A Lizardite–HCN Interaction Leading the Increasing of Molecular Complexity in an Alkaline Hydrothermal Scenario: Implications for Origin of Life Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineral/HCN Samples
2.2. Analysis of Samples
2.2.1. FT-IR Spectroscopy (FT-IR)
2.2.2. Thermal Analysis (TA)
2.2.3. XPS Spectroscopy Analysis
2.2.4. Hydrolysis and GC–MS Analysis
3. Results and Discussion
3.1. Fourier Transform Infrared (FT-IR) Spectroscopy
3.2. Thermal Analysis
3.3. Mass Spectroscopy Thermal Analysis
3.4. XPS Analysis
3.5. GC–MS Analysis of Hydrolyzed Samples
4. Outlook on Studies about Prebiotic Molecular Complexity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruiz-Bermejo, M.; Zorzano, M.-P.; Osuna-Esteban, S. Simple Organics and Biomonomers Identified in HCN Polymers: An Overview. Life 2013, 3, 421–448. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, J.D. The Origin of Life-Out of the Blue. Angew. Chem. Int. Ed. 2016, 55, 104–121. [Google Scholar] [CrossRef]
- Islam, S.; Powner, M.W. Prebiotic Systems Chemistry: Complexity Overcoming Clutter. Chem 2017, 2, 470–501. [Google Scholar] [CrossRef] [Green Version]
- Powner, M.W.; Gerland, B.; Sutherland, J.D. Synthesis of Activated Pyrimidine Ribonucleotides in Prebiotically Plausible Conditions. Nature 2009, 459, 239. [Google Scholar] [CrossRef] [PubMed]
- Ritson, D.; Sutherland, J.D. Prebiotic Synthesis of Simple Sugars by Photoredox Systems Chemistry. Nat. Chem. 2012, 4, 895–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritson, D.J.; Sutherland, J.D. Synthesis of Aldehydic Ribonucleotide and Amino Acid Precursors by Photoredox Chemistry. Angew. Chem. Int. Ed. 2013, 52, 5845–5847. [Google Scholar] [CrossRef] [Green Version]
- Marín-Yaseli, M.R.; Mompeán, C.; Ruiz-Bermejo, M. A Prebiotic Synthesis of Pterins. Chem. Eur. J. 2015, 21, 13531–13534. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.H.; Percivalle, C.; Ritson, D.J.; Duffy, C.D.; Sutherland, J.D. Common Origins of RNA, Protein and Lipid Precursors in a Cyanosulfidic Protometabolism. Nat. Chem. 2015, 7, 301–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín-Yaseli, M.R.; González-Toril, E.; Mompeán, C.; Ruiz-Bermejo, M. The Role of Aqueous Aerosols in the “Glyoxylate Scenario”: An Experimental Approach. Chem. Eur. J. 2016, 22, 12785–12799. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ritson, D.J.; Ranjan, S.; Todd, Z.R.; Sasselov, D.D.; Sutherland, J.D. Photochemical Reductive Homologation of Hydrogen Cyanide Using Sulfite and Ferrocyanide. Chem. Commun. 2018, 54, 5566–5569. [Google Scholar] [CrossRef]
- Mompeán, C.; Marín-Yaseli, M.R.; Espigares, P.; González-Toril, E.; Zorzano, M.-P.; Ruiz-Bermejo, M. Prebiotic Chemistry in Neutral/Reduced-Alkaline Gas-Liquid Interfaces. Sci. Rep. 2019, 9, 1–12. [Google Scholar]
- Das, T.; Ghule, S.; Vanka, K. Insights into the Origin of Life: Did It Begin from HCN and H2O? ACS Cent. Sci. 2019, 5, 1532–1540. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wu, L.-F.; Bond, A.D.; Sutherland, J.D. Photoredox Chemistry in the Synthesis of 2-Aminoazoles Implicated in Prebiotic Nucleic Acid Synthesis. Chem. Commun. 2020, 56, 13563–13566. [Google Scholar] [CrossRef] [PubMed]
