Identification of Metabolic Phenotypes in Young Adults with Obesity by 1H NMR Metabolomics of Blood Serum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethical Considerations
2.3. Biophysical Characteristics
2.4. Conventional Biochemical Analyses
2.5. Hyperlipidemia Obesity
2.6. Intraabdominal or Visceral Fat Composition Determined by MRI
2.7. Sample Collection, Sample Preparation and 1H NMR Spectroscopy
2.8. Statistical Analysis
3. Results
3.1. Anthropometric and Clinical Characteristics
3.2. 1H NMR Metabolomic Characteristics of NW Versus OW/OB Adolescents
3.3. 1H NMR Metabolomic Characteristics of NHLO Versus HLO Adolescents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Villalobos, J.Á.C. Obesity: The Real Pandemic of the 21st Century. Cirugia Cirujanos 2016, 84, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- OECD; World Health Organization. Health at a Glance: Asia/Pacific 2020; OECD Publishing: Paris, France, 2020. [Google Scholar]
- Elmsjo, A.; Rosqvist, F.; Engskog, M.K.R.; Haglof, J.; Kullberg, J.; Iggman, D.; Johansson, L.; Ahlstrom, H.; Arvidsson, T.; Riserus, U.; et al. NMR-based metabolic profiling in healthy individuals overfed different types of fat: Links to changes in liver fat accumulation and lean tissue mass. Nutr. Diabetes 2015, 5, e182. [Google Scholar] [CrossRef]
- Mittendorfer, B. Origins of metabolic complications in obesity: Adipose tissue and free fatty acid trafficking. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Snel, M.; Jonker, J.T.; Schoones, J.W.; Lamb, H.; De Roos, A.; Pijl, H.; Smit, J.; Meinders, A.E.; Jazet, I. Ectopic Fat and Insulin Resistance: Pathophysiology and Effect of Diet and Lifestyle Interventions. Int. J. Endocrinol. 2012, 2012, 983814. [Google Scholar] [CrossRef] [PubMed]
- Bervoets, L.; Massa, G.; Guedens, W.; Reekmans, G.; Noben, J.-P.; Adriaensens, P. Identification of metabolic phenotypes in childhood obesity by1H NMR metabolomics of blood plasma. Future Sci. OA 2018, 4, FSO310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostovski, M.; Simeonovski, V.; Mironska, K.; Tasic, V.; Gucev, Z. Metabolic Profiles in Obese Children and Adolescents with Insulin Resistance. Open Access Maced. J. Med. Sci. 2018, 6, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Sun, H.; Wang, X. Power of metabolomics in biomarker discovery and mining mechanisms of obesity. Obes. Rev. 2012, 14, 344–349. [Google Scholar] [CrossRef]
- Pasanta, D.; Chancharunee, S.; Tungjai, M.; Kim, H.J.; Kothan, S. Effects of obesity on the lipid and metabolite profiles of young adults by serum1H-NMR spectroscopy. PeerJ 2019, 7, e7137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, A.; Sun, H.; Yan, G.; Wang, P.; Wang, X. Metabolomics for Biomarker Discovery: Moving to the Clinic. BioMed Res. Int. 2015, 2015, 354671. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef]
- Brugnara, L.; Vinaixa, M.; Murillo, S.; Samino, S.; Rodriguez, M.A.; Beltran, A.; Lerin, C.; Davison, G.; Correig, X.; Novials, A. Metabolomics Approach for Analyzing the Effects of Exercise in Subjects with Type 1 Diabetes Mellitus. PLoS ONE 2012, 7, e40600. [Google Scholar] [CrossRef]
