Current Strategies for Tracheal Replacement: A Review
Abstract
:1. Introduction
2. Main Body
2.1. Anatomical Properties of the Trachea
2.2. Standard Tracheal Reconstruction
2.3. Approaches to Tracheal Reconstruction
2.3.1. Allografts
Tracheal Allografts
Aortic Grafts
2.3.2. Regenerative Medicine and Tissue Engineering
Decellularized Tracheal Scaffold
Synthetic Polymers Scaffolds and Three-Dimensional Printers
In Vivo Tracheal Scaffold Implants
Scaffold-Free Constructs
Decellularized Constructs
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Registro Tumori, I Numeri del Cancro in Italia 2016, AIOM 2016. Available online: https://www.registri-tumori.it/cms/pubblicazioni/i-numeri-del-cancro-italia-2016 (accessed on 12 May 2021).
- Ferguson, D.J.; Wild, J.J.; Wangensteen, O.H. Experimental resection of the trachea. Surgery 1950, 28, 597–619. [Google Scholar]
- Rob, C.G.; Bateman, G.H. Reconstruction of the trachea and cervical oesophagus preliminary report. Br. J. Surg. 1949, 37, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Grillo, H.C. Tracheal replacement: A critical review. Ann. Thorac. Surg. 2002, 73, 1995–2004. [Google Scholar] [CrossRef]
- Dedo, H.H.; Fishman, N.H. Laryngeal release and sleeve resection for tracheal stenosis. Ann. Otol. Rhinol. Laryngol. 1969, 78, 285–296. [Google Scholar] [CrossRef]
- Kucera, K.A.; Doss, A.E.; Dunn, S.S.; Clemson, L.A.; Zwischenberger, J.B. Tracheal Replacements: Part 1. Asaio J. 2007, 53, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Belsey, R. Resection and reconstruction of the intrathoracic trachea. Br. J. Surg. 1950, 38, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Abruzzo, A.; Fiorica, C.; Palumbo, V.D.; Altomare, R.; Damiano, G.; Gioviale, M.C.; Tomasello, G.; Licciardi, M.; Palumbo, F.S.; Giammona, G.; et al. Using polymeric scaffolds for vascular tissue engineering. Int. J. Polym. Sci. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Mehta, A.C.; Lee, F.Y.; Cordasco, E.M.; Kirby, T.; Eliachar, I.; De Boer, G. Concentric tracheal and subglottic stenosis. Management using the Nd-YAG laser for mucosal sparing followed by gentle dilatation. Chest 1993, 104, 673–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ried, M.; Marx, A.; Götz, A.; Hamer, O.; Schalke, B.; Hofmann, H.S. State of the art: Diagnostic tools and innovative therapies for treatment of advanced thymoma and thymic carcinoma. Eur. J. Cardiothorac. Surg. 2016, 49, 1545–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, T.L.; O’Brien, E.J.; Tuttle, W.; Meyer, J. The experimental use of homogenous tracheal transplants in the restoration of continuity of the tracheobronchial tree. J. Thorac. Surg. 1950, 20, 598–612. [Google Scholar] [CrossRef]
- Martinod, E.; Chouahnia, K.; Radu, D.M.; Joudiou, P.; Uzunhan, Y.; Bensidhoum, M.; Santos Portela, A.M.; Guiraudet, P.; Peretti, M.; Destable, M.D.; et al. Feasibility of bioengineered tracheal and bronchial reconstruction using stented aortic matrices. JAMA 2018, 319, 2212–2222. [Google Scholar] [CrossRef] [Green Version]
- Delaere, P.; Van Raemdonck, D. Tracheal replacement. J. Thorac. Dis. 2016, 8, S186–S196. [Google Scholar]
- Hinderer, S.; Schesny, M.; Bayrak, A.; Ibold, B.; Hampel, M.; Walles, T.; Stock, U.A.; Seifert, M.; Schenke-Layland, K. Engineering of fibrillar decorin matrices for a tissue-engineered trachea. Biomaterials 2012, 33, 5259–5266. [Google Scholar] [CrossRef] [PubMed]
- Tsukada, H.; Gangadharan, S.; Garland, R.; Herth, F.; DeCamp, M.; Ernst, A. Tracheal replacement with a bioabsorbable scaffold in sheep. Ann. Thorac. Surg. 2010, 90, 1793–1797. [Google Scholar] [CrossRef]
- Huang, L.; Wang, L.; He, J.; Zhao, J.; Zhong, D.; Yang, G.; Guo, T.; Yan, X.; Zhang, L.; Li, D.; et al. Tracheal suspension by using 3-dimensional printed personalized scaffold in a patient with tracheomalacia. J. Thorac. Dis. 2016, 8, 3323–3328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athanasiou, K.A.; Eswaramoorthy, R.; Hadidi, P.; Hu, J.C. Self organization and the self-assembling process in tissue engineering. Annu. Rev. Biomed. Eng. 2013, 15, 115–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weidenbecher, M.; Tucker, H.M.; Gilpin, D.A.; Dennis, J.E. Tissue engineered trachea for airway reconstruction. Laryngoscope 2009, 119, 2118–2123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dikina, A.D.; Strobel, H.A.; Lai, B.P.; Rolle, M.W.; Alsberg, E. Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs. Biomaterials 2015, 52, 452–462. [Google Scholar] [CrossRef] [Green Version]
