Proteomic Analysis Unveils Expressional Changes in Cytoskeleton- and Synaptic Plasticity-Associated Proteins in Rat Brain Six Months after Withdrawal from Morphine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals, Morphine Treatment and Withdrawal
2.3. Brain Tissue Homogenization and Digestion
2.4. nLC-MS2 Analysis
2.5. Data Analysis
3. Results
3.1. GO Enrichment Analysis of Differentially Phosphorylated Proteins after a 6-Month Morphine Withdrawal
3.2. GO Enrichment Analysis of Differentially Expressed Proteins after a 6-Month Morphine Withdrawal
3.3. Changes in Protein Expression and Phosphorylation Induced by a 6-Month Morphine Withdrawal
3.3.1. Changes in Protein Expression and Phosphorylation in the Cortex
3.3.2. Changes in Protein Expression and Phosphorylation in the Hippocampus
3.3.3. Changes in Protein Expression and Phosphorylation in the Striatum
3.3.4. Changes in Protein Expression and Phosphorylation in the Cerebellum
3.3.5. Comparison of Changes in Pre- and Postsynaptic Protein Clusters between Different Brain Regions
Protein | Function | Alteration | Ctx | H | S | Cb |
---|---|---|---|---|---|---|
Synapsin-1 | Components of synaptic vesicles [69] | Phosphorylation | ↓ | ↑ | ↑ | ↑↓ |
SV2a | Components of synaptic vesicles [69] | Phosphorylation | - | ↓ | ↑ | ↑↓ |
Synaptotagmin-2 | Components of synaptic vesicles [69] | Phosphorylation | - | - | - | ↑ |
Rab3a | Components of synaptic vesicles [69] | Phosphorylation | - | ↓ | ↑ | - |
Rab27b | Synaptic vesicle exocytosis [55] | Expression | ↑ | - | - | - |
Syntaxin-1B | Component of SNARE complex [70] | Phosphorylation | ↑ | - | - | ↓ |
Complexin-1 | Interaction with syntaxin-1 [70] | Phosphorylation | - | - | - | ↑ |
Stxbp1 (Munc18-1) | Interaction with syntaxin-1 [70] | Phosphorylation | - | - | - | ↑ |
Vamp2 (Synaptobrevin) | Interaction with syntaxin-1 [70] | Phosphorylation | ↑ | - | - | - |
Bassoon | Protein of active zone [71] | Phosphorylation | ↑ | ↑ | ↑ | ↑↓ |
Piccolo | Protein of active zone [71] | Phosphorylation | ↑↓ | ↓ | ↓ | ↑↓ |
Ppfia3 (Liprin α3) | Protein of active zone [71] | Phosphorylation | - | - | ↓ | - |
Rims1 | Protein of active zone [71] | Phosphorylation | - | ↑ | ↑ | - |
Git1 | Interaction with liprin α [71] | Phosphorylation | ↓ | - | ↓ | ↑↓ |
Cadherin 13 | Cadherin–catenin complex [72] | Expression | - | - | - | ↓ |
Catenin β | Cadherin–catenin complex [72] | Phosphorylation | - | - | ↑ | ↑ |
Catenin δ2 | Cadherin–catenin complex [72] | Phosphorylation | ↑ | ↑ | - | ↑ |
Arhgap35 | Interaction with catenin δ, inactivation of RhoA [72] | Phosphorylation | - | ↑ | ↑ | - |
Rock1 | Activation by RhoA [72] | Expression | - | - | ↓ | - |
Cortactin | Interaction with catenin δ [72] | Phosphorylation | - | ↑ | ↑ | ↓ |
Shank3 | Scaffold in postsynaptic density [67] | Expression | ↓ | - | - | - |
Arhgef7 (β-PIX) | Interaction with Shank3 [67] | Phosphorylation | - | ↓ | - | - |
Git1 | Interaction with β-PIX [73] | Phosphorylation | ↓ | - | ↓ | ↑↓ |
Cortactin | Interaction with Shank3 [67] | Phosphorylation | - | ↑ | ↑ | ↓ |
Spectrin α | Actin–spectrin network [68] | Phosphorylation | ↑ | - | - | - |
Spectrin β | Actin–spectrin network [68] | Phosphorylation | - | ↑ | ↑ | - |
Ankyrin 2 | Actin–spectrin network [68] | Phosphorylation | - | ↑↓ | - | ↓ |
Alpha-adducin | Actin–spectrin network [68] | Phosphorylation | ↓ | ↑ | - | ↑↓ |
Beta-adducin | Actin–spectrin network [68] | Phosphorylation | ↑ | ↑↓ | ↑↓ | ↑ |
Gamma-adducin | Actin–spectrin network [68] | Phosphorylation | ↑ | ↓ | - | - |
Band 4.1-like protein 1 | Actin–spectrin network [68] | Phosphorylation | ↑ | ↑↓ | ↑ | - |
MAP1A | Microtubule dynamics [26] | Phosphorylation | ↑ | ↑↓ | ↑↓ | ↑ |
MAP1B | Microtubule dynamics [26] | Phosphorylation | ↑↓ | ↑↓ | ↑↓ | ↑↓ |
MAP2 | Microtubule dynamics [26] | Phosphorylation | ↑↓ | ↑↓ | ↑ | ↓ |
Tau (MAPT) | Microtubule dynamics [26] | Phosphorylation | ↑ | ↑↓ | ↑ | ↑↓ |
Tppp | Microtubule polymerization [74] | Phosphorylation | ↑ | ↓ | - | - |
