Looking at the Nudibranch Family Myrrhinidae (Gastropoda, Heterobranchia) from a Mitochondrial ‘2D Folding Structure’ Point of View
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phylogenetic Analyses
2.2. RNA Secondary Structure Modelling and Compensatory Base Changes (CBCs)
2.3. Morphological Analyses
3. Results
3.1. Phylogenetic Analyses
3.2. 16S RNA Primary and Secondary Structures Analysis
3.3. Morphological Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodheart, J.A.; Bleidißel, S.; Schillo, D.; Strong, E.; Ayres, D.L.; Preisfeld, A.; Collins, A.G.; Cummings, M.P.; Wägele, H. Comparative morphology and evolution of the cnidosac in Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). Front. Zool. 2018, 15, 1–18. [Google Scholar] [CrossRef]
- Ekimova, I.; Korshunova, T.; Schepetov, D.; Neretina, T.; Sanamyan, N.; Martynov, A. Integrative systematics of northern and Arctic nudibranchs of the genus Dendronotus (Mollusca, Gastropoda), with descriptions of three new species. Zool. J. Linn. Soc. 2015, 173, 841–886. [Google Scholar] [CrossRef] [Green Version]
- Padula, V.; Bahia, J.; Stöger, I.; Camacho-García, Y.; Malaquias, M.A.E.; Cervera, J.L.; Schrödl, M. A test of color-based taxonomy in nudibranchs: Molecular phylogeny and species delimitation of the Felimida clenchi (Mollusca: Chromodorididae) species complex. Mol. Phylogenetics Evol. 2016, 103, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Schillo, D.; Wipfler, B.; Undap, N.; Papu, A.; Boehringer, N.; Eisenbarth, J.H.; Waegele, H. Description of a new Moridilla species from North Sulawesi, Indonesia (Mollusca: Nudibranchia: Aeolidioidea)—Based on MicroCT, histological and molecular analyses. Zootaxa 2019, 4652, 265–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Vilert, R.; Giribet, G.; Salvador, X.; Moles, J. Assessing the systematics of Tylodinidae in the Mediterranean Sea and Eastern Atlantic Ocean: Resurrecting Tylodina rafinesquii Philippi, 1836 (Heterobranchia: Umbraculida). J. Molluscan Stud. 2021, 87, eyaa031. [Google Scholar] [CrossRef]
- Furfaro, G.; Salvi, D.; Mancini, E.; Mariottini, P. A multilocus view on Mediterranean aeolid nudibranchs (Mollusca): Systematics and cryptic diversity of Flabellinidae and Piseinotecidae. Mol. Phylogenetic Evol. 2018, 118, 13–22. [Google Scholar] [CrossRef]
- Furfaro, G.; Salvi, D.; Trainito, E.; Vitale, F.; Mariottini, P. When morphology does not match phylogeny: The puzzling case of two sibling nudibranchs (Gastropoda). Zool. Scr. 2021, 1–16. [Google Scholar] [CrossRef]
- Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 2005, 85, 407–417. [Google Scholar] [CrossRef]
- Will, K.W.; Mishler, B.D.; Wheeler, Q.D. The perils of DNA barcoding and the need for integrative taxonomy. Syst. Biol. 2005, 54, 844–851. [Google Scholar] [CrossRef]
- Pola, M.; Cervera, J.L.; Gosliner, T.M. Phylogenetic relationships of Nembrothinae (Mollusca: Doridacea: Polyceridae) inferred from morphology and mitochondrial DNA. Mol. Phylogenetics Evol. 2007, 43, 726–742. [Google Scholar] [CrossRef]
- Pola, M.; Camacho-Garía, Y.E.; Gosliner, T.M. Molecular data illuminate cryptic nudibranch species: The evolution of the Scyllaeidae (Nudibranchia: Dendronotina) with a revision of Notobryon. Zool. J. Linn. Soc. 2012, 165, 311–336. [Google Scholar] [CrossRef] [Green Version]
- Furfaro, G.; Modica, M.V.; Oliverio, M.; Mariottini, P. A DNA-barcoding approach to the phenotypic diversity of Mediterranean species of Felimare Ev. Marcus & Er. Marcus, 1967 (Mollusca: Gastropoda), with a preliminary phylogenetic analysis. Ital. J. Zool. 2016, 83, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Bensasson, D.; Zhang, D.X.; Hartl, D.L.; Hewitt, G.M. Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends Ecol. Evol. 2001, 16, 314–321. [Google Scholar] [CrossRef]