- Burcar, B.; Castañeda, A.; Lago, J.; Daniel, M.; Pasek, M.A.; Hud, N.V.; Orlando, T.M.; Menor-Salván, C. A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron- and Cyanide-Rich Early Earth Scenario. Angew. Chem. Int. Ed. 2019, 58, 16981–16987. [Google Scholar] [CrossRef] [PubMed]
- Mukhin, L.E.V. Evolution of Organic Compounds in Volcanic Regions. Nature 1974, 251, 50–51. [Google Scholar] [CrossRef]
- Mukhin, L. Volcanic Processes and Synthesis of Simple Organic Compounds on Primitive Earth. Orig. Life 1976, 7, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Dowler, M.J.; Ingmanson, D.E. Thiocyanate in Red Sea Brine and Its Implications. Nature 1979, 279, 51–52. [Google Scholar] [CrossRef]
- Arrhenius, T.; Arrhenius, G.; Paplawsky, W. Archean Geochemistry of Formaldehyde and Cyanide and the Oligomerization of Cyanohydrin. Orig. Life Evol. Biosph. 1994, 24, 1–17. [Google Scholar] [CrossRef]
- Keefe, A.D.; Miller, S.L. Was Ferrocyanide a Prebiotic Reagent? Orig. Life Evol. Biosph. 1996, 26, 111–129. [Google Scholar] [CrossRef]
- Dzombak, D.A.; Ghosh, R.S.; Wong-Chong, G.M. Cyanide in Water and Soil: Chemistry, Risk, and Management; CRC/Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal Vents and the Origin of Life. Nat. Rev. Microbiol. 2008, 11, 805–814. [Google Scholar] [CrossRef]
- Colín-García, M.; Ortega-Gutiérrez, F.; Heredia, A.; Negrón-Mendoza, A.; Ramos-Bernal, S.; Cordero, G.; Camprubí, A.; Beraldi, H. Hydrothermal Vents and Prebiotic Chemistry: A Review. Boletín Soc. Geológica 2016, 68, 599–620. [Google Scholar] [CrossRef]
- Colín-García, M.; Villafañe-Barajas, S.; Camprubí, A.; Ortega-Gutiérrez, F.; Colás, V.; Negrón-Mendoza, A. Prebiotic Chemistry in Hydrothermal Vent Systems. In Handbook of Astrobiology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 297–329. [Google Scholar]
- Schulte, M.; Blake, D.; Hoehler, T.; McCollom, T. Serpentinization and Its Implications for Life on the Early Earth and Mars. Astrobiology 2006, 6, 364–376. [Google Scholar] [CrossRef]
- Sleep, N.H.; Bird, D.K.; Pope, E.C. Serpentinite and the Dawn of Life. Philos. Trans. R. Soc. B 2011, 366, 2857–2869. [Google Scholar] [CrossRef] [Green Version]
- McCollom, T.M.; Seewald, J.S. Serpentinites, Hydrogen, and Life. Elements 2013, 9, 129–134. [Google Scholar] [CrossRef]
- Müntener, O. Serpentine and Serpentinization: A Link between Planet Formation and Life. Geology 2010, 38, 959–960. [Google Scholar] [CrossRef]
- Arndt, N.T.; Nisbet, E.G. Processes on the Young Earth and the Habitats of Early Life. Annu. Rev. Earth Planet Sci. 2012, 40, 521–549. [Google Scholar] [CrossRef] [Green Version]
- Stüeken, E.E.; Anderson, R.E.; Bowman, J.S.; Brazelton, W.J.; Colangelo-Lillis, J.; Goldman, A.D.; Som, S.M.; Baross, J.A. Did Life Originate from a Global Chemical Reactor? Geobiology 2013, 11, 101–126. [Google Scholar] [CrossRef] [PubMed]
- Schrenk, M.O.; Brazelton, W.J.; Lang, S.Q. Serpentinization, Carbon, and Deep Life. Rev. Miner. Geochem. 2013, 75, 575–606. [Google Scholar] [CrossRef] [Green Version]