Dpysl2 (Crmp2) | Microtubule stability [75] | Phosphorylation | - | - | ↑ | ↑ |
Crmp1 | Microtubule stability [76] | Phosphorylation | - | ↑ | - | ↑ |
3.4. Changes in Phosphorylation Pattern of Selected Phosphoproteins after a 6-Month Morphine Withdrawal
3.4.1. Changes in Phosphorylation Pattern of Selected Phosphoproteins in the Cortex
3.4.2. Changes in Phosphorylation Pattern of Selected Phosphoproteins in the Hippocampus
3.4.3. Changes in Phosphorylation Pattern of Selected Phosphoproteins in the Striatum
3.4.4. Changes in Phosphorylation Pattern of Selected Phosphoproteins in the Cerebellum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Listos, J.; Lupina, M.; Talarek, S.; Mazur, A.; Orzelska-Gorka, J.; Kotlinska, J. The Mechanisms Involved in Morphine Addiction: An Overview. Int. J. Mol. Sci. 2019, 20, 4302. [Google Scholar] [CrossRef] [Green Version]
- Meye, F.J.; Trusel, M.; Soiza-Reilly, M.; Mameli, M. Neural circuit adaptations during drug withdrawal—Spotlight on the lateral habenula. Pharmacol. Biochem. Behav. 2017, 162, 87–93. [Google Scholar] [CrossRef]
- Volkow, N.D.; Koob, G.F.; McLellan, A.T. Neurobiologic Advances from the Brain Disease Model of Addiction. N. Engl. J. Med. 2016, 374, 363–371. [Google Scholar] [CrossRef]
- Gipson, C.D.; Kupchik, Y.M.; Kalivas, P.W. Rapid, transient synaptic plasticity in addiction. Neuropharmacology 2014, 76 Pt B, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Torres, V.I.; Vallejo, D.; Inestrosa, N.C. Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders. Neural. Plast. 2017, 2017, 8081758. [Google Scholar] [CrossRef] [PubMed]
- Perluigi, M.; Barone, E.; Di Domenico, F.; Butterfield, D.A. Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1862, 1871–1882. [Google Scholar] [CrossRef] [PubMed]
- Tenreiro, S.; Eckermann, K.; Outeiro, T.F. Protein phosphorylation in neurodegeneration: Friend or foe? Front. Mol. Neurosci. 2014, 7, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.L.; Flynn, J.R.; Smith, D.W.; Dayas, C.V. Down-regulated striatal gene expression for synaptic plasticity-associated proteins in addiction and relapse vulnerable animals. Int. J. Neuropsychopharmacol. 2011, 14, 1099–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruyer, A.; Chioma, V.C.; Kalivas, P.W. The Opioid-Addicted Tetrapartite Synapse. Biol. Psychiatry 2020, 87, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Areal, L.B.; Hamilton, A.; Martins-Silva, C.; Pires, R.G.W.; Ferguson, S.S.G. Neuronal scaffolding protein spinophilin is integral for cocaine-induced behavioral sensitization and ERK1/2 activation. Mol. Brain 2019, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.A.; Kroll, D.S.; Feldman, D.E.; Kure Liu, C.; Manza, P.; Wiers, C.E.; Volkow, N.D.; Wang, G.J. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front. Psychiatry 2019, 10, 626. [Google Scholar] [CrossRef]
- Miquel, M.; Vazquez-Sanroman, D.; Carbo-Gas, M.; Gil-Miravet, I.; Sanchis-Segura, C.; Carulli, D.; Manzo, J.; Coria-Avila, G.A. Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neurosci. Biobehav. Rev. 2016, 60, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiat. 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Han, H.; Dong, Z.; Jia, Y.; Mao, R.; Zhou, Q.; Yang, Y.; Wang, L.; Xu, L.; Cao, J. Opioid addiction and withdrawal differentially drive long-term depression of inhibitory synaptic transmission in the hippocampus. Sci. Rep. 2015, 5, 9666. [Google Scholar] [CrossRef] [Green Version]
- Gould, T.J. Addiction and cognition. Addict. Sci. Clin. Pract. 2010, 5, 4–14. [Google Scholar]
- Chen, J.C.; Smith, E.R.; Cahill, M.; Cohen, R.; Fishman, J.B. The opioid receptor binding of dezocine, morphine, fentanyl, butorphanol and nalbuphine. Life Sci. 1993, 52, 389–396. [Google Scholar] [CrossRef]
- Buzas, B.; Cox, B.M. Quantitative analysis of mu and delta opioid receptor gene expression in rat brain and peripheral ganglia using competitive polymerase chain reaction. Neuroscience 1997, 76, 479–489. [Google Scholar] [CrossRef]