- Bertelli, E.; Di Gregorio, F.; Bertelli, L.; Mosca, S. The arterial blood supply of the pancreas: A review. Surg. Radiol. Anat. 1995, 17, 97–106. [Google Scholar] [CrossRef]
- Mathisen, D.J. Tracheal Resection and Reconstruction: How I Teach It. Ann. Thorac. Surg. 2017, 103, 1043–1048. [Google Scholar] [CrossRef] [Green Version]
- Safieddine, N.; Liu, G.; Cuningham, K.; Ming, T.; Hwang, D.; Brade, A.; Bezjak, A.; Fischer, S.; Xu, W.; Azad, S. Prognostic factors for cure, recurrence and long-term survival after surgical resection of thymoma. J. Thorac. Oncol. 2014, 9, 1018–1022. [Google Scholar] [CrossRef] [Green Version]
- Werga-Kjellman, P.; Zedenius, J.; Tallstedt, L.; Träisk, F.; Lundell, G.; Wallin, G. Surgical treatment of hyperthyroidism: A ten-year experience. Thyroid 2001, 11, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Felix, J.F.; van Looij, M.A.; Pruijsten, R.V.; de Krijger, R.R.; de Klein, A.; Tibboel, D.; Hoeve, H.L. Agenesis of the trachea: Phenotypic expression of a rare cause of fatal neonatal respiratory insufficiency in six patients. Int. J. Pediatr. Otorhinolaryngol. 2006, 70, 365–370. [Google Scholar] [CrossRef]
- De José María, B.; Drudis, R.; Monclús, E.; Silva, A.; Santander, S.; Cusí, V. Management of tracheal agenesis. Paediatr. Anaesth. 2000, 10, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Boogaard, R.; Huijsmans, S.H.; Pijnenburg, M.W.; Tiddens, H.A.; de Jongste, J.C.; Merkus, P.J. Tracheomalacia and bronchomalacia in children: Incidence and patient characteristics. Chest 2005, 128, 3391–3397. [Google Scholar] [CrossRef] [PubMed]
- Minard, G.; Kudsk, K.A.; Croce, M.A.; Butts, J.A.; Cicala, R.S.; Fabian, T.C. Laryngotracheal trauma. Am. Surg. 1992, 58, 181–187. [Google Scholar] [PubMed]
- Bader, A.; Macchiarini, P. Moving towards in situ tracheal regeneration: The bionic tissue engineered transplantation approach. J. Cell Mol. Med. 2010, 14, 1877–1889. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.G.; Strieder, J.W. Resection of the trachea and bronchi; and experimental study. J. Thorac. Surg. 1950, 20, 613–627. [Google Scholar] [CrossRef]
- Pacheco, C.R.; Rivero, O.; Porter, J.K. Experimental reconstructive surgery of the trachea. J. Thorac. Surg. 1954, 27, 554–564. [Google Scholar] [CrossRef]
- Beigel, A.; Steffens-Knutzen, R.; Müller, B.; Schumacher, U.; Stein, H. Tracheal transplantation. III. Demonstration of transplantation antigens on the tracheal mucosa of inbred rat strains. Arch. Otorhinolaryngol. 1984, 241, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yokomise, H.; Inui, K.; Wada, H.; Ueda, M.; Hitomi, S. Long term cryopreservation can prevent rejection rejection of canine tracheal allografts with preservation of graft viability. J. Thorac. Cardiovasc. Surg. 1996, 111, 930–934. [Google Scholar] [CrossRef] [Green Version]
- Scherer, M.A.; Ascherl, R.; Geißdörfer, K.; Mang, W.; Blümel, G.; Lichti, H.; Fraefel, W. Experimental biosynthetic reconstruction of the trachea. Arch. Otorhinolarynol. 1986, 243, 215–223. [Google Scholar] [CrossRef]
- Jacobs, J.P.; Elliott, M.J.; Haw, M.P.; Bailey, C.M.; Herberhold, C. Pediatric tracheal homograft reconstruction: A novel approach to complex tracheal stenosis in children. J. Thorac. Cardiovasc. Surg. 1996, 112, 1549–1560. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J.P.; Quintessenza, J.A.; Andrews, T.; Burke, R.P.; Spektor, Z.; Delius, R.E.; Smith, R.J.; Elliott, M.J.; Herberhold, C. Tracheal allograft reconstruction: The total North American and worldwide pediatric experiences. Ann. Thorac. Surg. 1999, 68, 1043–1052. [Google Scholar] [CrossRef]
- Boren, C.H.; Roon, A.J.; Moore, W.S. Maintenance of viable arterial allografts by cryopreservation. Surgery 1978, 83, 382–391. [Google Scholar]