- Farag, M.A.; Porzel, A.; Mahrous, E.A.; El-Massry, M.M.; Wessjohann, L.A. Integrated comparative metabolite profiling via MS and NMR techniques for Senna drug quality control analysis. Anal. Bioanal. Chem. 2015, 407, 1937–1949. [Google Scholar] [CrossRef] [PubMed]
- Larive, C.K.; Barding, G.A.; Dinges, M.M. NMR Spectroscopy for Metabolomics and Metabolic Profiling. Anal. Chem. 2015, 87, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Duft, R.G.; Castro, A.; Bonfante, I.L.P.; Lopes, W.A.; Da Silva, L.R.; Chacon-Mikahil, M.P.T.; Leite, N.; Cavaglieri, C.R. Altered metabolomic profiling of overweight and obese adolescents after combined training is associated with reduced insulin resistance. Sci. Rep. 2020, 10, 16880. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H.; Chang, D.; Guo, F.; Pan, H.; Yang, Y. Metabolomics approach by 1H NMR spectroscopy of serum reveals progression axes for asymptomatic hyperuricemia and gout. Arthritis Res. 2018, 20, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, W.; Jachson-Leach, R.; Mhurchu, C.N.; Kalamara, E.; Shayeghi, M.; Rigby, N.; World Health Organization. Overweight and Obesity (High Body Mass Index). In Comparative Quantifation of Health Risks; World Health Organization: Geneva, Switzerland, 2004; pp. 497–596. [Google Scholar]
- Martin, S.S.; Blaha, M.J.; Elshazly, M.B.; Toth, P.P.; Kwiterovich, P.O.; Blumenthal, R.S.; Jones, S.R. Comparison of a Novel Method vs the Friedewald Equation for Estimating Low-Density Lipoprotein Cholesterol Levels From the Standard Lipid Profile. JAMA 2013, 310, 2061–2068. [Google Scholar] [CrossRef]
- Sathiyakumar, V.; Park, J.; Golozar, A.; Lazo, M.; Quispe, R.; Guallar, E.; Blumenthal, R.S.; Jones, S.R.; Martin, S.S. Fasting Versus Nonfasting and Low-Density Lipoprotein Cholesterol Accuracy. Circulation 2018, 137, 10–19. [Google Scholar] [CrossRef]
- Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [CrossRef]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. Can. Med. Assoc. J. 2005, 172, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Pasanta, D.; Tungjai, M.; Chancharunee, S.; Sajomsang, W.; Kothan, S. Body mass index and its effects on liver fat content in overweight and obese young adults by proton magnetic resonance spectroscopy technique. World J. Hepatol. 2018, 10, 924–933. [Google Scholar] [CrossRef]
- Akima, H.; Lott, D.; Senesac, C.; Deol, J.; Germain, S.; Arpan, I.; Bendixen, R.; Lee Sweeney, H.; Walter, G.; Vandenborne, K. Relationships of thigh muscle contractile and non-contractile tissue with function, strength, and age in boys with Duchenne muscular dystrophy. Neuromuscul. Disord. 2012, 22, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Klopfenstein, B.J.; Kim, M.S.; Krisky, C.M.; Szumowski, J.; Rooney, W.D.; Purnell, J.Q. Comparison of 3 T MRI and CT for the measurement of visceral and subcutaneous adipose tissue in humans. Br. J. Radiol. 2012, 85, e826–e830. [Google Scholar] [CrossRef] [Green Version]