- Evans, B.W.; Hattori, K.; Baronnet, A. Serpentinite: What, Why, Where? Elements 2013, 9, 99–106. [Google Scholar] [CrossRef]
- Kelley, D.S. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field. Science 2005, 307, 1428–1434. [Google Scholar] [CrossRef]
- Shibuya, T.; Komiya, T.; Nakamura, K.; Takai, K.; Maruyama, S. Highly Alkaline, High-Temperature Hydrothermal Fluids in the Early Archean Ocean. Precambrian Res. 2010, 182, 230–238. [Google Scholar] [CrossRef]
- Golding, S.D.; Duck, L.J.; Young, E.; Baublys, K.A.; Glikson, M.; Kamber, B.S. Earliest Seafloor Hydrothermal Systems on Earth: Comparison with Modern Analogues. In Earliest Life on Earth: Habitats, Environments and Methods of Detection; Golding, S.D., Glikson, M., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2011; pp. 15–49. [Google Scholar]
- Shibuya, T.; Yoshizaki, M.; Sato, M.; Shimizu, K.; Nakamura, K.; Omori, S.; Suzuki, K.; Takai, K.; Tsunakawa, H.; Maruyama, S. Hydrogen-Rich Hydrothermal Environments in the Hadean Ocean Inferred from Serpentinization of Komatiites at 300 ºC and 500 Bar. Prog. Earth Planet. Sci. 2015, 2, 46. [Google Scholar] [CrossRef] [Green Version]
- Corliss, J.B.; Baross, J.A.; Hoffman, S.E. An Hypothesis Concerning the Relationships between Submarine Hot Springs and the Origin of Life on Earth. Oceanol. Acta Spec. Issue 1981. [Google Scholar]
- Baross, J.A.; Hoffman, S.E. Submarine Hydrothermal Vents and Associated Gradient Environments as Sites for the Origin and Evolution of Life. Orig. Life Evol. Biosph. 1985, 15, 327–345. [Google Scholar] [CrossRef]
- Holm, N.G.; Dumont, M.; Ivarsson, M.; Konn, C. Alkaline Fluid Circulation in Ultramafic Rocks and Formation of Nucleotide Constituents: A Hypothesis. Geochem. Trans. 2006, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Holm, N.G.; Neubeck, A. Reduction of Nitrogen Compounds in Oceanic Basement and Its Implications for HCN Formation and Abiotic Organic Synthesis. Geochem. Trans. 2009, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimmer, P.B.; Shorttle, O. Origin of Life’s Building Blocks in Carbon-and Nitrogen-Rich Surface Hydrothermal Vents. Life 2019, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Toner, J.D.; Catling, D.C. Alkaline Lake Settings for Concentrated Prebiotic Cyanide and the Origin of Life. Geochim. Cosmochim. Acta 2019, 260, 124–132. [Google Scholar] [CrossRef]
- Milesi, V.; McCollom, T.M.; Guyot, F. Thermodynamic Constraints on the Formation of Condensed Carbon from Serpentinization Fluids. Geochim. Cosmochim. Acta 2016, 189, 391–403. [Google Scholar] [CrossRef]
- Milesi, V.; Guyot, F.; Brunet, F.; Richard, L.; Recham, N.; Benedetti, M.; Dairou, J.; Prinzhofer, A. Formation of CO2, H2 and Condensed Carbon from Siderite Dissolution in the 200–300°C Range and at 50MPa. Geochim. Cosmochim. Acta 2015, 154, 201–211. [Google Scholar] [CrossRef]
- Sforna, M.C.; Brunelli, D.; Pisapia, C.; Pasini, V.; Malferrari, D.; Ménez, B. Abiotic Formation of Condensed Carbonaceous Matter in the Hydrating Oceanic Crust. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Burcar, B.T.; Barge, L.M.; Trail, D.; Watson, E.B.; Russell, M.J.; McGown, L.B. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems. Astrobiology 2015, 15, 509–522. [Google Scholar] [CrossRef]
