopamine transmission with positron emission Tomography: I. accuracy and precision of D2 receptor parameter measurements in ventral striatum. Br. J. Pharmacol. 2001, 21, 1034–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, D.; Slifstein, M.; Broft, A.; Mawlawi, O.; Hwang, D.-R.; Huang, Y.; Cooper, T.B.; Kegeles, L.S.; Zarahn, E.; Abi-Dargham, A.; et al. Imaging human mesolimbic dopamine transmission with positron emission tomography. part ii: Amphetamine-induced dopamine release in the functional subdivisions of the striatum. Br. J. Pharmacol. 2003, 23, 285–300. [Google Scholar] [CrossRef] [Green Version]
- Lovinger, D.M.; Alvarez, V.A. Alcohol and basal ganglia circuitry: Animal models. Neuropharmacology 2017, 122, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012, 2, 125–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behzadi, Y.; Restom, K.; Liau, J.; Liu, T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 2007, 37, 90–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 2006, 31, 968–980. [Google Scholar] [CrossRef]
- Damoiseaux, J.S.; Rombouts, S.A.R.B.; Barkhof, F.; Scheltens, P.; Stam, C.J.; Smith, S.M.; Beckmann, C.F. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA 2006, 103, 13848–13853. [Google Scholar] [CrossRef] [Green Version]
- Martinez, D.; Slifstein, M.; Gil, R.; Hwang, D.-R.; Huang, Y.; Perez, A.; Frankle, W.G.; Laruelle, M.; Krystal, J.; Abi-Dargham, A. Positron emission tomography imaging of the serotonin transporter and 5-HT1A receptor in alcohol dependence. Biol. Psychiatry 2009, 65, 175–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Wang, G.-J.; Telang, F.; Fowler, J.S.; Logan, J.; Jayne, M.; Ma, Y.; Pradhan, K.; Wong, C. Profound decreases in dopamine release in striatum in detoxified alcoholics: Possible orbitofrontal involvement. J. Neurosci. 2007, 27, 12700–12706. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.; Holmes, A.; Poline, J.-B.; Price, C.; Frith, C. Detecting Activations in PET and fMRI: Levels of Inference and Power. NeuroImage 1996, 4, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Gaura, V.; Bachoud-Lévi, A.-C.; Ribeiro, M.; Nguyen, J.; Frouin, V.; Baudic, S.; Brugières, P.; Mangin, J.; Boissé, M.; Palfi, S.; et al. Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain 2004, 127, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillet, A.; Thobois, S.; Fraix, V.; Redouté, J.; Le Bars, D.; Lavenne, F.; Derost, P.; Durif, F.; Bloem, B.R.; Krack, P.; et al. Neural substrates of levodopa-responsive gait disorders and freezing in advanced Parkinson’s disease: A kinesthetic imagery approach. Hum. Brain Mapp. 2015, 36, 959–980. [Google Scholar] [CrossRef] [Green Version]
- Simonyi, A.; Christian, M.R.; Sun, A.Y.; Sun, G.Y. Chronic ethanol-induced subtype- and subregion-specific decrease in the mRNA expression of metabotropic glutamate receptors in rat hippocampus. Alcohol. Clin. Exp. Res. 2004, 28, 1419–1423. [Google Scholar] [CrossRef]
- Alele, P.E.; Devaud, L.L. Differential adaptations in GABAergic and glutamatergic systems during ethanol withdrawal in male and female rats. Alcohol. Clin. Exp. Res. 2005, 29, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Dahchour, A. Excitatory and inhibitory amino acid changes during repeated episodes of ethanol withdrawal: An in vivo microdialysis study. Eur. J. Pharmacol. 2003, 459, 171–178. [Google Scholar] [CrossRef]