- Mansour, A.; Fox, C.A.; Akil, H.; Watson, S.J. Opioid-receptor mRNA expression in the rat CNS: Anatomical and functional implications. Trends Neurosci. 1995, 18, 22–29. [Google Scholar] [CrossRef]
- Mrkusich, E.M.; Kivell, B.M.; Miller, J.H.; Day, D.J. Abundant expression of mu and delta opioid receptor mRNA and protein in the cerebellum of the fetal, neonatal, and adult rat. Dev. Brain Res. 2004, 148, 213–222. [Google Scholar] [CrossRef]
- Herraez-Baranda, L.A.; Carretero, J.; Gonzalez-Sarmiento, R.; Rodriguez, R.E. Kappa opioid receptor is expressed in the rat cerebellar cortex. Cell Tissue Res. 2005, 320, 223–228. [Google Scholar] [CrossRef]
- Bekheet, S.H.; Saker, S.A.; Abdel-Kader, A.M.; Younis, A.E. Histopathological and biochemical changes of morphine sulphate administration on the cerebellum of albino rats. Tissue Cell 2010, 42, 165–175. [Google Scholar] [CrossRef]
- Rothenfluh, A.; Cowan, C.W. Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: Actin or reactin’? Curr. Opin. Neurobiol. 2013, 23, 507–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dent, E.W. Dynamic microtubules at the synapse. Curr. Opin. Neurobiol. 2020, 63, 9–14. [Google Scholar] [CrossRef]
- Lasser, M.; Tiber, J.; Lowery, L.A. The Role of the Microtubule Cytoskeleton in Neurodevelopmental Disorders. Front. Cell. Neurosci. 2018, 12, 165. [Google Scholar] [CrossRef] [Green Version]
- Bucher, M.; Fanutza, T.; Mikhaylova, M. Cytoskeletal makeup of the synapse: Shaft versus spine. Cytoskeleton 2020, 77, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Ramkumar, A.; Jong, B.Y.; Ori-McKenney, K.M. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev. Dyn. 2018, 247, 138–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craddock, T.J.A.; Tuszynski, J.A.; Hameroff, S. Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation? PLoS Comput. Biol. 2012, 8, e1002421. [Google Scholar] [CrossRef] [Green Version]
- Bodaleo, F.J.; Gonzalez-Billault, C. The Presynaptic Microtubule Cytoskeleton in Physiological and Pathological Conditions: Lessons from Drosophila Fragile X Syndrome and Hereditary Spastic Paraplegias. Front. Mol. Neurosci. 2016, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- DeBonis, S.; Neumann, E.; Skoufias, D.A. Self protein-protein interactions are involved in TPPP/p25 mediated microtubule bundling. Sci. Rep. 2015, 5, 13242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nouar, R.; Breuzard, G.; Bastonero, S.; Gorokhova, S.; Barbier, P.; Devred, F.; Kovacic, H.; Peyrot, V. Direct evidence for the interaction of stathmin along the length and the plus end of microtubules in cells. Faseb J. 2016, 30, 3202–3215. [Google Scholar] [CrossRef] [Green Version]
- Bakota, L.; Ussif, A.; Jeserich, G.; Brandt, R. Systemic and network functions of the microtubule-associated protein tau: Implications for tau-based therapies. Mol. Cell. Neurosci. 2017, 84, 132–141. [Google Scholar] [CrossRef]
- Robinson, T.E.; Kolb, B. Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse 1999, 33, 160–162. [Google Scholar] [CrossRef]
- Marie-Claire, C.; Courtin, C.; Roques, B.P.; Noble, F. Cytoskeletal genes regulation by chronic morphine treatment in rat striatum. Neuropsychopharmacology 2004, 29, 2208–2215. [Google Scholar] [CrossRef] [Green Version]
- Qu, L.; Pan, C.; He, S.M.; Lang, B.; Gao, G.D.; Wang, X.L.; Wang, Y. The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases. Front. Mol. Neurosci. 2019, 12, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjos, I.; Vestre, K.; Guadagno, N.A.; Distefano, M.B.; Progida, C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 1397–1409. [Google Scholar] [CrossRef]
- Schoneborn, H.; Raudzus, F.; Coppey, M.; Neumann, S.; Heumann, R. Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons. Int. J. Mol. Sci. 2018, 19, 4052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Cong, W.; Zhou, S.; Shi, Y.; Dai, W.; Zhang, H.; Wang, X.; He, B.; Zhang, Q. Small GTPases: Structure, biological function and its interaction with nanoparticles. Asian. J. Pharm. Sci. 2019, 14, 30–39. [Google Scholar] [CrossRef]