- Ballard, J.W.O.; Whitlock, M.C. The incomplete natural history of mitochondria. Mol. Ecol. 2004, 13, 729–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebert, P.D.N.; Stoeckle, M.Y.; Zemlak, T.S.; Francis, C.M. Identification of birds through DNA barcodes. PLoS Biol. 2004, 2, e312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moritz, C.; Cicero, C. DNA Barcoding: Promise and Pitfalls. PLoS Biol. 2004, 2, e354. [Google Scholar] [CrossRef] [Green Version]
- Galià-Camps, C.; Carmona, L.; Cabrito, A.; Ballesteros, M. Double trouble. A cryptic first record of Berghia marinae Carmona, Pola, Gosliner, & Cervera 2014 in the Mediterranean Sea. Mediterr. Mar. Sci. 2020, 21, 191–200. [Google Scholar] [CrossRef]
- Furfaro, G.; Picton, B.; Martynov, A.; Mariottini, P. Diaphorodoris alba Portmann & Sandmeier, 1960 is a valid species: Molecular and morphological comparison with D. luteocincta (M. Sars, 1870). Zootaxa 2016, 4193, 304–316. [Google Scholar]
- Greber, B.J.; Ban, N. Structure and Function of the Mitochondrial Ribosome. Annu. Rev. Biochem. 2016, 85, 103–132. [Google Scholar] [CrossRef]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Privman, E.; Penn, O.; Pupko, T. Improving the performance of positive selection inference by filtering unreliable alignment regions. Mol. Biol. Evol. 2012, 29, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kück, P.; Meusemann, K.; Dambach, J.; Thormann, B.; von Reumont, B.M.; Wägele, J.W.; Misof, B. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees. Front. Zool. 2010, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Salvi, D.; Bellavia, G.; Cervelli, M.; Mariottini, P. The analysis of rRNA Sequence-Structure in phylogenetics: An application to the family Pectinidae (Mollusca, Bivalvia). Mol. Phylogenetics Evol. 2010, 56, 1059–1067. [Google Scholar] [CrossRef]
- Salvi, D.; Macali, A.; Mariottini, P. Molecular phylogenetics and systematics of the bivalve family Ostreidae based on rRNA sequence-structure models and multilocus species tree. PLoS ONE 2014, 9, e108696. [Google Scholar] [CrossRef] [PubMed]
- Salvi, D.; Mariottini, P. Molecular phylogenetics in 2D: ITS2 rRNA evolution and sequence-structure barcode from Veneridae to Bivalvia. Mol. Phylogenetics Evol. 2012, 65, 792–798. [Google Scholar] [CrossRef]
- Salvi, D.; Mariottini, P. Molecular taxonomy in 2D: A novel ITS2 rRNA sequence-structure approach guides the description of the oysters’ subfamily Saccostreinae and the genus Magallana (Bivalvia: Ostreidae). Zool. J. Linn. Soc. 2017, 179, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Müller, T.; Philippi, N.; Dandekar, T.; Schultz, J.; Wolf, M. Distinguishing species. RNA 2007, 13, 1469–1472. [Google Scholar] [CrossRef] [Green Version]
- Furfaro, G.; Mariottini, P.; Modica, M.V.; Trainito, E.; Doneddu, M.; Oliverio, M. Sympatric sibling species: The case of Caloria elegans and Facelina quatrefagesi (Gastropoda: Nudibranchia). Sci. Mar. 2016, 80, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Lydeard, C.; Holznagel, W.E.; Schnare, M.N.; Gutell, R.R. Phylogenetic analysis of molluscan mitochondrial LSU rDNA sequences and secondary structures. Mol. Phylogenetics Evol. 2000, 15, 83–102. [Google Scholar] [CrossRef]
- Furfaro, G.; Mariottini, P. A new Dondice Marcus Er. 1958 (Gastropoda: Nudibranchia) from the Mediterranean Sea reveals interesting insights into the phylogenetic history of a group of Facelinidae taxa. Zootaxa 2020, 477731, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Martynov, A.; Mehrotra, R.; Chavanich, S.; Nakano, R.; Kashio, S.; Lundin, K.; Korshunova, T. The extraordinary genus Myja is not a tergipedid, but related to the Facelinidae s. str. with the addition of two new species from Japan (Mollusca, Nudibranchia). ZooKeys 2019, 818, 89. [Google Scholar] [CrossRef] [Green Version]