- Karampatos, S.; Papaioannou, A.; Beattie, K.A.; Maly, M.R.; Chan, A.; Adachi, J.D.; Pritchard, J.M. The reliability of a segmentation methodology for assessing intramuscular adipose tissue and other soft-tissue compartments of lower leg MRI images. Magma Magn. Reson. Mater. Phys. Biol. Med. 2015, 29, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Fages, A.; Duarte-Salles, T.; Stepien, M.; Ferrari, P.; Fedirko, V.; Pontoizeau, C.; Trichopoulou, A.; Aleksandrova, K.; Tjonneland, A.; Olsen, A.; et al. Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort. BMC Med. 2015, 13, 242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Modern analytical techniques in metabolomics analysis. Analyst 2012, 137, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Hanhineva, K.; Barri, T.; Kolehmainen, M.; Pekkinen, J.; Pihlajamäki, J.; Vesterbacka, A.; Solano-Aguilar, G.; Mykkänen, H.; Dragsted, L.O.; Urban, J.F., Jr.; et al. Comparative Nontargeted Profiling of Metabolic Changes in Tissues and Biofluids in High-Fat Diet-Fed Ossabaw Pig. J. Proteome Res. 2013, 12, 3980–3992. [Google Scholar] [CrossRef]
- Kim, M.J.; Yang, H.J.; Kim, J.; Ahn, C.-W.; Lee, J.; Kim, K.; Kwon, D. Obesity-Related Metabolomic Analysis of Human Subjects in Black Soybean Peptide Intervention Study by Ultraperformance Liquid Chromatography and Quadrupole-Time-of-Flight Mass Spectrometry. J. Obes. 2013, 2013, 874981. [Google Scholar] [CrossRef] [Green Version]
- An, Y.; Xu, W.; Li, H.; Lei, H.; Zhang, L.; Hao, F.; Duan, Y.; Yan, X.; Zhao, Y.; Wu, J.; et al. High-Fat Diet Induces Dynamic Metabolic Alterations in Multiple Biological Matrices of Rats. J. Proteome Res. 2013, 12, 3755–3768. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-S.; Gutin, B.; Barbeau, P.; Litaker, M.S.; Allison, J.; Le, N.-A. Low-density lipoprotein particle size, central obesity, cardiovascular fitness, and insulin resistance syndrome markers in obese youths. Int. J. Obes. 2002, 26, 1030–1035. [Google Scholar] [CrossRef] [Green Version]
- Cali, A.M.; Zern, T.L.; Taksali, S.E.; De Oliveira, A.M.; Dufour, S.; Otvos, J.D.; Caprio, S. Intrahepatic Fat Accumulation and Alterations in Lipoprotein Composition in Obese Adolescents: A perfect proatherogenic state. Diabetes Care 2007, 30, 3093–3098. [Google Scholar] [CrossRef] [Green Version]
- Sabir, N.; Sermez, Y.; Kazil, S.; Zencir, M. Correlation of abdominal fat accumulation and liver steatosis: Importance of ultrasonographic and anthropometric measurements. Eur. J. Ultrasound 2001, 14, 121–128. [Google Scholar] [CrossRef]
- Digirolamo, M.; Newby, F.; Lovejoy, J. Lactate production in adipose tissue; a regulated function with extra adipose implications. FASEB J. 1992, 6, 2405–2412. [Google Scholar] [CrossRef]
- Kashiwagi, A.; Verso, M.A.; Andrews, J.; Vasquez, B.; Reaven, G.; Foley, J.E. In vitro insulin resistance of human adipocytes isolated from subjects with noninsulin-dependent diabetes mellitus. J. Clin. Investig. 1983, 72, 1246–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasouli, N. Adipose tissue hypoxia and insulin resistance. J. Investig. Med. 2016, 64, 830–832. [Google Scholar] [CrossRef] [PubMed]