- Ba, W.; Nadif Kasri, N. RhoGTPases at the synapse: An embarrassment of choice. Small GTPases 2017, 8, 106–113. [Google Scholar] [CrossRef]
- Mishra, A.K.; Lambright, D.G. Small GTPases and Their GAPs. Biopolymers 2016, 105, 431–448. [Google Scholar] [CrossRef] [Green Version]
- Shirakawa, R.; Horiuchi, H. Ral GTPases: Crucial mediators of exocytosis and tumourigenesis. J. Biochem. 2015, 157, 285–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.; Karginov, A.V. Phosphorylation-mediated regulation of GEFs for RhoA. Cell Adh. Migr. 2014, 8, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walkup, W.G.; Washburn, L.; Sweredoski, M.J.; Carlisle, H.J.; Graham, R.L.; Hess, S.; Kennedy, M.B. Phosphorylation of Synaptic GTPase-activating Protein (synGAP) by Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) and Cyclin-dependent Kinase 5 (CDK5) Alters the Ratio of Its GAP Activity toward Ras and Rap GTPases. J. Biol. Chem. 2015, 290, 4908–4927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heraud, C.; Pinault, M.; Lagree, V.; Moreau, V. p190RhoGAPs, the ARHGAP35- and ARHGAP5-Encoded Proteins, in Health and Disease. Cells 2019, 8, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, W.Y.; Shin, S.R.; Kim, S.; Jeon, S.; Kim, J.H. Cocaine regulates ezrin-radixin-moesin proteins and RhoA signaling in the nucleus accumbens. Neuroscience 2009, 163, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Bourova, L.; Vosahlikova, M.; Kagan, D.; Dlouha, K.; Novotny, J.; Svoboda, P. Long-term adaptation to high doses of morphine causes desensitization of mu-OR- and delta-OR-stimulated G-protein response in forebrain cortex but does not decrease the amount of G-protein alpha subunits. Med. Sci. Monit. 2010, 16, BR260–BR270. [Google Scholar]
- Ujcikova, H.; Hejnova, L.; Eckhardt, A.; Roubalova, L.; Novotny, J.; Svoboda, P. Impact of three-month morphine withdrawal on rat brain cortex, hippocampus, striatum and cerebellum: Proteomic and phosphoproteomic studies. Neurochem. Int. 2021, 144, 104975. [Google Scholar] [CrossRef]
- Humphrey, S.J.; Karayel, O.; James, D.E.; Mann, M. High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nat. Protoc. 2018, 13, 1897–1916. [Google Scholar] [CrossRef]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cell. Proteomics 2014, 13, 2513–2526. [Google Scholar] [CrossRef] [Green Version]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
- Collins, M.O.; Yu, L.; Coba, M.P.; Husi, H.; Campuzano, I.; Blackstock, W.P.; Choudhary, J.S.; Grant, S.G. Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem. 2005, 280, 5972–5982. [Google Scholar] [CrossRef] [Green Version]
- Loscher, W.; Gillard, M.; Sands, Z.A.; Kaminski, R.M.; Klitgaard, H. Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs 2016, 30, 1055–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Nowack, A.; Kensel-Hammes, P.; Gardner, R.G.; Bajjalieh, S.M. Cotrafficking of SV2 and Synaptotagmin at the Synapse. J. Neurosci. 2010, 30, 5569–5578. [Google Scholar] [CrossRef] [Green Version]
- Engholm-Keller, K.; Waardenberg, A.J.; Muller, J.A.; Wark, J.R.; Fernando, R.N.; Arthur, J.W.; Robinson, P.J.; Dietrich, D.; Schoch, S.; Graham, M.E. The temporal profile of activity-dependent presynaptic phospho-signalling reveals long-lasting patterns of poststimulus regulation. PLoS Biol. 2019, 17, e3000170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binotti, B.; Jahn, R.; Chua, J.J.E. Functions of Rab Proteins at Presynaptic Sites. Cells 2016, 5, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boda, B.; Dubos, A.; Muller, D. Signaling mechanisms regulating synapse formation and function in mental retardation. Curr. Opin. Neurobiol. 2010, 20, 519–527. [Google Scholar] [CrossRef]
