Spatial Distribution and Quantification of Mammographic Breast Density, and Its Correlation with BI-RADS Using an Image Segmentation Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database and Sample Population
2.2. Data Pre-Processing
2.3. Breast Tissue Segmentation and Quantification of Overall Percentage MBD in Segmented Images
2.4. Division into 48 Sub-Regions and Self-Defined Three Zones of the Breast
2.5. Spatial Autocorrelation
2.6. Statistical Methods
2.6.1. Age, MBD, Overall PD, and Zonal PDs
2.6.2. Analysis of Spatial Autocorrelation Data
2.6.3. Clustering of Breast Tissue Density
3. Results
3.1. Demographics of Women in This Study
3.2. Age and Quantification of the Segmented Overall Amount of MBD (Overall PD)
3.3. Spatial Distribution and BI-RADS Density Groups
3.4. Zonal PDs and BI-RADS Density Groups
3.5. Spatial Clustering Location and Age Group
4. Discussion
4.1. Age and Segmented Overall Amount of MBD (Overall PD)
4.2. Comparison of the Spatial Distribution of MBD and Zonal PDs with the Different BI-RADS Density Groups
4.3. Comparison of Spatial Clustering Locations with Age Groups
4.4. Limitations of this Study
4.5. Proposed Future Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- World Health Organization. WHO|Breast Cancer: Prevention and Control. Available online: https://www.who.int/cancer/detection/breastcancer/en/ (accessed on 30 April 2021).
- Checka, C.M.; Chun, J.E.; Schnabel, F.R.; Lee, J.; Toth, H. The Relationship of Mammographic Density and Age: Implications for Breast Cancer Screening. Am. J. Roentgenol. 2012, 198, W292–W295. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, M.J. Mammographic density. Measurement of mammographic density. Breast Cancer Res. 2008, 10, 209. [Google Scholar] [CrossRef]
- Pettersson, A.; Hankinson, S.E.; Willett, W.C.; Lagiou, P.; Trichopoulos, D.; Tamimi, R.M. Nondense mammographic area and risk of breast cancer. Breast Cancer Res. 2011, 13, R100. [Google Scholar] [CrossRef] [Green Version]
- Lam, P.B.; Vacek, P.M.; Geller, B.M.; Muss, H.B. The association of increased weight, body mass index, and tissue density with the risk of breast carcinoma in Vermont. Cancer 2000, 89, 369–375. [Google Scholar] [CrossRef]
- McCormack, V.A. Breast Density and Parenchymal Patterns as Markers of Breast Cancer Risk: A Meta-analysis. Cancer Epidemiol. Prev. Biomark. 2006, 15, 1159–1169. [Google Scholar] [CrossRef] [Green Version]
- Vacek, P.M.; Geller, B.M. A Prospective Study of Breast Cancer Risk Using Routine Mammographic Breast Density Measurements. Cancer Epidemiol. Prev. Biomark. 2004, 13, 715–722. [Google Scholar]
- Woods, R.W.; Sisney, G.S.; Salkowski, L.R.; Shinki, K.; Lin, Y.; Burnside, E.S. The Mammographic Density of a Mass Is a Significant Predictor of Breast Cancer. Radiology 2011, 258, 417–425. [Google Scholar] [CrossRef] [Green Version]
- American Cancer Society. Breast Cancer Facts & Figures. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2019-2020.pdf (accessed on 18 April 2021).
- Katz, J. Breast Cancer Risk Factors. Available online: https://emedicine.medscape.com/article/1945957-overview#a8 (accessed on 30 April 2021).