- Sherriff, J.L.; O’Sullivan, T.A.; Properzi, C.; Oddo, J.-L.; Adams, L.A. Choline, Its Potential Role in Nonalcoholic Fatty Liver Disease, and the Case for Human and Bacterial Genes. Adv. Nutr. 2016, 7, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Corbin, K.D.; Zeisel, S.H. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr. Opin. Gastroenterol. 2012, 28, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Nagashima, M.; Soejima, Y.; Saito, K. Glutamine and exercise. J. Phys. Fit. Sports Med. 2013, 2, 469–473. [Google Scholar] [CrossRef] [Green Version]
- Wahl, S.; Yu, Z.; Kleber, M.; Singmann, P.; Holzapfel, C.; He, Y.; Mittelstrass, K.; Polonikov, A.; Prehn, C.; Römisch-Margl, W.; et al. Childhood Obesity Is Associated with Changes in the Serum Metabolite Profile. Obes. Facts 2012, 5, 660–670. [Google Scholar] [CrossRef]
- Akella, N.M.; Ciraku, L.; Reginato, M.J. Fueling the fire: Emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol. 2019, 17, 52. [Google Scholar] [CrossRef] [Green Version]
- Maltais-Payette, I.; Boulet, M.-M.; Prehn, C.; Adamski, J.; Tchernof, A. Circulating glutamate concentration as a biomarker of visceral obesity and associated metabolic alterations. Nutr. Metab. 2018, 15, 78. [Google Scholar] [CrossRef]
- Otvos, J.D.; Shalaurova, I.; Wolak-Dinsmore, J.; Connelly, M.A.; Mackey, R.H.; Stein, J.H.; Tracy, R.P. GlycA: A Composite Nuclear Magnetic Resonance Biomarker of Systemic Inflammation. Clin. Chem. 2015, 61, 714–723. [Google Scholar] [CrossRef] [Green Version]
- Fuertes-Martín, R.; Correig, X.; Vallvé, J.-C.; Amigó, N. Title: Human Serum/Plasma Glycoprotein Analysis by 1H-NMR, an Emerging Method of Inflammatory Assessment. J. Clin. Med. 2020, 9, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.; Ren, P.; Kong, X.; Wu, Y.; Wu, G.; Li, P.; Hao, F.; Tang, H.; Blachier, F.; Yin, Y. Comparison of serum metabolite compositions between obese and lean growing pigs using an NMR-based metabonomic approach. J. Nutr. Biochem. 2012, 23, 133–139. [Google Scholar] [CrossRef]
- Lawler, P.R.; Akinkuolie, A.O.; Chandler, P.D.; Moorthy, M.V.; VanDenburgh, M.J.; Schaumberg, D.A.; Lee, I.-M.; Glynn, R.J.; Ridker, P.M.; Buring, J.E.; et al. Circulating N-Linked Glycoprotein Acetyls and Longitudinal Mortality Risk. Circ. Res. 2016, 118, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lu, B.; Li, Y.; Wang, Y.; Zheng, H.; Zhong, D.; Liao, Z.; Wang, M.; Ma, F.; Liao, Q.; et al. Metabolomics insights into the modulatory effects of long-term compound polysaccharide intake in high-fat diet-induced obese rats. Nutr. Metab. 2018, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.P.; Krausz, K.W.; Xie, C.; Beyoğlu, D.; Gonzalez, F.J.; Idle, J.R. Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice. PLoS ONE 2017, 12, e0177953. [Google Scholar] [CrossRef] [PubMed]