- Gerber, K.J.; Squires, K.E.; Hepler, J.R. Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity. Mol. Pharmacol. 2016, 89, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Mignogna, M.L.; D’Adamo, P. Critical importance of RAB proteins for synaptic function. Small GTPases 2018, 9, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Stornetta, R.L.; Zhu, J.J. Ras and Rap signaling in synaptic plasticity and mental disorders. Neuroscientist 2011, 17, 54–78. [Google Scholar] [CrossRef]
- Shen, W.; Wu, B.; Zhang, Z.; Dou, Y.; Rao, Z.R.; Chen, Y.R.; Duan, S. Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron 2006, 50, 401–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halbedl, S.; Schoen, M.; Feiler, M.S.; Boeckers, T.M.; Schmeisser, M.J. Shank3 is localized in axons and presynaptic specializations of developing hippocampal neurons and involved in the modulation of NMDA receptor levels at axon terminals. J. Neurochem. 2016, 137, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Vyas, Y.; Montgomery, J.M. The role of postsynaptic density proteins in neural degeneration and regeneration. Neural Regen. Res. 2016, 11, 906–907. [Google Scholar] [CrossRef]
- Brigidi, G.S.; Bamji, S.X. Cadherin-catenin adhesion complexes at the synapse. Curr. Opin. Neurobiol. 2011, 21, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, D.; Menna, E.; Canzi, A.; Desiato, G.; Mantovani, C.; Matteoli, M. The Communication Between the Immune and Nervous Systems: The Role of IL-1 beta in Synaptopathies. Front. Mol. Neurosci. 2018, 11, 111. [Google Scholar] [CrossRef]
- Park, E.; Na, M.; Choi, J.H.; Kim, S.; Lee, J.R.; Yoon, J.Y.; Park, D.; Sheng, M.; Kim, E. The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine nucleotide exchange factor for Rac1 and Cdc42. J. Biol. Chem. 2003, 278, 19220–19229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soisson, S.M.; Nimnual, A.S.; Uy, M.; Bar-Sagi, D.; Kuriyan, J. Crystal structure of the Dbl and pleckstrin homology domains from the human Son of sevenless protein. Cell 1998, 95, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Sarowar, T.; Grabrucker, A.M. Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies. Neural Plast. 2016, 2016, 8051861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unsain, N.; Stefani, F.D.; Caceres, A. The Actin/Spectrin Membrane-Associated Periodic Skeleton in Neurons. Front. Synaptic. Neurosci. 2018, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.C.; Kavalali, E.T. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets. Pharmacol. Rev. 2017, 69, 141–160. [Google Scholar] [CrossRef] [Green Version]
- Mishima, T.; Fujiwara, T.; Sanada, M.; Kofuji, T.; Kanai-Azuma, M.; Akagawa, K. Syntaxin 1B, but not syntaxin 1A, is necessary for the regulation of synaptic vesicle exocytosis and of the readily releasable pool at central synapses. PLoS ONE 2014, 9, e90004. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.Y.; Liu, C.; Wang, S.S.H.; Roquas, A.C.F.; Fowler, S.C.; Kaeser, P.S. Liprin-alpha3 controls vesicle docking and exocytosis at the active zone of hippocampal synapses. Proc. Natl. Acad. Sci. USA 2018, 115, 2234–2239. [Google Scholar] [CrossRef] [Green Version]
- Spence, E.F.; Soderling, S.H. Actin Out: Regulation of the Synaptic Cytoskeleton. J. Biol. Chem. 2015, 290, 28613–28622. [Google Scholar] [CrossRef] [Green Version]
- Tolias, K.F.; Duman, J.G.; Um, K. Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog. Neurobiol. 2011, 94, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Hlavanda, E.; Klement, E.; Kokai, E.; Kovacs, J.; Vincze, O.; Tokesi, N.; Orosz, F.; Medzihradszky, K.F.; Dombradi, V.; Ovadi, J. Phosphorylation blocks the activity of tubulin polymerization-promoting protein (TPPP): Identification of sites targeted by different kinases. J. Biol. Chem. 2007, 282, 29531–29539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hensley, K.; Kursula, P. Collapsin Response Mediator Protein-2 (CRMP2) is a Plausible Etiological Factor and Potential Therapeutic Target in Alzheimer’s Disease: Comparison and Contrast with Microtubule-Associated Protein Tau. J. Alzheimers Dis. 2016, 53, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.C.; Chan, P.M.; Hall, C.; Manser, E. Collapsin Response Mediator Proteins (CRMPs) Are a New Class of Microtubule-associated Protein (MAP) That Selectively Interacts with Assembled Microtubules via a Taxol-sensitive Binding Interaction. J. Biol. Chem. 2011, 286, 41466–41478. [Google Scholar] [CrossRef] [Green Version]