- Kawabe, N.; Yoshinao, M. Cryopreservation of cartilage. Int. Orthop. 1990, 14, 231–235. [Google Scholar] [CrossRef]
- Niwaya, K.; Sakaguchi, H.; Kawachi, K.; Kitamura, S. Effect of warm ischemia and cryopreservation on cell viability of human allograft valves. Ann. Thorac. Surg. 1995, 60, S114–S117. [Google Scholar] [CrossRef]
- Nakanishi, R.; Hashimoto, M.; Muranaka, H.; Yasumoto, K. Effect of cryopreservation period on rat tracheal allografts. J. Heart Lung Transpl. 2001, 20, 1010–1015. [Google Scholar] [CrossRef]
- Shi, H.; Xu, H.; Lu, D.; Wu, J. Animal models of tracheal allotransplantation using vitrified cryopreservation. J. Thorac. Cardiovasc. Surg. 2009, 138, 1222–1226. [Google Scholar] [CrossRef] [Green Version]
- Deschamps, C.; Trastek, V.F.; Ferguson, J.L.; Martin, W.J.; Colby, T.V.; Pairolero, P.C.; Payne, W.S. Cryopreservation of canine trachea: Functional and histological changes. Ann. Thorac. Surg. 1989, 47, 208–212. [Google Scholar] [CrossRef]
- Messineo, A.; Filler, R.M.; Bahoric, A.; Smith, C.R. Repair of long tracheal defects with cryopreserved cartilaginous allografts. J. Pediatr. Surg. 1992, 27, 1131–1134. [Google Scholar] [CrossRef]
- Lenot, B.; Macchiarini, P.; Dulmet, E.; Weiss, M.; Dartevelle, P. Tracheal allograft replacement. An unsuccessful method. Eur. J. Cardio-Thorac. Surg. 1993, 7, 648–652. [Google Scholar] [CrossRef]
- Yokomise, H.; Inui, K.; Wada, H.; Goh, T.; Yagi, K.; Hitomi, S.; Takahashi, M. High dose irradiation prevents rejection of canine tracheal allografts. J. Thorac. Cardiovasc. Surg. 1994, 107, 1391–1397. [Google Scholar] [CrossRef]
- Mukaida, T.; Shimizu, N.; Aoe, M.; Andou, A.; Date, H.; Okabe, K.; Yamashita, M.; Ichiba, S. Experimental study of tracheal allotransplantation with cryopreserved grafts. J. Thorac. Cardiovasc. Surg. 1998, 116, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Tojo, T.; Niwaya, K.; Sawabata, N.; Kushibe, K.; Nezu, K.; Taniguchi, S.; Kitamura, S. Tracheal replacement with cryopreserved tracheal allograft: Experiments in dogs. Ann. Thorac. Surg 1998, 66, 209–213. [Google Scholar] [CrossRef]
- Martinod, E.; Seguin, A.; Radu, D.M.; Boddaert, G.; Chouahnia, K.; Fialaire-Legendre, A.; Dutau, H.; Vénissac, N.; Marquette, C.H.; Baillard, C.; et al. Airway transplantation. Eur. J. Med. Res. 2013, 18, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seguin, A.; Baccari, S.; Holder-Espinasse, M.; Bruneval, P.; Carpentier, A.; Taylor, D.A.; Martinod, E. Tracheal regeneration: Evidence of bone marrow mesenchymal stem cell involvement. J. Thorac. Cardiovasc. Surg. 2013, 145, 1297–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurtz, A.; Porte, H.; Conti, M.; Desbordes, J.; Copin, M.C.; Azorin, J.; Martinod, E.; Marquette, C.H. Tracheal replacement with aortic allografts. N. Engl. J. Med. 2006, 355, 1938–1940. [Google Scholar] [CrossRef] [PubMed]
- Wurtz, A.; Porte, H.; Conti, M.; Dusson, C.; Desbordes, J.; Copin, M.C.; Marquette, C.H. Surgical technique and results of tracheal and carinal replacement with aortic allografts for salivary gland-type carcinoma. J. Thorac. Cardiovasc. Surg. 2010, 140, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Martinod, E.; Paquet, J.; Dutau, H.; Radu, D.M.; Bensidhoum, M.; Abad, S.; Uzunhan, Y.; Vicaut, E.; Petite, H. In Vivo Tissue Engineering of Human Airways. Ann. Thorac. Surg. 2017, 103, 1631–1640. [Google Scholar] [CrossRef] [Green Version]
- Weiss, D.J.; Elliott, M.; Jang, Q.; Poole, B.; Birchall, M. Tracheal bioengineering: The next step. Cytotherapy 2014, 16, 1601–1613. [Google Scholar] [CrossRef] [PubMed]
- Grillo, H.C. Tracheal replacement. In Surgery of the Trachea and Bronchi; Grillo, H.C., Ed.; BC Decker Inc.: Hamilton, ON, USA, 2004; pp. 839–854. [Google Scholar]