- Siddik, M.A.B.; Shin, A.C. Recent Progress on Branched-Chain Amino Acids in Obesity, Diabetes, and Beyond. Endocrinol. Metab. 2019, 34, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Lackey, D.E.; Lynch, C.J.; Olson, K.C.; Mostaedi, R.; Ali, M.; Smith, W.H.; Karpe, F.; Humphreys, S.; Bedinger, D.H.; Dunn, T.N.; et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E1175–E1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- She, P.; Olson, K.C.; Kadota, Y.; Inukai, A.; Shimomura, Y.; Hoppel, C.L.; Adams, S.H.; Kawamata, Y.; Matsumoto, H.; Sakai, R.; et al. Leucine and Protein Metabolism in Obese Zucker Rats. PLoS ONE 2013, 8, e59443. [Google Scholar] [CrossRef] [Green Version]
Parameters | NW | OW/OB | p-Value |
---|---|---|---|
Age | 21.50 ± 0.63 | 21.50 ± 0.95 | 0.981 |
Weight (kg) | 53.80 ± 4.68 | 83.29 ± 12.17 | <0.001 |
Height (cm) | 161.61 ± 1.93 | 168.64 ± 8.65 | <0.001 |
BMI (kg/m2) | 20.60 ± 1.64 | 30.48 ± 4.37 | <0.001 |
WC (cm) | 69.57 ± 4.24 | 96.70 ± 11.76 | <0.001 |
HC (cm) | 91.03 ± 2.67 | 110.67 ± 9.02 | <0.001 |
TC (mg/dL) | 193.47 ± 18.03 | 210.47 ± 36.67 | <0.05 |
TG (mg/dL) | 72.50 ± 13.25 | 115.23 ± 43.89 | <0.001 |
HDL-C (mg/dL) | 56.60 ± 7.95 | 50.30 ± 9.47 | <0.05 |
LDL-C (mg/dL) | 119.45 ± 14.60 | 133.79 ± 27.33 | <0.05 |
SGPT(ALT) U/L | 10.40 ± 2.40 | 24.26 ± 12.89 | <0.001 |
FBS (mg/dL) | 82.97 ± 2.71 | 89.45 ± 5.21 | <0.001 |
HbA1c % | 5.01 ± 0.195 | 5.19 ± 0.17 | <0.001 |
Visceral fat % | 3.28 ± 1.01 | 11.30 ± 4.31 | <0.001 |
No. | Assigned Metabolites | ppm, δ | NW | OW/OB | p-Value | Trend | Change % | VIP |
---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | |||||||
1 | Unsaturated lipid (CH=CH) | 5.3 | 0.029 ± 0.003 | 0.033 ± 0.006 | <0.05 | ↑ | 13.11 | 1.01 |
2 | Alpha glucose | 5.23 | 0.016 ± 0.001 | 0.017 ± 0.002 | 0.07 | ↑ | 5.42 | 0.878 |
3 | Beta glucose | 4.63 | 0.016 ± 0.002 | 0.017 ± 0.002 | <0.05 | ↑ | 8.62 | 0.985 |
4 | Lactate | 4.1 | 0.006 ± 0.001 | 0.008 ± 0.002 | <0.001 | ↑ | 39.93 | 0.765 |
5 | Total glucose | 3.35 −3.92 | 0.328 ± 0.027 | 0.348 ± 0.037 | <0.05 | ↑ | 5.97 | 0.722 |
6 | TMAO | 3.25 | 0.013 ± 0.001 | 0.013 ± 0.002 | 0.854 | ↑ | 0.545 | 0.743 |
7 | Carnitine | 3.23 | 0.019 ± 0.002 | 0.019 ± 0.002 | 0.434 | ↑ | 2.68 | 0.832 |
8 | Choline | 3.21 | 0.068 ± 0.009 | 0.049 ± 0.011 | <0.001 | ↓ | −28.54 | 1.58 |
9 | Creatine | 3.04 | 0.004 ± 0.000 | 0.004 ± 0.001 | 0.812 | ↑ | 1.39 | 0.570 |
10 | Glutamine | 2.45 | 0.010 ± 0.001 | 0.009 ± 0.002 | 0.052 | ↓ | −8.98 | 0.997 |
11 | Glutamate | 2.34 | 0.004 ± 0.001 | 0.006 ± 0.002 | <0.001 | ↑ | 47.52 | 1.35 |
12 | Acetoacetate | 2.22 | 0.003 ± 0.001 | 0.003 ± 0.001 | 0.228 | ↑ | 10.24 | 0.789 |
13 | N-acetyl glycoprotein | 2.14 | 0.001 ± 0.00 | 0.002 ± 0.000 | <0.05 | ↑ | 17.69 | 0.678 |
14 | Unsaturated lipid (=CH2) | 2.02 | 0.054 ± 0.004 | 0.067 ± 0.009 | <0.001 | ↑ | 24.41 | 1.86 |
15 | Lysine | 1.91 | 0.001 ± 0.000 | 0.001 ± 0.000 | 0.70 | ↑ | 2.34 | 0.433 |
16 | Alanine | 1.48 | 0.012 ± 0.001 | 0.013 ± 0.002 | <0.001 | ↑ | 15.94 | 0.582 |
17 | Lactate | 1.3 | 0.049 ± 0.007 | 0.061 ± 0.017 | <0.001 | ↑ | 26.41 | 1.14 |
18 | (-CH2)n VLDL/LDL | 1.27 | 0.119 ± 0.017 | 0.157 ± 0.038 | <0.001 | ↑ | 31.97 | 1.52 |
19 | 3 hydroxybutyrate | 1.17 | 0.008 ± 0.001 | 0.009 ± 0.003 | 0.05 | ↑ | 19.69 | 0.455 |