- Scales, T.M.E.; Lin, S.; Kraus, M.; Goold, R.G.; Gordon-Weeks, P.R. Nonprimed and DYRK1A-primed GSK3 beta-phosphorylation sites on MAP1B regulate microtubule dynamics in growing axons. J. Cell Sci. 2009, 122, 2424–2435. [Google Scholar] [CrossRef] [Green Version]
- Villarroel-Campos, D.; Gonzalez-Billault, C. The MAP1B Case: An Old MAP That is New Again. Dev. Neurobiol. 2014, 74, 953–971. [Google Scholar] [CrossRef]
- Grubisha, M.J.; Sun, X.; MacDonald, M.L.; Garver, M.; Sun, Z.; Paris, K.A.; Patel, D.S.; DeGiosio, R.A.; Lewis, D.A.; Yates, N.A.; et al. MAP2 is differentially phosphorylated in schizophrenia, altering its function. Mol. Psychiatry 2021. [Google Scholar] [CrossRef]
- Stock, M.F.; Chu, J.; Hackney, D.D. The kinesin family member BimC contains a second microtubule binding region attached to the N terminus of the motor domain. J. Biol. Chem. 2003, 278, 52315–52322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illenberger, S.; Drewes, G.; Trinczek, B.; Biernat, J.; Meyer, H.E.; Olmsted, J.B.; Mandelkow, E.M.; Mandelkow, E. Phosphorylation of microtubule-associated proteins MAP2 and MAP4 by the protein kinase p110(mark)—Phosphorylation sites and regulation of microtubule dynamics. J. Biol. Chem. 1996, 271, 10834–10843. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.; Sharma, G.; Ishiguro, K.; Hisanaga, S. Phospho-Tau Bar Code: Analysis of Phosphoisotypes of Tau and Its Application to Tauopathy. Front. Neurosci. 2018, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Simic, G.; Babic Leko, M.; Wray, S.; Harrington, C.; Delalle, I.; Jovanov-Milosevic, N.; Bazadona, D.; Buee, L.; de Silva, R.; Di Giovanni, G.; et al. Tau Protein Hyperphosphorylation and Aggregation in Alzheimer’s Disease and Other Tauopathies, and Possible Neuroprotective Strategies. Biomolecules 2016, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Duka, V.; Lee, J.H.; Credle, J.; Wills, J.; Oaks, A.; Smolinsky, C.; Shah, K.; Mash, D.C.; Masliah, E.; Sidhu, A. Identification of the sites of tau hyperphosphorylation and activation of tau kinases in synucleinopathies and Alzheimer’s diseases. PLoS ONE 2013, 8, e75025. [Google Scholar] [CrossRef]
- He, H.J.; Wang, X.S.; Pan, R.; Wang, D.L.; Liu, M.N.; He, R.Q. The proline-rich domain of tau plays a role in interactions with actin. BMC Cell Biol. 2009, 10, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKibben, K.M.; Rhoades, E. Independent tubulin binding and polymerization by the proline-rich region of tau is regulated by tau’s N-terminal domain. J. Biol. Chem. 2019, 294, 19381–19394. [Google Scholar] [CrossRef] [PubMed]
- Abraha, A.; Ghoshal, N.; Gamblin, T.C.; Cryns, V.; Berry, R.W.; Kuret, J.; Binder, L.I. C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. J. Cell Sci. 2000, 113 Pt 21, 3737–3745. [Google Scholar] [CrossRef]
- Gundelfinger, E.D.; Reissner, C.; Garner, C.C. Role of Bassoon and Piccolo in Assembly and Molecular Organization of the Active Zone. Front. Synaptic. Neurosci. 2015, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffith, L.C. Regulation of calcium/calmodulin-dependent protein kinase II activation by intramolecular and intermolecular interactions. J. Neurosci. 2004, 24, 8394–8398. [Google Scholar] [CrossRef] [PubMed]
- Melkova, K.; Zapletal, V.; Narasimhan, S.; Jansen, S.; Hritz, J.; Skrabana, R.; Zweckstetter, M.; Ringkjobing Jensen, M.; Blackledge, M.; Zidek, L. Structure and Functions of Microtubule Associated Proteins Tau and MAP2c: Similarities and Differences. Biomolecules 2019, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Shimada, T.; Fournier, A.E.; Yamagata, K. Neuroprotective function of 14-3-3 proteins in neurodegeneration. Biomed. Res. Int. 2013, 2013, 564534. [Google Scholar] [CrossRef]