- Chiang, T.; Pepper, V.; Best, C.; Onwuka, E.; Breuer, C.K. Clinical translation of tissue engineered trachea grafts. Ann. Otol. Rhinol. Laryngol. 2016, 125, 873–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abouarab, A.A.; Elsayed, H.H.; Elkhayat, H.; Mostafa, A.; Cleveland, D.C.; Nori, A.E. Current solutions for long-segment tracheal reconstruction. Ann. Thorac. Cardiovasc. Surg. 2017, 23, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Auchincloss, H.G.; Wright, C.D. Complications after tracheal resection and reconstruction: Prevention and treatment. J. Thorac. Dis. 2016, 8, S160–S167. [Google Scholar]
- Haseltine, W.A. Interview: Commercial translation of cell-based therapies and regenerative medicine: Learning by experience. Regen. Med. 2011, 6, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Dhasmana, A.; Singh, A.; Rawal, S. Biomedical grafts for tracheal tissue repairing and regeneration “Tracheal tissue engineering: An overview”. J. Tissue Eng. Regen. Med. 2020, 14, 653–672. [Google Scholar] [CrossRef] [PubMed]
- Baron, F.; Storb, R. Stem cell therapy: Past, present and future. In Advances in Tissue Engineering; Polak, J., Mantalaris, S., Harding, S.E., Eds.; Imperial College Press: London, UK, 2008; pp. 561–591. [Google Scholar]
- Ikada, Y. Challenges in tissue engineering. J. R. Soc. Interface 2006, 3, 589–601. [Google Scholar] [CrossRef]
- Palumbo, V.D.; Bruno, A.; Tomasello, G.; Damiano, G.; Lo Monte, A.I. Bioengineered vascular scaffolds: The state of the art. Int. J. Artif. Organs 2014, 37, 503–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macchiarini, P.; Jungebluth, P.; Go, T.; Asnaghi, M.A.; Rees, L.E.; Cogan, T.A.; Dodson, A.; Martorell, J.; Bellini, S.; Parnigotto, P.P.; et al. Clinical transplantation of a tissue-engineered airway. Lancet 2008, 372, 2023–2030. [Google Scholar] [CrossRef]
- Gonfiotti, A.; Jaus, M.O.; Barale, D.; Baiguera, S.; Comin, C.; Lavorini, F.; Fontana, G.; Sibila, O.; Rombolà, G.; Jungebluth, P.; et al. The first tissue engineered airway transplantation: 5-year follow-up results. Lancet 2014, 383, 238–244. [Google Scholar] [CrossRef]
- Jungebluth, P.; Macchiarini, P. Airway transplantation. Thorac. Surg. Clin. 2014, 24, 97–106. [Google Scholar] [CrossRef]
- Elliott, M.J.; De Copi, P.; Speggiorin, S.; Roebuck, D.; Butler, C.R.; Samuel, E.; Crowley, C.; McLaren, C.; Fierens, A.; Vondrys, D.; et al. Stem-cell-based, tissue engineered tracheal replacement in a child: A 2-year follow-up study. Lancet 2012, 380, 994–1000. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, N.J.; Kanani, M.; Roebuck, D.J.; Hewitt, R.J.; Cetto, R.; Culme-Seymour, E.J.; Toll, E.; Bates, A.J.; Comerford, A.P.; McLaren, C.A.; et al. Tissue-engineered tracheal replacement in a child: A 4-year follow-up study. Am. J. Transplant. 2015, 15, 2750–2757. [Google Scholar] [CrossRef] [PubMed]
- Delaere, P.; Vranckx, J.; Verleden, G.; De Leyn, P.; Van Raemdonck, D. Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N. Engl. J. Med. 2010, 362, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Jungebluth, P.; Alici, E.; Baiguera, S.; Blomberg, P.; Bozóky, B.; Crowley, C.; Einarsson, O.; Gudbjartsson, T.; Le Guyader, S.; Henriksson, G.; et al. Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: A proof-of-concept study. Lancet 2011, 378, 1997–2004. [Google Scholar] [CrossRef]
- Claesson-Welsh, L.; Hansson, G.K. Tracheobronchial transplantation: The Royal Swedish Academy of Sciences’ concerns. Lancet 2016, 387, 942. [Google Scholar] [CrossRef] [Green Version]
- Teixeira da Silva, J.A. Ethical perspectives and ramifications of the Paolo Macchiarini case. Indian J. Med. Ethics 2017, 2, 270–275. [Google Scholar] [PubMed]
- Lo Monte, A.I.; Licciardi, M.; Bellavia, M.; Damiano, G.; Palumbo, V.D.; Palumbo, F.S.; Abruzzo, A.; Fiorica, C.; Pitarresi, G.; Cacciabaudo, F.; et al. Biocompatibility and biodegradability of electrospun PHEA-PLA scaffolds: Our preliminary experience in a murine animal model. Dig. J. Nanomat. Biostruct. 2012, 7, 841–851. [Google Scholar]
- Choi, S.W.; Zhang, Y.; Xia, Y. Three-dimensional scaffolds for tissue engineering: The importance of uniformity in pore size and structure. Langmuir 2010, 26, 19001–19006. [Google Scholar] [CrossRef] [Green Version]
- Law, J.X.; Liau, L.L.; Aminuddin, B.S.; Ruszymah, B.H. Tissue-engineered trachea: A review. Int. J. Pediatr. Otorhinolaryngol. 2016, 91, 55–63. [Google Scholar] [CrossRef]