- Villafañe-Barajas, S.A.; Ruiz-Bermejo, M.; Rayo-Pizarroso, P.; Colín-García, M. Characterization of HCN-Derived Thermal Polymer: Implications for Chemical Evolution. Processes 2020, 8, 968. [Google Scholar] [CrossRef]
- Villafañe-Barajas, S.A.; Colín-García, M.; Negrón-Mendoza, A.; Ruiz-Bermejo, M. An Experimental Study of the Thermolysis of Hydrogen Cyanide: The Role of Hydrothermal Systems in Chemical Evolution. Int. J. Astrobiol. 2020, 1–10. [Google Scholar] [CrossRef]
- Hortal, L.; Pérez-Fernández, C.; de la Fuente, J.L.; Valles, P.; Mateo-Martí, E.; Ruiz-Bermejo, M. A Dual Perspective on the Microwave-Assisted Synthesis of HCN Polymers towards the Chemical Evolution and Design of Functional Materials. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Sanchez, R.A.; Ferris, J.P.; Orgel, L.E. Studies in Prebiotic Synthesis. II. Synthesis of Purine Precursors and Amino Acids from Aqueous Hydrogen Cyanide. J. Mol. Biol. 1967, 30, 223–253. [Google Scholar] [PubMed]
- Ferris, J.P.; Donner, D.B.; Lotz, W. Chemical Evolution. IX. Mechanism of the Oligomerization of Hydrogen Cyanide and Its Possible Role in the Origins of Life. J. Am. Chem. Soc. 1972, 94, 6968–6974. [Google Scholar] [CrossRef] [PubMed]
- Ferris, J.P.; Edelson, E.H. Chemical Evolution. 31. Mechanism of the Condensation of Cyanide to Hydrogen Cyanide Oligomers. J. Org. Chem. 1978, 43, 3989–3995. [Google Scholar] [CrossRef]
- Miyakawa, S.; Cleaves, H.J.; Miller, S.L. The Cold Origin of Life: A. Implications Based on the Hydrolytic Stabilities of Hydrogen Cyanide and Formamide. Orig. Life Evol. Biosph. 2002, 32, 195–208. [Google Scholar] [CrossRef]
- Marín-Yaseli, M.R.; Moreno, M.; de la Fuente, J.L.; Briones, C.; Ruiz-Bermejo, M. Experimental Conditions Affecting the Kinetics of Aqueous HCN Polymerization as Revealed by UV–Vis Spectroscopy. Spectrochim. Acta A 2018, 191, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.; Ruiz-Bermejo, M.; José, L. Modelling the Kinetics and Structural Property Evolution of a Versatile Reaction: Aqueous HCN Polymerization. Phys. Chem. Chem. Phys. 2018, 20, 17353–17366. [Google Scholar] [CrossRef]
- Mas, I.; de la Fuente, J.L.; Ruiz-Bermejo, M. Temperature Effect on Aqueous NH4CN Polymerization: Relationship between Kinetic Behaviour and Structural Properties. Eur. Polym. J. 2020, 132, 109719. [Google Scholar] [CrossRef]
- Ferris, J.P.; Edelson, E.H.; Mount, N.M.; Sullivan, A.E. The Effect of Clays on the Oligomerization of HCN. J. Mol. Biol. 1979, 13, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Boclair, J.W.; Braterman, P.S.; Brister, B.D.; Jiang, J.; Lou, S.; Wang, Z.; Yarberry, F. Cyanide self-addition, controlled adsorption, and other processes at layered double hydroxides. Orig. Life Evol. Biosph. 2001, 31, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Negrón-Mendoza, A.; Ramos-Bernal, S.; Cruz, E.; Juárez, J.M. Radiolysis of HCN in Heterogeneous Phase. Radiat. Phys. Chem. 2001, 61, 771–772. [Google Scholar] [CrossRef]