- Ovadi, J.; Orosz, F. An unstructured protein with destructive potential: TPPP/p25 in neurodegeneration. Bioessays 2009, 31, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Schofield, A.V.; Steel, R.; Bernard, O. Rho-associated Coiled-coil Kinase (ROCK) Protein Controls Microtubule Dynamics in a Novel Signaling Pathway That Regulates Cell Migration. J. Biol. Chem. 2012, 287, 43620–43629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudhof, T.C.; Czernik, A.J.; Kao, H.T.; Takei, K.; Johnston, P.A.; Horiuchi, A.; Kanazir, S.D.; Wagner, M.A.; Perin, M.S.; De Camilli, P.; et al. Synapsins: Mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 1989, 245, 1474–1480. [Google Scholar] [CrossRef] [PubMed]
- Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-Nocca, C.; Tsvetkov, P.O.; Devred, F.; Landrieu, I. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Front. Aging Neurosci. 2019, 11, 204. [Google Scholar] [CrossRef] [Green Version]
- Webb, D.J.; Mayhew, M.W.; Kovalenko, M.; Schroeder, M.J.; Jeffery, E.D.; Whitmore, L.; Shabanowitz, J.; Hunt, D.F.; Horwitz, A.F. Identification of phosphorylation sites in GIT1. J. Cell Sci. 2006, 119, 2847–2850. [Google Scholar] [CrossRef]
- Tokesi, N.; Lehotzky, A.; Horvath, I.; Szabo, B.; Olah, J.; Lau, P.; Ovadi, J. TPPP/p25 promotes tubulin acetylation by inhibiting histone deacetylase 6. J. Biol. Chem. 2010, 285, 17896–17906. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, F.; Ohshima, T.; Goshima, Y. Collapsin Response Mediator Proteins: Their Biological Functions and Pathophysiology in Neuronal Development and Regeneration. Front. Cell. Neurosci. 2020, 14, 188. [Google Scholar] [CrossRef]
- Le Merrer, J.; Befort, K.; Gardon, O.; Filliol, D.; Darcq, E.; Dembele, D.; Becker, J.A.J.; Kieffer, B.L. Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network. Addict. Biol. 2012, 17, 1–12. [Google Scholar] [CrossRef]
- Goeldner, C.; Lutz, P.E.; Darcq, E.; Halter, T.; Clesse, D.; Ouagazzal, A.M.; Kieffer, B.L. Impaired emotional-like behavior and serotonergic function during protracted abstinence from chronic morphine. Biol. Psychiatry 2011, 69, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Lull, M.E.; Erwin, M.S.; Morgan, D.; Roberts, D.C.S.; Vrana, K.E.; Freeman, W.M. Persistent proteomic alterations in the medial prefrontal cortex with abstinence from cocaine self-administration. Proteomics Clin. Appl. 2009, 3, 462–472. [Google Scholar] [CrossRef]
- Sun, W.L.; Eisenstein, S.A.; Zelek-Molik, A.; McGinty, J.F. A Single Brain-Derived Neurotrophic Factor Infusion into the Dorsomedial Prefrontal Cortex Attenuates Cocaine Self-Administration-Induced Phosphorylation of Synapsin in the Nucleus Accumbens during Early Withdrawal. Int. J. Neuropsychopharmacol. 2015, 18, pyu049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, K.J.; Imad Damaj, M. Beta2-containing nicotinic acetylcholine receptors mediate calcium/calmodulin-dependent protein kinase-II and synapsin I protein levels in the nucleus accumbens after nicotine withdrawal in mice. Eur. J. Pharmacol. 2013, 701, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Augustine, G.J. Synapsins and the Synaptic Vesicle Reserve Pool: Floats or Anchors? Cells 2021, 10, 658. [Google Scholar] [CrossRef]
- Milovanovic, D.; Wu, Y.; Bian, X.; De Camilli, P. A liquid phase of synapsin and lipid vesicles. Science 2018, 361, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Denker, A.; Krohnert, K.; Buckers, J.; Neher, E.; Rizzoli, S.O. The reserve pool of synaptic vesicles acts as a buffer for proteins involved in synaptic vesicle recycling. Proc. Natl. Acad. Sci. USA 2011, 108, 17183–17188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, B.; Huang, Y.; Gao, Q.; Zhou, Q. Stabilization of microtubules improves cognitive functions and axonal transport of mitochondria in Alzheimer’s disease model mice. Neurobiol. Aging 2020, 96, 223–232. [Google Scholar] [CrossRef]