- Zang, M.; Zhang, Q.; Chang, E.I.; Mathur, A.B.; Yu, P. Decellularized tracheal matrix scaffold for tracheal tissue engineering: In vivo host response. Plast. Reconstr. Surg. 2013, 132, 549e–559e. [Google Scholar] [CrossRef]
- Badylak, S.F. The extracellular matrix as a biologic scaffold material. Biomaterials 2007, 28, 3587–3593. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Pan, S.; Shi, H.C.; Zhang, F.B.; Zhang, W.D.; Ye, G.; Liu, X.C.; Zhang, S.Q.; Zhong, C.H.; Yuan, X.L. Structural integrity, immunogenicity and biomechanical evaluation of rabbit decellularized tracheal matrix. J. Biomed. Mater. Res. Part A 2015, 103, 1509–1519. [Google Scholar] [CrossRef]
- Conconi, M.T.; De Coppi, P.; Di Liddo, R.; Vigolo, S.; Zanon, G.F.; Parnigotto, P.P.; Nussdorfer, G.G. Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl. Int. 2005, 18, 727–734. [Google Scholar] [CrossRef]
- Berg, M.; Ejnell, H.; Kovacs, A.; Nayakawde, N.; Patil, P.B.; Joshi, M.; Aziz, L.; Rådberg, G.; Hajizadeh, S.; Olausson, M.; et al. Replacement of a tracheal stenosis with a tissue-engineered human trachea using autologous stem cells: A case report. Tissue Eng. Part A 2014, 20, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Batioglu-Karaaltin, A.; Karaaltin, M.V.; Ovali, E.; Yigit, O.; Kongur, M.; Inan, O.; Bozkurt, E.; Cansiz, H. In vivo tissue-engineered allogenic trachea transplantation in rabbits: A preliminary report. Stem. Cell Rev. 2015, 11, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Remlinger, N.T.; Czajka, C.A.; Juhas, M.E.; Vorp, D.A.; Stolz, D.B.; Badylak, S.F.; Gilbert, S.; Gilbert, T.W. Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction. Biomaterials 2010, 31, 3520–3526. [Google Scholar] [CrossRef]
- Fishman, J.M.; Lowdell, M.; Birchall, M.A. Stem cell-based organ replacements-airway and lung tissue engineering. Semin. Pediatr. Surg. 2014, 23, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Haykal, S.; Soleas, J.P.; Salna, M.; Hofer, S.O.; Waddell, T.K. Evaluation of the structural integrity and extracellular matrix components of tracheal allografts following cyclical decellularization techniques: Comparison of three protocols. Tissue Eng. Part C Methods 2012, 18, 614–623. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, R.; Chen, X.; Wu, J.; Pan, Y.; Lu, S.; Weder, W.; Luo, Q. Clinic application of tissue engineered bronchus for lung cancer treatment. J. Thorac. Dis. 2017, 9, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Cicalese, L.; Corsello, T.; Stevenson, H.L.; Damiano, G.; Tuveri, M.; Zorzi, D.; Montalbano, M.; Shirafkan, A.; Rastellini, C. Evidence of Absorptive Function in vivo in a Neo-Formed Bio-Artificial Intestinal Segment Using a Rodent Model. Gastrointest. Surg. 2016, 20, 34–42. [Google Scholar] [CrossRef]
- Park, H.S.; Park, H.J.; Lee, J.; Kim, P.; Lee, J.S.; Lee, Y.J.; Park, C.H. A 4-axys technique for three-dimensional printing of an artificial trachea. Tissue Eng. Regen. Med. 2018, 15, 415–425. [Google Scholar] [CrossRef]
- Makitie, A.A.; Korpela, J.; Elomaa, L.; Reivonen, M.; Kokkari, A.; Malin, M.; Korhonen, H.; Wang, X.; Salo, J.; Sihvo, E.; et al. Novel additive manufactured scaffolds for tissue engineered trachea research. Acta Oto-Laryngol. 2013, 133, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Altomare, R.; Cannella, V.; Abruzzo, A.; Palumbo, V.D.; Damiano, G.; Spinelli, G.; Ficarella, S.; Cicero, L.; Cassata, G.; Di Bella, S.; et al. Obtaining mesenchymal stem cells from adipose tissue of murin origin: Experimental study. Int. J. Stem. Cell Res. Transplant. 2014, 2, 1–5. [Google Scholar]