- Neary, J.T.; Alkon, D.L. Protein phosphorylation/dephosphorylation and the transient, voltage-dependent potassium conductance in Hermissenda crassicornis. J. Biol. Chem. 1983, 258, 8979–8983. [Google Scholar] [CrossRef]
- Croll, R.P. Distribution of monoamines in the central nervous system of the nudibranch gastropod, Hermissenda crassicornis. Brain Res. 1987, 405, 337–347. [Google Scholar] [CrossRef]
- Blackwell, K.T.; Alkon, D.L. Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis. Brain Res. 1999, 822, 114–125. [Google Scholar] [CrossRef]
- Kasheverov, I.E.; Shelukhina, I.V.; Kudryavtsev, D.S.; Makarieva, T.N.; Spirova, E.N.; Guzii, A.G.; Tsetlin, V.I. 6-Bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor. Mar. Drugs 2015, 13, 1255–1266. [Google Scholar] [CrossRef] [Green Version]
- Tamvacakis, A.N.; Senatore, A.; Katz, P.S. Identification of genes related to learning and memory in the brain transcriptome of the mollusc, Hermissenda crassicornis. Learn. Mem. 2015, 22, 617–621. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, T.; Valdés, Á. The Model Organism Hermissenda crassicornis (Gastropoda: Heterobranchia) Is a Species Complex. PLoS ONE 2016, 11, e0154265. [Google Scholar] [CrossRef] [Green Version]
- Merlo, E.M.; Milligan, K.A.; Sheets, N.B.; Neufeld, C.J.; Eastham, T.M.; Estores-Pacheco, A.K.A.; Wyeth, R.C. Range extension for the region of sympatry between the nudibranchs Hermissenda opalescens and Hermissenda crassicornis in the northeastern Pacific. Facets 2018, 3, 764–776. [Google Scholar] [CrossRef] [Green Version]
- Wagner, D.; Kahng, S.E.; Toonen, R.J. Observations on the life history and feeding ecology of a specialized nudibranch predator (Phyllodesmium poindimiei), with implications for biocontrol of an invasive octocoral (Carijoa riisei) in Hawaii. J. Exp. Mar. Biol. Ecol. 2009, 372, 64–74. [Google Scholar] [CrossRef]
- Mao, S.C.; Gavagnin, M.; Mollo, E.; Guo, Y.W. A new rare asteriscane sesquiterpene and other related derivatives from the Hainan aeolid nudibranch Phyllodesmium magnum. Biochem. Syst. Ecol. 2011, 39, 408–411. [Google Scholar] [CrossRef]
- Bogdanov, A.; Hertzer, C.; Kehraus, S.; Nietzer, S.; Rohde, S.; Schupp, P.J.; Wägele, H.; König, G.M. Secondary metabolome and its defensive role in the aeolidoidean Phyllodesmium longicirrum, (Gastropoda, Heterobranchia, Nudibranchia). Beilstein J. Org. Chem. 2017, 13, 502–519. [Google Scholar] [CrossRef] [Green Version]
- Ekimova, I.A.; Antokhina, T.I.; Schepetov, D.M. Molecular data and updated morphological description of Flabellina rubrolineata (Nudibranchia: Flabellinidae) from the Red and Arabian seas. Ruthenica 2020, 30, 183–194. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posada, D. jModelTest: Phylogenetic Model Averaging. Mol. Biol. Evol. 2008, 7, 1253–1256. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2011, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvestro, D.; Michalak, I. raxmlGUI: A graphical front-end for RAxML. Org. Divers. Evol. 2012, 12, 335–337. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Zuker, M.; Jacobson, A.B. Using reliability information to annotate RNA secondary structures. RNA 1998, 4, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Mathews, D.H.; Sabina, J.; Zuker, M.; Turner, D.H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 1999, 288, 911–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horovitz, I.; Meyer, A. Systematics of New World monkeys (Platyrrhini, Primates) based on 16S mitochondrial DNA sequences: A comparative analysis of different weighting methods in cladistic analysis. Mol. Phylogenetics Evol. 1995, 4, 448–456. [Google Scholar] [CrossRef]