20 | Valine | 1.047 | 0.007 ± 0.001 | 0.008 ± 0.001 | <0.05 | ↑ | 13.35 | 0.886 |
21 | Isoleucine | 1.02 | 0.002 ± 0.000 | 0.003 ± 0.001 | <0.001 | ↑ | 23.77 | 1.13 |
22 | Valine | 0.996 | 0.010 ± 0.002 | 0.012 ± 0.002 | <0.05 | ↑ | 14.57 | 0.993 |
23 | Leucine | 0.96 | 0.012 ± 0.002 | 0.015 ± 0.004 | <0.05 | ↑ | 19.95 | 0.587 |
24 | (-CH3) VLDL/LDL | 0.87 | 0.127 ± 0.009 | 0.132 ± 0.013 | 0.095 | ↑ | 3.876 | 0.977 |
25 | Total lipid | 0.330 ± 0.033 | 0.390 ± 0.058 | <0.001 | ↑ | 18.20 |
No. | Metabolites | Correlation with -CH=CH Lipid | Correlation with =CH2 Lipid | Correlation with (-CH2)n VLDL/LDL | Correlation with CH3 VLDL/LDL | Correlation with Lactate (1.3 ppm) |
---|---|---|---|---|---|---|
r | r | r | r | r | ||
1 | TC (mg/dL) | 0.422 * | 0.423 * | 0.453 ** | 0.490 ** | 0.360 * |
2 | TG (mg/dL) | 0.462 ** | 0.451 ** | 0.485 ** | 0.570 ** | 0.408 * |
3 | HDL-C (mg/dL) | −0.206 | −0.245 | −0.248 | −0.177 | −0.305 * |
4 | LDL-C (mg/dL) | 0.424 * | 0.400 * | 0.433 ** | 0.486 ** | 0.354 * |
5 | ALT (U/L) | 0.313 * | 0.324 * | 0.339 * | 0.343 * | 0.231 |
No. | Metabolites | Correlation with Alpha Glucose | Correlation with Beta-Glucose | Correlation with Total Glucose | Correlation with Lactate (1.3 ppm) |
---|---|---|---|---|---|
r | r | r | r | ||
1 | HbA1c % | 0.243 | 0.631 ** | 0.310 * | 0.525 ** |
2 | FBS (mg/dL) | 0.050 | 0.487 ** | 0.134 | 0.529 ** |
No. | Metabolites | Correlation with Visceral Fat % | |
---|---|---|---|
r | p-Value | ||
1 | Unsaturated lipid (CH=CH) | 0.433 | <0.001 |
2 | Choline | −0.626 | <0.001 |
3 | Glutamate | 0.562 | <0.001 |
4 | Unsaturated lipid (=CH2) | 0.656 | <0.001 |
5 | Lactate (1.3 ppm) | 0.372 | <0.05 |
6 | (-CH2)n VLDL/LDL | 0.561 | <0.001 |
7 | Isoleucine | 0.419 | <0.05 |
Parameters | NHLO | HLO | p-Value |
---|---|---|---|
Age (years) | 21.6 ± 1.1 | 21.1 ± 1.5 | 0.311 |
Weight (kg) | 81.6 ± 14.9 | 84.8 ± 9.8 | 0.541 |
Height (cm) | 167.12 ± 8.11 | 168.85 ± 8.91 | 0.609 |
BMI (kg/m2) | 30.27 ± 4.65 | 31.18 ± 4.22 | 0.607 |
WC (cm) | 96.69 ± 11.56 | 97.08 ± 12.43 | 0.936 |
HC (cm) | 112.23 ± 9.06 | 111.38 ± 8.53 | 0.808 |
TC (mg/dL) | 183.92 ± 16.89 | 238.77 ± 33.67 | <0.001 |
TG (mg/dL) | 92.46 ± 38.97 | 138.69 ± 42.17 | <0.05 |
HDL-C (mg/dL) | 48.23 ± 10.97 | 50.85 ± 8.45 | 0.503 |
LDL-C (mg/dL) | 117.2 ± 16.58 | 160.18 ± 3 2.12 | <0.001 |
SGPT(ALT) U/L | 23 (14.5–45) | 22 (14–39.5) | 0.797 |
FBS (mg/dL) | 90 (81.5–93.5) | 88 (86–91.5) | 0.719 |
HbA1c % | 5.21 ± 0.256 | 5.25 ± 0.194 | 0.67 |
Visceral fat % | 8.77± 3.29 | 13.83± 3.75 | <0.05 |
No. | Assigned Metabolite | ppm, δ | NHLO | HLO | p-Value | Trend | Change % | VIP |
---|---|---|---|---|---|---|---|---|
1 | Unsaturated lipid (CH=CH) | 5.3 | 0.030 ± 0.005 | 0.037 ± 0.005 | <0.05 | ↑ | 25.49 | 0.831 |
2 | Alpha glucose | 5.23 | 0.017 ± 0.001 | 0.016 ± 0.002 | 0.050 | ↓ | −8.09 | 0.535 |
3 | Beta glucose | 4.63 | 0.018 ± 0.002 | 0.017 ± 0.002 | 0.154 | ↓ | −6.27 | 0.902 |
4 | Lactate | 4.1 | 0.007 ± 0.001 | 0.008 ± 0.002 | 0.481 | ↑ | 7.17 | 0.712 |