- McPherson, K.; Steel, C.; Dixon, J.M. ABC of Breast Diseases: Breast Cancer—Epidemiology, Risk Factors, and Genetics. BMJ 2000, 321, 624–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Tang, L.; Gandomkar, Z.; Heard, R.; Mello-Thoms, C.; Xiao, Q.; Gu, Y.; Di, G.; Nickson, C.; Shao, Z.; et al. Characteristics of Mammographic Breast Density and Associated Factors for Chinese Women: Results from an Automated Measurement. J. Oncol. 2019, 2019, 4910854. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, J. Breast Patterns as an Index of Risk for Developing Breast Cancer. Am. J. Roentgenol. 1976, 126, 1130–1137. [Google Scholar] [CrossRef]
- Boyd, N.F.; Martin, L.J.; Bronskill, M.; Yaffe, M.J.; Duric, N.; Minkin, S. Breast Tissue Composition and Susceptibility to Breast Cancer. J. Natl. Cancer Inst. 2010, 102, 1224–1237. [Google Scholar] [CrossRef] [Green Version]
- Saidin, N.; Sakim, H.A.M.; Ngah, U.K.; Shuaib, I.L. Segmentation of Breast Regions in Mammogram Based on Density: A Review. Int. J. Comput. Sci. Issues 2012, 9, 108–116. [Google Scholar]
- He, W.; Juette, A.; Denton, E.R.E.; Oliver, A.; Martí, R.; Zwiggelaar, R. A Review on Automatic Mammographic Density and Parenchymal Segmentation. Int. J. Breast Cancer 2015, 2015, 276217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, A.; Tortajada, M.; Lladó, X.; Freixenet, J.; Ganau, S.; Tortajada, L.; Vilagran, M.; Sentis, M.; Martí, R. Breast Density Analysis Using an Automatic Density Segmentation Algorithm. J. Digit. Imaging 2015, 28, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Apro, M.; Pal, S.; Dedijer, S. Evaluation of Single and Multi-Threshold Entropy-Based Algorithms for Folded Substrate Analysis. J. Graph. Eng. Des. 2011, 2, 1–9. [Google Scholar]
- Uyun, S.; Hartati, S.; Harjoko, A.; Choridah, L. A Comparative Study of Thresholding Algorithms on Breast Area and Fibroglandular Tissue. IJACSA 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.M.P.; McCormack, V.A.; Moss, S.M.; dos Santos Silva, I. The Spatial Distribution of Radiodense Breast Tissue: A Longitudinal Study. Breast Cancer Res. 2009, 11, R33. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.W.K.; Law, H.K.W. Mammographic Breast Density in Chinese Women: Spatial Distribution and Autocorrelation Patterns. PLoS ONE 2015, 10, e0136881. [Google Scholar] [CrossRef] [Green Version]
- Heath, M.; Bowyer, K.; Kopans, D.; Moore, R.; Kegelmeyer, P. The digital database for screening mammography. In Proceedings of the 5th International Workshop on Digital Mammography, Toronto, ON, Canada, 11–14 June 2000; Yaffe, M.J., Ed.; Medical Physics Publishing: Madison, WI, USA, 2001; pp. 212–218, ISBN 1-930524-00-5. [Google Scholar]
- American College of Radiology. Breast Imaging Reporting and Data System® (BI-RADS®); American College of Radiology: Reston, VA, USA, 1992. [Google Scholar]
- Kapur, J.N.; Sahoo, P.K.; Wong, A.K.C. A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram. Comput. Vision Graph. Image Process. 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Li, T. The Association of Measured Breast Tissue Characteristics with Mammographic Density and Other Risk Factors for Breast Cancer. Cancer Epidemiol. Prev. Biomark. 2005, 14, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Milanese, T.R.; Hartmann, L.C.; Sellers, T.A.; Frost, M.H.; Vierkant, R.A.; Maloney, S.D.; Pankratz, V.S.; Degnim, A.C.; Vachon, C.M.; Reynolds, C.A.; et al. Age-Related Lobular Involution and Risk of Breast Cancer. J. Natl. Cancer Inst. 2006, 98, 1600–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Breast Density | ||||||