- Cannella, V.; Piccione, G.; Altomare, R.; Marino, A.; Di Marco, P.; Russotto, L.; Di Bella, S.; Purpari, G.; Gucciardi, F.; Cassata, G.; et al. Differentiation and characterization of rat adipose tissue mesenchymal stem cells into endothelial-like cells. Anat. Histol. Embryol. 2018, 47, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, Y.; Haag, J.; Jungebluth, P.; Lundin, V.; Lim, M.L.; Baiguera, S.; Ajalloueian, F.; Del Gaudio, C.; Bianco, A.; Moll, G.; et al. Viability and proliferation of rat MSCs on adhesion protein-modified PET and PU scaffolds. Biomaterials 2012, 33, 8094–8103. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Wang, W.; Lu, D.; Li, H.; Chen, L.; Lu, Y.; Zeng, Y. Cellular biocompatibility and biomechanical properties of N-carboxyethyl- chitosan/nanohydroxyapatite composites for tissue-engineered trachea. Artif. Cells Blood Substit. Immobil. Biotechnol. 2012, 40, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Vacanti, C.A.; Paige, K.T.; Kim, W.S.; Sakata, J.; Upton, J.; Vacanti, J.P. Experimental tracheal replacement using tissue-engineered cartilage. J. Pediatr. Surg. 1994, 29, 201–204. [Google Scholar] [CrossRef]
- Kanzaki, M.; Amato, M.; Hatakeyama, H.; Kohno, C.; Yang, J.; Umemoto, T.; Kikuchi, A.; Okano, T.; Onuki, T. Tissue engineered epithelial cell sheets for the creation of a bioartificial trachea. Tissue Eng. 2006, 12, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Hsu, S.H.; Su, J.M.; Chen, C.W. Surface modification of poly[e-caprolactone] porous scaffolds using gelatin hydrogel as the tracheal replacement. J. Tissue Eng. Regen. Med. 2010, 5, 156–162. [Google Scholar] [CrossRef]
- Naito, H.; Tojo, T.; Kimura, M.; Dohi, Y.; Zimmermann, W.H.; Eschenhagen, T.; Taniguchi, S. Engineering bioartificial tracheal tissue using hybrid fibroblast-mesenchymal stem cell cultures in collagen hydrogels. Interact. Cardiovasc. Thorac. Surg. 2011, 12, 156–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekine, T.; Nakamura, T.; Ueda, H.; Matsumoto, K.; Yamamoto, Y.; Takimoto, Y.; Kiyotani, T.; Shimizu, Y. Replacement of the tracheo- bronchial bifurcation by a newly developed Y-shaped artificial trachea. ASAIO J. 1999, 45, 131–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hörnlund, A. Clarification regarding ethical review of Paolo Macchiarini’s research. Lancet 2016, 387, 1816. [Google Scholar] [CrossRef] [Green Version]
- Del Gaudio, C.; Baiguera, S.; Ajalloueian, F.; Bianco, A.; Macchiarini, P. Are synthetic scaffolds suitable for the development of clinical tissue-engineered tubular organs? J. Biomed. Mater. Res. A 2014, 102, 2427–2447. [Google Scholar] [CrossRef]
- Go, T.; Jungebluth, P.; Baiguero, S.; Asnaghi, A.; Martorell, J.; Ostertag, H.; Mantero, S.; Birchall, M.; Bader, A.; Macchiarini, P. Both epithelial cells and mesenchymal stem cell-derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs. J. Thorac. Cardiovasc. Surg. 2010, 139, 437–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao Pattabhi, S.; Martinez, J.S.; Keller, T.C., III. Decellularized ECM effects on human mesenchymal stem cell stemness and differentiation. Differentiation 2014, 88, 131–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efraim, Y.; Sarig, H.; Cohen Anavy, N.; Sarig, U.; de Berardinis, E.; Chaw, S.Y.; Krishnamoorthi, M.; Kalifa, J.; Bogireddi, H.; Duc, T.V.; et al. Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction. Acta Biomater. 2017, 50, 220–233. [Google Scholar] [CrossRef]
- Johnson, C.; Sheshadri, P.; Ketchum, J.M.; Narayanan, L.K.; Weinberger, P.M.; Shirwaiker, R.A. In vitro characterization of design and compressive properties of 3D-biofabricated/decellularized hybrid grafts for tracheal tissue engineering. J. Mech. Behav. Biomed. Mater. 2016, 59, 572–585. [Google Scholar] [CrossRef]
- Montesanto, S.; Mannella, G.A.; Carfì Pavia, F.; La Carrubba, V.; Brucato, V. Coagulation bath composition and desiccation environment as tuning parameters to prepare skinless membranes via diffusion induced phase separation. J. Appl. Polym. Sci. 2015, 132, 1–10. [Google Scholar] [CrossRef]
- Montesanto, S.; Brucato, V.; La Carrubba, V. Evaluation of mechanical and morphologic features of PLLA membranes as supports for perfusion cells culture systems. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 841–849. [Google Scholar] [CrossRef]
- La Carrubba, V.; Pavia, F.C.; Brucato, V. Tubular scaffold for vascular tissue engineering application. Int. J. Mater. Form. 2010, 3, 567–570. [Google Scholar] [CrossRef]
- La Carrubba, V.; University of Palermo. Italian Patent Application No. 102016000033555, 1 April 2016.