- Toh, R.J.; Evans, R.; Thissen, H.; Voelcker, N.H.; d’Ischia, M.; Ball, V. Deposition of Aminomalononitrile-Based Films: Kinetics, Chemistry, and Morphology. Langmuir 2019, 35, 9896–9903. [Google Scholar] [CrossRef] [PubMed]
- González-Mancera, G.; Ortega-Gutiérrez, F.; Proenza, J.A.; Atudorei, V. Petrology and Geochemistry of Tehuitzingo Serpentinites (Acatlán Complex, SW Mexico). Bol. Soc. Geol. Mex. 2009, 61, 419–435. [Google Scholar] [CrossRef]
- Rucklidge, J.C.; Zussman, J. The Crystal Structure of the Serpentine Mineral, Lizardite Mg3Si2O5(OH)4. Acta Cryst. 1965, 19, 381–389. [Google Scholar] [CrossRef]
- Mellini, M. Crystal Structure of Lizardite 1T. Acta Cryst. Sect. A Found. Crystallogr. 1981, 37, C189. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.M.; Wang, K.M. Preparation and Characterization of Lizardite. AMM 2014, 556–562, 109–112. [Google Scholar] [CrossRef]
- Carmignano, O.R.D.; Vieira, S.S.; Brandão, P.R.G.; Bertoli, A.C.; Lago, R.M. Serpentinites: Mineral Structure, Properties and Technological Applications. J. Braz. Chem. Soc. 2020, 31, 2–14. [Google Scholar] [CrossRef]
- Chastain, J.; King, R.C., Jr. Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corp. 1992, 40, 221. [Google Scholar]
- Ferris, J.P.; Wos, J.D.; Nooner, D.W.; Oró, J. Chemical Evolution: XXI. The Amino Acids Released on Hydrolysis of HCN Oligomers. J. Mol. Evol. 1974, 3, 225–231. [Google Scholar] [CrossRef]
- Rivero Crespo, M.A.; Pereira Gómez, D.; Villa García, M.V.; Gallardo Amores, J.M.; Sánchez Escribano, V. Characterization of Serpentines from Different Regions by Transmission Electron Microscopy, X-ray Diffraction, BET Specific Surface Area and Vibrational and Electronic Spectroscopy. Fibers 2019, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- de la Fuente, J.L.; Ruiz-Bermejo, M.; Nna-Mvondo, D.; Minard, R.D. Further Progress into the Thermal Characterization of HCN Polymers. Polym. Degrad. Stab. 2014, 110, 241–251. [Google Scholar] [CrossRef]
- Ruiz-Bermejo, M.; José, L.; Marín-Yaseli, M.R. The Influence of Reaction Conditions in Aqueous HCN Polymerization on the Polymer Thermal Degradation Properties. J. Anal. Appl. Pyrolysis. 2017, 124, 103–112. [Google Scholar] [CrossRef]
- de la Fuente, J.L.; Ruiz-Bermejo, M.; Menor-Salván, C.; Osuna-Esteban, S. Thermal Characterization of HCN Polymers by TG–MS, TG, DTA and DSC Methods. Polym. Degrad. Stabil. 2011, 96, 943–948. [Google Scholar] [CrossRef]
- Ruiz-Bermejo, M.; de la Fuente, J.L.; Rogero, C.; Menor-Salván, C.; Osuna-Esteban, S.; Martín-Gago, J.A. New Insights into the Characterization of ‘Insoluble Black HCN Polymers. Chem. Biodivers. 2012, 9, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Bermejo, M.; José, L.; Carretero-González, J.; García-Fernández, L.; Aguilar, M.R. A Comparative Study on HCN Polymers Synthesized by Polymerization of NH4CN or Diaminomaleonitrile in Aqueous Media: New Perspectives for Prebiotic Chemistry and Materials Science. Chem. Eur. J. 2019, 25, 11437–11455. [Google Scholar] [CrossRef]
- Viti, C. Serpentine Minerals Discrimination by Thermal Analysis. Am. Min. 2010, 95, 631–638. [Google Scholar] [CrossRef]