- Acheson, A.; Franklin, C.; Cohoon, A.J.; Glahn, D.C.; Fox, P.T.; Lovallo, W.R. Anomalous temporoparietal activity in individuals with a family history of alcoholism: Studies from the Oklahoma Family Health Patterns Project. Alcohol. Clin. Exp. Res. 2014, 38, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Akkus, F.; Treyer, V.; Johayem, A.; Ametamey, S.M.; Mancilla, B.G.; Sovago, J.; Buck, A.; Hasler, G. Association of long-term nicotine abstinence with normal metabotropic glutamate Receptor-5 binding. Biol. Psychiatry 2016, 79, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Rominger, A.; Cumming, P.; Xiong, G.; Koller, G.; Böning, G.; Wulff, M.; Zwergal, A.; Förster, S.; Reilhac, A.; Munk, O.; et al. [18F]fallypride PET measurement of striatal and extrastriatal dopamine D2/3 receptor availability in recently abstinent alcoholics. Addict. Biol. 2011, 17, 490–503. [Google Scholar] [CrossRef]
- Camchong, J.; Stenger, A.; Fein, G. Resting-State Synchrony in Long-Term Abstinent Alcoholics. Alcohol. Clin. Exp. Res. 2013, 37, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.M.; Van Wingen, G.; Brink, W.V.D.; Goudriaan, A.E. Resting state connectivity in alcohol dependent patients and the effect of repetitive transcranial magnetic stimulation. Eur. Neuropsychopharmacol. 2015, 25, 2230–2239. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, E.V.; Müller-Oehring, E.; Pitel, A.-L.; Chanraud, S.; Shankaranarayanan, A.; Alsop, D.C.; Rohlfing, T.; Pfefferbaum, A. A selective insular perfusion deficit contributes to compromised salience network connectivity in recovering alcoholic men. Biol. Psychiatry 2013, 74, 547–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raitamaa, L.; Huotari, N.; Korhonen, V.; Helakari, H.; Koivula, A.; Kananen, J.; Kiviniemi, V. Spectral analysis of physiological brain pulsations affecting the BOLD signal. Hum. Brain Mapp. 2021, 1–16. [Google Scholar] [CrossRef]
- Uddin, L.Q.; Kelly, A.C.; Biswal, B.B.; Castellanos, F.X.; Milham, M.P. Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Hum. Brain Mapp. 2009, 30, 625–637. [Google Scholar] [CrossRef] [Green Version]
- Cole, D.M.; Beckmann, C.F.; Searle, G.E.; Plisson, C.; Tziortzi, A.C.; Nichols, T.; Gunn, R.N.; Matthews, P.M.; Rabiner, E.A.; Beaver, J.D. Orbitofrontal connectivity with resting-state networks is associated with midbrain Dopamine D3 Receptor availability. Cereb. Cortex 2012, 22, 2784–2793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attwell, D.; Iadecola, C. The neural basis of functional brain imaging signals. Trends Neurosci. 2002, 25, 621–625. [Google Scholar] [CrossRef]
- Müller-Oehring, E.M.; Jung, Y.-C.; Pfefferbaum, A.; Sullivan, E.V.; Schulte, T. The Resting Brain of Alcoholics. Cereb. Cortex 2015, 25, 4155–4168. [Google Scholar] [CrossRef] [Green Version]
- Volkow, N.D.; Wiers, C.E.; Shokri-Kojori, E.; Tomasi, D.; Wang, G.-J.; Baler, R. Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: Studies with positron emission tomography. Neuropharmacology 2017, 122, 175–188. [Google Scholar] [CrossRef]