- Ikeda, M.; Imaizumi, M.; Yoshie, S.; Nakamura, R.; Otsuki, K.; Murono, S.; Omori, K. Implantation of Induced Pluripotent Stem Cell-Derived Tracheal Epithelial Cells. Ann. Otol. Rhinol. Laryngol. 2017, 126, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.G.; Park, S.A.; Lee, S.H.; Choi, J.S.; Cho, H.; Lee, S.J.; Kwon, Y.W.; Kwon, S.K. Transplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytes. Sci. Rep. 2020, 10, 4326. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.T.; Liao, C.Y.; Dai, N.T.; Tseng, C.S.; Yen, B.L.; Hsu, S. 3D printing of tubular scaffolds with elasticity and complex structure from multiple waterborne polyurethanes for tracheal tissue engineering. Appl. Mater. Today 2018, 12, 330–341. [Google Scholar] [CrossRef]
- Chan, D.S.; Gabra, N.; Baig, A.; Manoukian, J.J.; Daniel, S.J. Bridging the Gap: Using 3D Printed Polycaprolactone Implants to Reconstruct Circumferential Tracheal Defects in Rabbits. Laryngoscope 2020, 130, E767–E772. [Google Scholar] [CrossRef] [PubMed]
Techniques | Methods | Features | Results |
---|---|---|---|
Standard tracheal reconstruction | Tracheal dilatation with rigid bronchoscope [3,6] | High recurrence rates (90%) | |
Laser surgery with placement of an endoluminal stent [9] | 30–40% recurrence rate | ||
Surgical resection [7,10] | Post-operative period burdened by several complications (up to 20% of cases): recurrent stenosis, permanent tracheostomy, even death | ||
Allografts | Tracheal allografts [11] | Early stenosis, necrosis, undergo liquefaction, and graft rejection in absence of immune suppressive therapy, radiation therapy, chemical fixation, lyophilization, and cryopreservation | Allografts need to be revascularized, cryopreserved to inhibit allogenicity and maintain structural functionality and integrity |
Cryopreserved non-AB0 matched aortic allografts [12] | Supported by a stent to prevent airway collapse and covered circumferentially with a local muscle flap to promote neovascularization | Aortic matrices played a significant role by the release of proangiogenic, chemoattractant, proinflammatory and immunomodulatory cytokines, and growth factors | |
Regenerative medicine and tissue engineering | Decellularized tracheal Scaffold [13] | Removal of cell from the ECM and preserving the mechanical and bioinductive profile of the graft | Breaking of cell membrane using physical treatments or ionic solutions; separation of cellular components from the extracellular matrix through enzymatic treatments; solubilization of the cytoplasmic components using detergents; removal of cellular debris |
Biosynthetic polymers Scaffolds [14,15,16] | Polyphatic acid and polycaprolactone [PCL] coated with an artificial pleura patch POSS-PCU cellularized with stem cells by dynamic culture in a bioreactor | PCL: progressive improvement of the tracheal respiratory space POSS-PCU: partial epithelial colonization of the polymer | |
Scaffold-free constructs [17,18,19] | Self-organization techniques (bioprinting and cell-sheet engineering) Self-assembly techniques (cells seeded on a non-adherent surface develop neotissue by adhering to each other) | Fabricated sheets of cartilage obtained from the auricular cartilage of New Zealand white rabbits in combination with a muscle/silicone construct Self-assembly in TETG has been reported using human MSC-derived cartilaginous rings and cylinders generated through a custom ring-to-tube assembly system |
Authors | Methods | Results |
---|---|---|
Vacanti et al. [91], 1994 | Tubular scaffold from sheets of fibrous polyglycolic acid cellularized with chondrocytes. | Implanted in four rats, as substitutes for 4–6 tracheal rings. The animals died soon after surgery. |
Kanzaki et al. [92], 2006 | Prevascularized Dacron support covered by a layer of rabbit tracheal epithelial cells. | Four weeks after transplantation, the tracheal grafts were covered by a mature, pseudostratified columnar epithelium. |
Macchiarini et al. [62], 2008 | A tissue engineered tracheal graft (TETG) was implanted in a patient with severe bronchial stenosis following treatment for tuberculosis. | Most patients died after the implantation of tissue-engineered airways. |