- Jörger, K.M.; Norenburg, J.L.; Wilson, N.G.; Schrödl, M. Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BMC Evol. Biol. 2012, 12, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portmann, A.; Sandmeier, E. Dondice banyulensis sp. nov. un Eolidien nouveau de la Méditerranée. Rev. Suisse Zool. 1960, 67, 158–168. [Google Scholar] [CrossRef]
- Caterino, M.S.; Cho, S.; Sperling, F.A. The current state of insect molecular systematics: A thriving Tower of Babel. Annu. Rev. Entomol. 2000, 45, 1–54. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; de Waard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Hebert, P.D.N.; Ratnasingham, S.; de Waard, J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 di-vergencesamong closely related species. R. Soc. Lond. Ser. B 2003, 270, S96–S99. [Google Scholar]
- Stoeckle, M. Taxonomy, DNA, and the bar code of life. BioScience 2003, 53, 2–3. [Google Scholar] [CrossRef]
- Avise, J.C. Molecular Markers, Natural History and Evolution, 2nd ed.; Sinauer: Sunderland, UK, 2004. [Google Scholar]
SPECIES | LOCALITY | VOUCHER | H3 | 16S | COI |
---|---|---|---|---|---|
Aeolidiella alderi (Cocks, 1852) | Italy | ZSMMol20012341 | HQ616795 | HQ616766 | HQ616729 |
Aeolidiella sanguinea (Norman, 1877) | France (Atlantic Ocean) | MNCN/ADN51932 | JX087600 | JX087538 | JX087466 |
Babakina anadoni (Ortea, 1979) | Brazil | MNRJ10893 | HQ616775 | HQ616709 | HQ616746 |
Babakina anadoni (Ortea, 1979) | Galicia, Spain | MNCN15.05/46704 | HQ616796 | HQ616730 | HQ616767 |
Babakina indopacifica Gosliner, Gonzalez-Duarte & Cervera, 2007 | Luzon, Batangas, Philippines | CASIZ177458 | HM162587 | HM162678 | HM162754 |
Dicata odhneri Schmekel, 1967 | Ballanera, Algesiras, Spain | BAU2674 | LT596569 | LT596549 | LT596560 |
Dicata odhneri Schmekel, 1967 | Andalusia, Spain | MNCN15.05/53692 | HQ616739 | HQ616773 | |
Dondice banyulensis Portmann & Sandmeier, 1960 | Djerba, Tunisia | RM3_129 | LS483284 | LS483274 | LS483267 |
Dondice banyulensis Portmann & Sandmeier, 1960 | Argentario, Tuscany, Italy | RM3_356 | LS483285 | LS483275 | LS483268 |
Dondice banyulensis Portmann & Sandmeier, 1960 | Sant’Agostino, Latium, Italy | RM3_290 | LS483286 | LS483276 | LS483269 |
Dondice banyulensis Portmann & Sandmeier, 1960 | Db_60 | GQ403751 | GQ403773 | ||
Dondice occidentalis (Engel, 1925) | Exuma, Bahamas | LACM177715 | KC526529 | KC526510 | |
Dondice occidentalis (Engel, 1925) | LACM2003-41.5 | JQ699394 | JQ699482 | JQ699570 | |
Dondice occidentalis (Engel, 1925) | Exuma, Bahamas | D252 | KC526527 | KC526518 | |
Dondice occidentalis (Engel, 1925) | Jamaica | JG61 | KC526534 | KC526512 | |
Dondice parguerensis Brandon & Cutress, 1985 | La Parguera, Puerto Rico | LACM177705 | KC526535 | KC526520 | |
Dondice trainitoi Furfaro & Mariottini, 2020 | Civitavecchia, Latium, Italy | RM3_425 | LS483287 | LS483277 | LS483270 |
Dondice trainitoi Furfaro & Mariottini, 2020 | Civitavecchia, Latium, Italy | RM3_596 | LS483288 | LS483278 | LS483271 |
Godiva quadricolor (Barnard, 1927) | Sabaudia, Latium, Italy | RM3_117 | LS483289 | LS483279 | MG546001 |
Godiva quadricolor (Barnard, 1927) | Sabaudia, Latium, Italy | RM3_153 | LS483290 | LS483280 | MG546002 |
Godiva quadricolor (Barnard, 1927) | Sabaudia, Latium, Italy | RM3_154 | LS483291 | LS483281 | MG546003 |
Godiva quadricolor (Barnard, 1927) | Knysna Lagoon, South Africa | CASIZ176385 | HM162589 | HM162680 | HM162756 |