---|---|---|---|---|---|---|
Less Dense Breasts | Denser Breasts | |||||
BI-RADS Density Group | A | B | C | D | Total | |
Number of Cases by Age group | Mature Women | 39 | 118 | 101 | 95 | 353 |
n (%) | (53.4) | (61.5) | (69.7) | (80.5) | (66.9) | |
Older Women | 34 | 74 | 44 | 23 | 175 | |
n (%) | (46.6) | (38.5) | (30.3) | (19.5) | (33.1) | |
All age combined | 73 | 192 | 145 | 118 | 528 | |
n (%) | (13.8) | (36.4) | (27.5) | (22.3) | (100) | |
Mean Age (year ± SD) | 61.8 ± 10.5 | 56.7 ± 11.3 | Independent t-test, p < 0.001 |
Chi-Square Test | Moran’s I (Counts) | p-Value | |
---|---|---|---|
Negative Autocorrelation Scattered Pattern | Positive Autocorrelation Clustered Pattern | ||
BI-RADS density group A Entirely fatty breasts (n = 73) | 19 (26.0%) | 54 (74.0%) | <0.001 |
BI-RADS density group B Scattered fibroglandular density breasts (n = 192) | 65 (33.9%) | 127 (66.1%) | <0.001 |
BI-RADS density group C Heterogeneously dense breasts (n = 145) | 78 (53.8%) | 67 (46.2%) | <0.001 |
BI-RADS density group D Extremely dense breasts (n = 118) | 60 (50.8%) | 58 (49.2%) | 0.030 |
Total (n = 528) | 222 (42.0%) | 306 (58.0%) | <0.001 |
Friedman Tests | p-Values | |
---|---|---|
Pair-Wise Comparison between BI-RADS Desnity Groups | Middle Zonal PD | Anterior Zonal PD |
A–B | 0.302 | 0.001 |
A–C | <0.001 | <0.001 |
A–D | <0.001 | <0.001 |
B–C | <0.001 | 0.056 |
B–D | <0.001 | 0.003 |
C–D | 0.457 | 0.382 |
Mann–Whitney U Test | Median Zonal PD (in MBD %, Standard Deviation in Parentheses) | p-Value | |
---|---|---|---|
Mature Women (<65 Years Old) | Older Women (>64 Years Old) | ||
Posterior Zonal PD | 14.0 (19.5) | 12.8 (18.7) | 0.221 |
Middle Zonal PD | 17.6 (18.1) | 16.4 (17.1) | 0.046 |
Anterior Zonal PD | 2.4 (10.7) | 2.0 (14.4) | 0.887 |
Post-hoc pair-wise comparisons of Zonal PD in older and mature women age groups (p-value) | |||
Anterior–Posterior | Anterior–Middle | Posterior–Middle | |
Older Women | <0.001 | <0.001 | 0.855 |
Mature Women | <0.001 | <0.001 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goh, Y.L.E.; Lee, Z.Y.; Lai, C. Spatial Distribution and Quantification of Mammographic Breast Density, and Its Correlation with BI-RADS Using an Image Segmentation Method. Life 2021, 11, 516. https://doi.org/10.3390/life11060516
Goh YLE, Lee ZY, Lai C. Spatial Distribution and Quantification of Mammographic Breast Density, and Its Correlation with BI-RADS Using an Image Segmentation Method. Life. 2021; 11(6):516. https://doi.org/10.3390/life11060516
Chicago/Turabian StyleGoh, Yi Ling Eileen, Zhen Yu Lee, and Christopher Lai. 2021. "Spatial Distribution and Quantification of Mammographic Breast Density, and Its Correlation with BI-RADS Using an Image Segmentation Method" Life 11, no. 6: 516. https://doi.org/10.3390/life11060516
APA StyleGoh, Y. L. E., Lee, Z. Y., & Lai, C. (2021). Spatial Distribution and Quantification of Mammographic Breast Density, and Its Correlation with BI-RADS Using an Image Segmentation Method. Life, 11(6), 516. https://doi.org/10.3390/life11060516