Weidenbecher et al. [18], 2009 | Sheets of cartilage obtained from the auricular cartilage of New Zealand white rabbits used in combination to a muscle/silicone. | Demonstrated mechanical stability without degradation but all rabbits expired due to obstruction/stenosis between 1 and 39 days after surgery. |
Naito et al. [94], 2011 | Fibroblast and collagen hydrogels, mechanically supported by osteogenically induced mesenchymal stem cells (MSC) in ring-shaped 3D-hydrogel cultures. | Six of the nine animals died during implantation, while three of them survived for 24 h and died the day after. |
Jungebluth et al. [68], 2011 | Polymer in POSS-PCU [polyhedral oligomericsilsesqui-oxane (POSS) covalently linked to poly (-carbonate-urea) urethane (PCU)], cellularized with stem cells by dynamic culture in a bioreactor carried out urgently on a 37-year-old man. | Partial epithelial colonization of the polymer. |
Hinderer et al. [14], 2012 | Composite PCL–gelatin–decorine scaffold with a three-dimensional structure and pores of an average size of 14.4 ± 6.4 μm. | Uniform composition of the scaffold, but a poor mechanical resistance and the presence of cells only at the outer surface of the construct. |
Gustafsson et al. [89], 2012 | Rat mesenchymal stromal cells cultured on a polyethylene terephthalate [PET] and polyurethane [PU] scaffold and coated with adhesion proteins. | Similar cell densities and MSC proliferating cells; no advantages with adhesion proteins. |
Shi et al. [90], 2012 | Copolymer of N-carboxyethylchitosan/nanohydroxyapatite chitosan/nanohydroxyapatite composites for tissue-engineered trachea. | Satisfactory tensile strength. |
Huang et al. [16], 2016 | PCL-based scaffold coated with an artificial pleura patch on a 47-year-old woman affected by tracheomalacia after tubercular disease. | Progressive improvement of the tracheal respiratory space (from 0.3 to 1 cm in maximum diameter). |
Johnson et al. [101], 2016 | In vitro characterization of design and compressive property of 3D-biofabricated/decellularized hybrid grafts for tracheal tissue engineering. | Decellularized swine trachea was reinforced with a PCL scaffold, using a 3D printer. |
Tan et al. [83], 2017 | Stent of Nitinol coated with porcine dermis, continuously irrigated with a solution of Ringer’s lactate with added neoangiogenic factors and antibiotics. | Patient survived and was discharged on month after implantation. |
Ikeda et al. [106], 2017 | Implantation of induced pluripotent stem cell-derived tracheal epithelial cells. | Survival of tracheal epithelial tissues in rat. |
Hsieh et al. [108], 2018 | 3D printing of tubular scaffolds with elasticity and complex structure from multiple waterborne polyurethanes for tracheal tissue engineering | Stability and cartilage growth. |
Chan DS [109], 2019 | 3D-printed polycaprolactone implants to reconstruct circumferential tracheal defects in rabbits. | Feasibility but overgrowth of granulation tissue. |
Kim et al. [107], 2020 | Transplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytes. | Evidence in forming neocartilage. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damiano, G.; Palumbo, V.D.; Fazzotta, S.; Curione, F.; Lo Monte, G.; Brucato, V.M.B.; Lo Monte, A.I. Current Strategies for Tracheal Replacement: A Review. Life 2021, 11, 618. https://doi.org/10.3390/life11070618
Damiano G, Palumbo VD, Fazzotta S, Curione F, Lo Monte G, Brucato VMB, Lo Monte AI. Current Strategies for Tracheal Replacement: A Review. Life. 2021; 11(7):618. https://doi.org/10.3390/life11070618
Chicago/Turabian StyleDamiano, Giuseppe, Vincenzo Davide Palumbo, Salvatore Fazzotta, Francesco Curione, Giulia Lo Monte, Valerio Maria Bartolo Brucato, and Attilio Ignazio Lo Monte. 2021. "Current Strategies for Tracheal Replacement: A Review" Life 11, no. 7: 618. https://doi.org/10.3390/life11070618
APA StyleDamiano, G., Palumbo, V. D., Fazzotta, S., Curione, F., Lo Monte, G., Brucato, V. M. B., & Lo Monte, A. I. (2021). Current Strategies for Tracheal Replacement: A Review. Life, 11(7), 618. https://doi.org/10.3390/life11070618