5 | Total glucose | 3.35–3.92 | 0.356 ± 0.028 | 0.329 ± 0.036 | 0.059 | ↓ | −7.77 | 1.071 |
6 | TMAO | 3.25 | 0.013 ± 0.001 | 0.013 ± 0.002 | 0.936 | ↓ | −0.47 | 0.826 |
7 | Carnitine | 3.23 | 0.019 ± 0.002 | 0.019 ± 0.003 | 0.824 | ↑ | 1.18 | 1.161 |
8 | Choline | 3.21 | 0.054 ± 0.012 | 0.043 ± 0.005 | <0.05 | ↓ | −20.65 | 0.878 |
9 | Creatine | 3.04 | 0.004 ± 0.001 | 0.005 ± 0.001 | 0.324 | ↑ | 12.04 | 1.142 |
10 | Glutamine | 2.45 | 0.010 ± 0.002 | 0.008 ± 0.001 | <0.05 | ↓ | −21.02 | 0.944 |
11 | Glutamate | 2.34 | 0.006 ± 0.001 | 0.007 ± 0.002 | <0.05 | ↑ | 23.75 | 1.332 |
12 | Acetoacetate | 2.22 | 0.003 ± 0.001 | 0.004 ± 0.001 | <0.05 | ↑ | 45.45 | 1.362 |
13 | N-acetyl glycoprotein | 2.14 | 0.001 ± 0.000 | 0.002 ± 0.000 | <0.05 | ↑ | 32.31 | 1.185 |
14 | Unsaturated lipid (=CH2) | 2.02 | 0.063 ± 0.008 | 0.072 ± 0.006 | <0.05 | ↑ | 15.76 | 1.406 |
15 | Lysine | 1.91 | 0.001 ± 0.000 | 0.001 ± 0.000 | 0.985 | ↑ | 0 | 0.643 |
16 | Alanine | 1.48 | 0.013 ± 0.002 | 0.014 ± 0.002 | 0.322 | ↑ | 7.16 | 1.021 |
17 | Lactate | 1.3 | 0.054 ± 0.013 | 0.068 ± 0.015 | <0.05 | ↑ | 25.78 | 0.650 |
18 | (-CH2)n VLDL/LDL | 1.27 | 0.132 ± 0.024 | 0.185 ± 0.030 | <0.001 | ↑ | 40.02 | 0.667 |
19 | 3 hydroxybutyrate | 1.17 | 0.008 ± 0.001 | 0.010 ± 0.004 | 0.205 | ↑ | 18.80 | 0.588 |
20 | Valine | 1.047 | 0.008 ± 0.001 | 0.008 ± 0.001 | 0.781 | ↑ | 1.67 | 1.066 |
21 | Isoleucine | 1.02 | 0.003 ± 0.001 | 0.003 ± 0.000 | <0.05 | ↑ | 18.75 | 1.287 |
22 | Valine | 0.996 | 0.011 ± 0.002 | 0.012 ± 0.001 | 0.467 | ↑ | 4.46 | 0.983 |
23 | Leucine | 0.96 | 0.014 ± 0.003 | 0.016 ± 0.004 | 0.206 | ↑ | 15.35 | 0.914 |
24 | (-CH3) VLDL/LDL | 0.87 | 0.125 ± 0.008 | 0.141 ± 0.012 | <0.05 | ↑ | 12.11 | 1.136 |
25 | Total lipid | 0.363 ± 0.046 | 0.417 ± 0.058 | <0.05 | ↑ | 14.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Htun, K.T.; Pan, J.; Pasanta, D.; Tungjai, M.; Udomtanakunchai, C.; Chancharunee, S.; Kaewjaeng, S.; Kim, H.J.; Kaewkhao, J.; Kothan, S. Identification of Metabolic Phenotypes in Young Adults with Obesity by 1H NMR Metabolomics of Blood Serum. Life 2021, 11, 574. https://doi.org/10.3390/life11060574
Htun KT, Pan J, Pasanta D, Tungjai M, Udomtanakunchai C, Chancharunee S, Kaewjaeng S, Kim HJ, Kaewkhao J, Kothan S. Identification of Metabolic Phenotypes in Young Adults with Obesity by 1H NMR Metabolomics of Blood Serum. Life. 2021; 11(6):574. https://doi.org/10.3390/life11060574
Chicago/Turabian StyleHtun, Khin Thandar, Jie Pan, Duanghathai Pasanta, Montree Tungjai, Chatchanok Udomtanakunchai, Sirirat Chancharunee, Siriprapa Kaewjaeng, Hong Joo Kim, Jakrapong Kaewkhao, and Suchart Kothan. 2021. "Identification of Metabolic Phenotypes in Young Adults with Obesity by 1H NMR Metabolomics of Blood Serum" Life 11, no. 6: 574. https://doi.org/10.3390/life11060574
APA StyleHtun, K. T., Pan, J., Pasanta, D., Tungjai, M., Udomtanakunchai, C., Chancharunee, S., Kaewjaeng, S., Kim, H. J., Kaewkhao, J., & Kothan, S. (2021). Identification of Metabolic Phenotypes in Young Adults with Obesity by 1H NMR Metabolomics of Blood Serum. Life, 11(6), 574. https://doi.org/10.3390/life11060574