- Dlugogorski, B.Z.; Balucan, R.D. Dehydroxylation of Serpentine Minerals: Implications for Mineral Carbonation. Renew. Sustain. Energy Rev. 2014, 31, 353–367. [Google Scholar] [CrossRef] [Green Version]
- Hršak, D.; Sučik, G.; Lazić, L. The Thermophysical Properties of Serpentinite. Metalurgija 2008, 47, 29–31. [Google Scholar]
- Cataldo, F.; Lilla, E.; Ursini, O.; Angelini, G. TGA–FT-IR Study of Pyrolysis of Poly (Hydrogen Cyanide) Synthesized from Thermal Decomposition of Formamide. Implications in Cometary Emissions. J. Anal. Appl. Pyrol. 2010, 87, 34–44. [Google Scholar] [CrossRef]
- Schulze, R.K.; Hill, M.A.; Field, R.D.; Papin, P.A.; Hanrahan, R.J.; Byler, D.D. Characterization of Carbonated Serpentine Using XPS and TEM. Energ. Convers. Manag. 2004, 45, 3169–3179. [Google Scholar] [CrossRef]
- Ruiz-Bermejo, M.; Menor-Salván, C.; Mateo-Martí, E.; Osuna-Esteban, S.; Martín-Gago, J.Á.; Veintemillas-Verdaguer, S. CH4/N2/H2 Spark Hydrophilic Tholins: A Systematic Approach to the Characterization of Tholins. Icarus 2008, 198, 232–241. [Google Scholar] [CrossRef]
- Ruiz-Bermejo, M.; Menor-Salván, C.; de la Fuente, J.L.; Mateo-Martí, E.; Osuna-Esteban, S.; Martín-Gago, J.Á.; Veintemillas-Verdaguer, S. CH4/N2/H2-Spark Hydrophobic Tholins: A Systematic Approach to the Characterisation of Tholins. Part II. Icarus 2009, 204, 672–680. [Google Scholar] [CrossRef]
- Thissen, H.; Koegler, A.; Salwiczek, M.; Easton, C.D.; Qu, Y.; Lithgow, T.; Evans, R.A. Prebiotic-Chemistry Inspired Polymer Coatings for Biomedical and Material Science Applications. NPG Asia Mater. 2015, 7, e225. [Google Scholar] [CrossRef] [Green Version]
- Ball, V. Antioxidant Activity of Films Inspired by Prebiotic Chemistry. Mater. Lett. 2021, 285, 129050. [Google Scholar] [CrossRef]
- Little, S.A.; Stolzenbach, K.D.; Von Herzen, R.P. Measurements of Plume Flow from a Hydrothermal Vent Field. J. Geophys. Res. 1987, 92, 2587–2596. [Google Scholar] [CrossRef]
- Holm, N.G.; Hennet, R.J.-C. Hydrothermal systems: Their varieties, dynamics, and suitability for prebiotic chemistry. In Marine Hydrothermal Systems and the Origin of Life; Springer: Berlin, Germania, 1992; pp. 15–31. [Google Scholar]
- Bemis, K.; Lowell, R.; Farough, A. Diffuse Flow On and Around Hydrothermal Vents at Mid-Ocean Ridges. Oceanog 2012, 25, 182–191. [Google Scholar] [CrossRef]
- Borquez, E.; Cleaves, H.J.; Lazcano, A.; Miller, S.L. An Investigation of Prebiotic Purine Synthesis from the Hydrolysis of HCN Polymers. Orig. Life Evol. Biosph. 2005, 35, 79–90. [Google Scholar] [CrossRef]
- Takahashi, T.; Ido, T.; Hatano, K.; Iwata, R.; Nakanishi, H. Synthesis of 1-11C-Labeled Fatty Acid from [11C]HCN. Int. J. Rad. Appl. Instr. A 1990, 41, 649–654. [Google Scholar] [CrossRef]
- Eschenmoser, A. On a Hypothetical Generational Relationship between HCN and Constituents of the Reductive Citric Acid Cycle. Chem. Biodivers. 2007, 4, 554–573. [Google Scholar] [CrossRef]
- Thissen, H.; Evans, R.A.; Ball, V. Films and Materials Derived from Aminomalononitrile. Processes 2021, 9, 82. [Google Scholar] [CrossRef]