Hermissenda opalescens | Monterey Bay, CA, USA | isolate_TL270 | KU950225 | KU950130 | KU950196 |
Hermissenda opalescens | Malibu, CA, USA | isolate_TL275 | KU950224 | KU950129 | KU950195 |
Hermissenda opalescens | Long Beach, CA, USA | isolate_TL269 | KU950222 | KU950128 | KU950193 |
Hermissenda emurai | Tateyama-Chiba, Japan | isolate_TL185 | KU950215 | KU950123 | KU950186 |
Hermissenda emurai | Tateyama-Chiba, Japan | isolate_TL184 | KU950214 | KU950122 | KU950185 |
Hermissenda crassicornis | Victoria, B.C., Canada | isolate_TL200 | KU950210 | KU950118 | KU950174 |
Hermissenda crassicornis | Victoria, B.C., Canada | isolate_TL204 | KU950212 | KU950121 | KU950178 |
Nanuca sebastiani | JQ699469 | JQ699557 | JQ699633 | ||
Phyllodesmium briareum (Bergh, 1896) | Batangas, Philippines | CASIZ 177239 | HQ010460 | HQ010528 | HQ010492 |
Phyllodesmium colemani Rudman, 1991 | Batangas, Philippines | CASIZ 177647 | HQ010466 | HQ010534 | HQ010498 |
Phyllodesmium crypticum Rudman, 1981 | Batangas, Philippines | CASIZ 180381 | HQ010477 | HQ010543 | HQ010507 |
Phyllodesmium horridum (Macnae, 1954) | Cape Region, South Africa | CASIZ176127 | HM162590 | HM162681 | HM162757 |
Phyllodesmium hyalinum Ehrenberg, 1831 | Phy.orig. | GQ403756 | GQ403778 | ||
Phyllodesmium jakobsenae Burghardt & Wägele, 2004 | Batangas, Philippines | CASIZ 177576 | HQ010456 | HQ010524 | HQ010489 |
Phyllodesmium karenae Moore & Gosliner, 2009 | Batangas, Philippines | CASIZ 180384 | HQ010478 | HQ010544 | HQ010508 |
Phyllodesmium koehleri Burghardt, Schrödl & Wägele, 2008 | Batangas, Philippines | CASIZ 177693 | HQ010462 | HQ010530 | HQ010494 |
Phyllodesmium lizardensis Burghardt, Schrödl & Wägele, 2008 | Batangas, Philippines | CASIZ 180382 | HQ010474 | HQ010540 | HQ010505 |
Phyllodesmium macphersonae (Burn, 1962) | Batangas, Philippines | CASIZ 177493 | HQ010453 | HQ010522 | HQ010487 |
Phyllodesmium opalescens Rudman, 1991 | Batangas, Philippines | CASIZ 177541 | HQ010450 | HQ010519 | HQ010485 |
Phyllodesmium parangatum Ortiz & Gosliner, 2003 | Batangas, Philippines | CASIZ 180383B | HQ010476 | HQ010542 | HQ010506 |
Phyllodesmium poindimiei (Risbec, 1928) | Batangas, Philippines | CASIZ 177783 | HQ010463 | HQ010531 | HQ010495 |
Phyllodesmium rudmani Burghardt & Gosliner, 2006 | Batangas, Philippines | CASIZ 177622 | HQ010461 | HQ010529 | HQ010493 |
Phyllodesmium tuberculatum Moore & Gosliner, 2009 | Batangas, Philippines | CASIZ 177663 | HQ010465 | HQ010533 | HQ010497 |
Duvaucelia striata Haefelfinger, 1963 | Giannutri Is., Tuscany, Italy | BAU2695 | LT615407 | LT596542 | LT596540 |
Duvaucelia striata Haefelfinger, 1963 | Formiche Is., Tuscany, Italy | BAU2696 | LT615408 | LT596543 | LT596541 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furfaro, G.; Mariottini, P. Looking at the Nudibranch Family Myrrhinidae (Gastropoda, Heterobranchia) from a Mitochondrial ‘2D Folding Structure’ Point of View. Life 2021, 11, 583. https://doi.org/10.3390/life11060583
Furfaro G, Mariottini P. Looking at the Nudibranch Family Myrrhinidae (Gastropoda, Heterobranchia) from a Mitochondrial ‘2D Folding Structure’ Point of View. Life. 2021; 11(6):583. https://doi.org/10.3390/life11060583
Chicago/Turabian StyleFurfaro, Giulia, and Paolo Mariottini. 2021. "Looking at the Nudibranch Family Myrrhinidae (Gastropoda, Heterobranchia) from a Mitochondrial ‘2D Folding Structure’ Point of View" Life 11, no. 6: 583. https://doi.org/10.3390/life11060583
APA StyleFurfaro, G., & Mariottini, P. (2021). Looking at the Nudibranch Family Myrrhinidae (Gastropoda, Heterobranchia) from a Mitochondrial ‘2D Folding Structure’ Point of View. Life, 11(6), 583. https://doi.org/10.3390/life11060583