- Carzoli, K.L.; Sharfman, N.M.; Lerner, M.R.; Miller, M.C.; Holmgren, E.B.; Wills, T.A. Regulation of NMDA receptor plasticity in the bnst following adolescent alcohol exposure. Front. Cell. Neurosci. 2019, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Finn, D.A.; Hashimoto, J.G.; Cozzoli, D.K.; Helms, M.L.; Nipper, M.A.; Kaufman, M.N.; Wiren, K.M.; Guizzetti, M. Binge ethanol drinking produces sexually divergent and distinct changes in nucleus accumbens signaling cascades and pathways in adult C57BL/6J Mice. Front. Genet. 2018, 9, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roland, P.E.; Hilgetag, C.C.; Deco, G. Cortico-cortical communication dynamics. Front. Syst. Neurosci. 2014, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.; Hamill, T.G.; Connolly, B.; Jagoda, E.; Li, W.; Gibson, R.E. Species differences in mGluR5 binding sites in mammalian central nervous system determined using in vitro binding with [18F]F-PEB. Nucl. Med. Biol. 2007, 34, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
Variables | Alcohol Group (N = 12) | Control Group (N = 10) | p-Value |
---|---|---|---|
Age (years) a | 45.7 ± 7.2 | 39.8 ± 7.9 | 0.084 |
Smoker/Nonsmoker | 9/3 | 5/5 | 0.225 |
Number of cigarettes smoked (/day) a,b | 10.8 ± 9.5 | 5.1 ± 7.4 | 0.139 |
Duration of illness (years)a | 7.2 ± 3.9 | - | - |
Duration of alcohol abstinence (months) a | 28.4 ± 43.0 | - | - |
OCDS a | 11.2 ± 7.8 | - | - |
MAST a | 40.6 ± 5.7 | - | - |
Injected Dose (MBq) a | 607 ± 58 | 595 ± 100 | 0.731 |
Specific Activity (GBq/umol) a | 20.2 ± 9.1 | 12.9 ± 7.9 | 0.083 |
ROIs | [11C]ABP688 BPND Value | p-Value | Effect Size (Cohen’s d) | |
---|---|---|---|---|
Alcohol Group Mean (SD) | Control Group Mean (SD) | |||
ACG | 0.521 (0.171) | 0.598 (0.182) | 0.321 | 0.435 |
SFC | 0.447 (0.141) | 0.470 (0.133) | 0.705 | 0.164 |
MFC | 0.487 (0.152) | 0.520 (0.143) | 0.615 | 0.219 |
IFC | 0.467 (0.144) | 0.527 (0.139) | 0.331 | 0.427 |
STC | 0.525 (0.142) | 0.606 (0.140) | 0.195 | 0.573 |
MTC | 0.518 (0.156) | 0.575 (0.142) | 0.383 | 0.382 |
SPC | 0.300 (0.077) | 0.342 (0.098) | 0.275 | 0.480 |
IPC | 0.492 (0.140) | 0.543 (0.137) | 0.394 | 0.373 |
Hip | 0.459 (0.116) | 0.544 (0.141) | 0.137 | 0.662 |
Amy | 0.577 (0.174) | 0.660 (0.164) | 0.271 | 0.485 |
Tha | 0.325 (0.083) | 0.359 (0.099) | 0.394 | 0.372 |
Cau | 0.465 (0.143) | 0.531 (0.162) | 0.319 | 0.437 |
Put | 0.675 (0.181) | 0.725 (0.161) | 0.506 | 0.290 |
VS | 0.492 (0.154) | 0.576 (0.163) | 0.230 | 0.530 |
GP | 0.352 (0.105) | 0.331 (0.068) | 0.587 | 0.237 |
MNI Coordinate | Regions | Cluster Size | Cluster Volume (mm3) | [11C]ABP688 BPND (Mean ± SD) | T-Value | p-Value (Uncorr.) | FDRp | |
---|---|---|---|---|---|---|---|---|
Alcohol Group | Control Group | |||||||
Alcohol < Control | ||||||||
−48; −30; 2 | Left MTC | 124 | 419 | 0.316 ± 0.171 | 0.633 ± 0.176 | 4.602 | 0.0001 | 0.463 |
−32; −44; 47 | Left IPC | 25 | 84 | 0.341 ± 0.125 | 0.584 ± 0.169 | 3.957 | 0.0004 | 0.463 |
Alcohol > Control | ||||||||
−42; −27; 5 | Left STC | 80 | 270 | 0.414 ± 0.074 | 0.257 ± 0.064 | 5.951 | <0.0001 | 0.447 |
Clinical Variables | MNI Coordinate | Regions | Cluster Size | Cluster Volume (mm3) | T-Value | p-Value (Uncorr.) | FDRp |
---|---|---|---|---|---|---|---|
Duration of illness | |||||||
Negative correlation | 14; −45; 72 | Right postcentral cortex | 32 | 108 | 5.515 | <0.001 | 0.176 |
17; −87; 2 | Right calcarine fissure and surrounding cortex | 91 | 307 | 8.424 | 0.176 | ||
−44; −48; 14 | Left middle temporal cortex | 131 | 442 | 8.305 | 0.176 | ||
−44; −6; 60 | Left precentral cortex | 26 | 88 | 7.167 | 0.176 | ||
−48; −6; −15 | Left middle temporal cortex and superior temporal cortex | 44 | 149 | 7.456 | 0.176 | ||
Duration of alcohol abstinence | |||||||
Positive correlation | 53; −30; −6 | Right middle temporal cortex | 30 | 101 | 5.879 | <0.001 | 0.365 |