- González-López, L.A.; Colín-García, M.; Meléndez-López, A.; Cruz-Castañeda, J.; Negrón-Mendoza, A. Prebiotic Experi-Ments Simulating Hydrothermal Vents: Influence of Olivine in the Decomposition of Simple Carboxylic Acids. Bol. Soc. Geológ. Mex 2021, in press. [Google Scholar] [CrossRef]
- Herschy, B.; Whicher, A.; Camprubi, E.; Watson, C.; Dartnell, L.; Ward, J.; Evans, J.R.G.; Lane, N. An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents. J. Mol. Evol. 2014, 79, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Sojo, V.; Herschy, B.; Whicher, A.; Camprubí, E.; Lane, N. The Origin of Life in Alkaline Hydrothermal Vents. Astrobiology 2016, 16, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Camprubí, E.; de Leeuw, J.W.; House, C.H.; Raulin, F.; Russell, M.J.; Spang, A.; Tirumalai, M.R.; Westall, F. The Emergence of Life. Space Sci. Rev. 2019, 215, 56. [Google Scholar] [CrossRef] [Green Version]
- Damer, B.; Deamer, D. The Hot Spring Hypothesis for an Origin of Life. Astrobiology 2020, 20, 429–452. [Google Scholar] [CrossRef] [Green Version]
- Duval, S.; Branscomb, E.; Trolard, F.; Bourrié, G.; Grauby, O.; Heresanu, V.; Schoepp-Cothenet, B.; Zuchan, K.; Russell, M.J.; Nitschke, W. On the Why’s and How’s of Clay Minerals’ Importance in Life’s Emergence. Appl. Clay Sci. 2020, 195, 105737. [Google Scholar] [CrossRef]
- Deamer, D. Where Did Life Begin? Testing Ideas in Prebiotic Analogue Conditions. Life 2021, 11, 134. [Google Scholar] [CrossRef]
- Dass, A.V.; Hickman-Lewis, K.; Brack, A.; Kee, T.P.; Westall, F. Stochastic Prebiotic Chemistry within Realistic Geological Systems. Chem. Sel. 2016, 1, 4906–4926. [Google Scholar] [CrossRef] [Green Version]
- Konn, C.; Charlou, J.L.; Holm, N.G.; Mousis, O. The Production of Methane, Hydrogen, and Organic Compounds in Ultramafic-Hosted Hydrothermal Vents of the Mid-Atlantic Ridge. Astrobiology 2015, 15, 381–399. [Google Scholar] [CrossRef]
- McDermott, J.M.; Seewald, J.S.; German, C.R.; Sylva, S.P. Pathways for Abiotic Organic Synthesis at Submarine Hydrothermal Fields. Proc. Natl. Acad. Sci. USA 2015, 112, 7668–7672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Peng, P.; Xiang, Z. Covalent Organic Polymer Modified TiO 2 Nanosheets as Highly Efficient Photocatalysts for Hydrogen Generation. Chem. Eng. Sci. 2017, 162, 33–40. [Google Scholar] [CrossRef]
- Eschenmoser, A. The Search for the Chemistry of Life’s Origin. Tetrahedron 2007, 63, 12821–12844. [Google Scholar] [CrossRef]
- Budin, I.; Bruckner, R.J.; Szostak, J.W. Formation of Protocell-like Vesicles in a Thermal Diffusion Column. J. Am. Chem. Soc. 2009, 131, 9628–9629. [Google Scholar] [CrossRef] [Green Version]
- Namani, T.; Deamer, D.W. Stability of Model Membranes in Extreme Environments. Orig. Life Evol. Biosph. 2008, 38, 329–341. [Google Scholar] [CrossRef]
- Kim, E.-K.; Martin, V.; Krishnamurthy, R. Orotidine-Containing RNA: Implications for the Hierarchical Selection (Systems Chemistry Emergence) of RNA. Chem. Eur. J. 2017, 23, 12668–12675. [Google Scholar] [CrossRef]
- Krishnamurthy, R. Life’s Biological Chemistry: A Destiny or Destination Starting from Prebiotic Chemistry? Chem. Eur. J. 2018, 24, 16708–16715. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Kumar, R.; Krishnamurthy, R. Chemistry of Abiotic Nucleotide Synthesis. Chem. Rev. 2020, 120, 4766–4805. [Google Scholar] [CrossRef] [PubMed]
- Maistralis, G.; Koutsodimou, A.; Katsaros, N. Transition metal orotic acid complexes. Transit. Met. Chem. 2000, 25, 166–173. [Google Scholar] [CrossRef]
Stage I (25–150 °C) Evaporation | Stage II (150–450 °C) Low Thermal Decomposition | Stage III (450–1000 °C) High Thermal Decomposition | |||||||
---|---|---|---|---|---|---|---|---|---|
DTG | DSC | DTG | DSC | DTG | DSC | ||||
Sample | Tmax (°C) | dW/dt (wt%/°C) | Tpeak (°C) | Tmax (°C) | dW/dt (wt%/°C) | Tpeak (°C) | Tmax (°C) | dW/dt (wt%/°C) | Tmax (°C) |
Serpentinite | 619 | 0.07 | 619 | ||||||
696 | 0.07 | 823 | |||||||
Phase II | 61 | 0.18 | 71 | 178 | 0.04 | 164 | 550 | 0.04 | 649 |
290 | 0.04 | 654 | 0.08 | ||||||
691 | 0.07 | 800 | |||||||
794 | 0.03 | 846 | |||||||
Phase III | 619 | 0.06 | 619 | ||||||
696 | 0.05 | 823 | |||||||
Phase III (Air) | 619 | 0.06 | 617 | ||||||
696 | 0.05 | 827 | |||||||
HCN-DTP | 55 | 0.11 | 71 | 167 | 0.15 | 168 | 642 | 0.05 | 636 |
124 | 0.20 | 127 | 279 | 0.11 | 906 | 0.34 | 910 | ||
288 | 0.11 | 301 | 921 | 0.27 | 938 |
Probable Species | MS Peaks (m/z) | TG-MS Peaks for Phase II | ||||
---|---|---|---|---|---|---|
62 | 174 | 285 | 550 | 654 | ||
C+ | 12 | |||||
? | 13 | |||||
N,CH2+ | 14 | |||||
NH | 15 | |||||
NH2 | 16 | |||||
OH−/NH3 | 17 | |||||
H2O/NH4+ | 18 | |||||
? | 22 | |||||
-CN | 26 | |||||
HCN | 27 | |||||
CO,N2 | 28 | |||||
N2H,HCO | 29 | |||||
NO | 30 | |||||
NCO | 42 | |||||
HNCO/HOCN | 43 | |||||
CO2/ HC(=NH)NH2 | 44 | |||||
HCONH2 | 45 | |||||
? | 46 | |||||
Stage | I | II | III |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villafañe-Barajas, S.A.; Ruiz-Bermejo, M.; Rayo-Pizarroso, P.; Gálvez-Martínez, S.; Mateo-Martí, E.; Colín-García, M. A Lizardite–HCN Interaction Leading the Increasing of Molecular Complexity in an Alkaline Hydrothermal Scenario: Implications for Origin of Life Studies. Life 2021, 11, 661. https://doi.org/10.3390/life11070661
Villafañe-Barajas SA, Ruiz-Bermejo M, Rayo-Pizarroso P, Gálvez-Martínez S, Mateo-Martí E, Colín-García M. A Lizardite–HCN Interaction Leading the Increasing of Molecular Complexity in an Alkaline Hydrothermal Scenario: Implications for Origin of Life Studies. Life. 2021; 11(7):661. https://doi.org/10.3390/life11070661
Chicago/Turabian StyleVillafañe-Barajas, Saúl A., Marta Ruiz-Bermejo, Pedro Rayo-Pizarroso, Santos Gálvez-Martínez, Eva Mateo-Martí, and María Colín-García. 2021. "A Lizardite–HCN Interaction Leading the Increasing of Molecular Complexity in an Alkaline Hydrothermal Scenario: Implications for Origin of Life Studies" Life 11, no. 7: 661. https://doi.org/10.3390/life11070661
APA StyleVillafañe-Barajas, S. A., Ruiz-Bermejo, M., Rayo-Pizarroso, P., Gálvez-Martínez, S., Mateo-Martí, E., & Colín-García, M. (2021). A Lizardite–HCN Interaction Leading the Increasing of Molecular Complexity in an Alkaline Hydrothermal Scenario: Implications for Origin of Life Studies. Life, 11(7), 661. https://doi.org/10.3390/life11070661