56; 14; 32 | Right inferior frontal cortex (opercular part) | 34 | 115 | 6.789 | 0.361 | ||
−35; −42; 65 | Left postcentral cortex | 24 | 81 | 7.058 | 0.361 | ||
−38; −17; 68 | Left precentral cortex | 53 | 179 | 6.969 | 0.361 | ||
−50; 14; −12 | Left superior temporal pole | 117 | 395 | 10.365 | 0.361 | ||
−32; −8; −17 | Left hippocampus | 32 | 108 | 9.016 | 0.361 | ||
−20; −36; −18 | Left fusiform gyrus | 35 | 118 | 5.458 | 0.377 | ||
−27; 24; −24 | Left inferior frontal cortex (orbital part) and superior temporal pole | 142 | 479 | 8.691 | 0.361 | ||
OCDS a | |||||||
Negative correlation | −21; 48; 30 | Left middle frontal cortex | 32 | 108 | 4.668 | <0.005 | 0.514 |
−62; −11; 39 | Left postcentral cortex | 28 | 95 | 9.347 | 0.514 | ||
−39; −29; 6 | Left Rolandic operculum, superior temporal cortex, and Heschl’s gyrus | 125 | 422 | 5.498 | 0.514 | ||
MAST a | |||||||
Positive correlation | 38; 23; 21 | Right inferior frontal cortex (triangular part) | 36 | 122 | 4.029 | <0.005 | 0.554 |
−32; −66; 32 | Left middle occipital cortex | 113 | 381 | 5.324 | 0.554 |
Seed | Regions | Functional Connectivity | p−Value (Uncorr.) | FDRp | |
---|---|---|---|---|---|
Alcohol Mean (SD) | Control Mean (SD) | ||||
Left middle temporal cortex | Left insular | 0.10 (0.16) | −0.06 (0.23) | 0.002 | 0.229 |
Right temporal pole | 0.28 (0.10) | 0.12 (0.14) | 0.008 | 0.358 | |
Left salience network (anterior insular part) | 0.34 (0.15) | 0.15 (0.16) | 0.010 | 0.358 | |
Left inferior parietal cortex | Left occipital pole | 0.14 (0.13) | −0.11 (0.13) | <0.001 | 0.027 |
Visual network (dorsal part) | 0.34 (0.19) | 0.02 (0.15) | <0.001 | 0.027 | |
Left lateral inferior occipital cortex | 0.28 (0.17) | 0.05 (0.19) | 0.006 | 0.334 | |
Left superior temporal cortex | Visual network (ventral part) | 0.14 (0.12) | −0.10 (0.19) | 0.002 | 0.280 |
Left occipital pole | 0.13 (0.13) | −0.11 (0.21) | 0.005 | 0.280 | |
Right occipital fusiform gyrus | 0.04 (0.09) | −0.10 (0.12) | 0.005 | 0.280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, Y.-H.; Kim, J.-H.; Kim, H.-K.; Son, Y.-D.; Cumming, P.; Kim, J.-H. Functional Analysis of Brain Imaging Suggests Changes in the Availability of mGluR5 and Altered Connectivity in the Cerebral Cortex of Long-Term Abstaining Males with Alcohol Dependence: A Preliminary Study. Life 2021, 11, 506. https://doi.org/10.3390/life11060506
Joo Y-H, Kim J-H, Kim H-K, Son Y-D, Cumming P, Kim J-H. Functional Analysis of Brain Imaging Suggests Changes in the Availability of mGluR5 and Altered Connectivity in the Cerebral Cortex of Long-Term Abstaining Males with Alcohol Dependence: A Preliminary Study. Life. 2021; 11(6):506. https://doi.org/10.3390/life11060506
Chicago/Turabian StyleJoo, Yo-Han, Jeong-Hee Kim, Hang-Keun Kim, Young-Don Son, Paul Cumming, and Jong-Hoon Kim. 2021. "Functional Analysis of Brain Imaging Suggests Changes in the Availability of mGluR5 and Altered Connectivity in the Cerebral Cortex of Long-Term Abstaining Males with Alcohol Dependence: A Preliminary Study" Life 11, no. 6: 506. https://doi.org/10.3390/life11060506
APA StyleJoo, Y. -H., Kim, J. -H., Kim, H. -K., Son, Y. -D., Cumming, P., & Kim, J. -H. (2021). Functional Analysis of Brain Imaging Suggests Changes in the Availability of mGluR5 and Altered Connectivity in the Cerebral Cortex of Long-Term Abstaining Males with Alcohol Dependence: A Preliminary Study. Life, 11(6), 506. https://doi.org/10.3390/life11060506