- Fernandez-Valenzuela, J.J.; Sanchez-Varo, R.; Munoz-Castro, C.; De Castro, V.; Sanchez-Mejias, E.; Navarro, V.; Jimenez, S.; Nunez-Diaz, C.; Gomez-Arboledas, A.; Moreno-Gonzalez, I.; et al. Enhancing microtubule stabilization rescues cognitive deficits and ameliorates pathological phenotype in an amyloidogenic Alzheimer’s disease model. Sci. Rep. 2020, 10, 14776. [Google Scholar] [CrossRef]
- Goodson, H.V.; Jonasson, E.M. Microtubules and Microtubule-Associated Proteins. Cold Spring Harb. Perspect. Biol. 2018, 10, a022608. [Google Scholar] [CrossRef]
- Uchida, S.; Martel, G.; Pavlowsky, A.; Takizawa, S.; Hevi, C.; Watanabe, Y.; Kandel, E.R.; Alarcon, J.M.; Shumyatsky, G.P. Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing. Nat. Commun. 2014, 5, 4389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calipari, E.S.; Godino, A.; Salery, M.; Damez-Werno, D.M.; Cahill, M.E.; Werner, C.T.; Gancarz, A.M.; Peck, E.G.; Jlayer, Z.; Rabkin, J.; et al. Synaptic Microtubule-Associated Protein EB3 and SRC Phosphorylation Mediate Structural and Behavioral Adaptations During Withdrawal From Cocaine Self-Administration. J. Neurosci. 2019, 39, 5634–5646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltran-Campos, V.; Silva-Vera, M.; Garcia-Campos, M.L.; Diaz-Cintra, S. Effects of morphine on brain plasticity. Neurologia 2015, 30, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.C.; Zhang, L.; Dummer, B.W.; Cariveau, D.R.; Loh, H.; Law, P.Y.; Liao, D. Differential modulation of drug-induced structural and functional plasticity of dendritic spines. Mol. Pharmacol. 2012, 82, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.J.; Dietz, D.M.; Dumitriu, D.; Morrison, J.H.; Malenka, R.C.; Nestler, E.J. The addicted synapse: Mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 2010, 33, 267–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chidambaram, S.B.; Rathipriya, A.G.; Bolla, S.R.; Bhat, A.; Ray, B.; Mahalakshmi, A.M.; Manivasagam, T.; Thenmozhi, A.J.; Essa, M.M.; Guillemin, G.J.; et al. Dendritic spines: Revisiting the physiological role. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 92, 161–193. [Google Scholar] [CrossRef]
- Lee, S.; Zhang, H.Y.; Webb, D.J. Dendritic spine morphology and dynamics in health and disease. Cell Health Cytoskelet. 2015, 7, 121–131. [Google Scholar]
- Rich, M.T.; Abbott, T.B.; Chung, L.; Gulcicek, E.E.; Stone, K.L.; Colangelo, C.M.; Lam, T.T.; Nairn, A.C.; Taylor, J.R.; Torregrossa, M.M. Phosphoproteomic Analysis Reveals a Novel Mechanism of CaMKIIalpha Regulation Inversely Induced by Cocaine Memory Extinction versus Reconsolidation. J. Neurosci. 2016, 36, 7613–7627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, N.; Chi, N.; Lauzon, N.; Bishop, S.; Tan, H.; Laviolette, S.R. Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex. Cereb. Cortex 2011, 21, 2665–2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Biological Processes | Ctx | Hp | Str | Cb |
---|---|---|---|---|
Synaptic vesicle cycle | P | P | P | P |
Synapse organization | E | P | - | P |
Neurotransmitter transport and secretion | P,E | P | P | P |
Regulation of neurotransmitter level | - | P | P | P |
Synaptic transmission | E | P | - | P |
Synaptic signaling | P,E | P,E | P | P |
Cytoskeleton organization | P | P | P,E | - |
Regulation of GTPase activity | - | P | P | E |
Protein ID | Gene | Protein Name | Position, Fold Change |
---|---|---|---|
Q5HZA7 | Bin1 | Bin1 protein | S265 (_1) ↑(MW) |
G3V984 | Bsn | Protein bassoon | S2632 (_2) ↑(2.80); S2634 (_2) ↑(2.80) |
P11275 | Camk2a | Ca2+/calmodulin-dependent protein kinase type II α | S330 (_2) ↓(-4.88); S331 (_3) ↑(2.54); S333 (_3) ↑(2.62); T336 (_3) ↑(3.40); T337 (_3) ↑(4.57) |
Q7TT49 | Cdc42bpb | Ser/Thr-proteine kinae MRCK β | S1695 (_1) ↓(C) |
A0A0G2JTD7 | Clasp1 | Cytoplasmic linker-associated protein 1 | S596 (_1) ↑(2.64); S1050 (_1) ↑(MW) |
F1M787 | Ctnnd2 | Catenin δ2 | T455 (_1) ↑(2.01); S515 (_2) ↑(3.64) |
Q62952 | Dpysl3 | Dihydropyrimidinase-related protein 3 | T509 (_3) ↑(2.27); T514 (_2) ↑(7.12) |
D3ZMI4 | Epb41l1 | Band 4.1-like protein 1 | S766 (_2) ↑(2.07); S767 (_2) ↑(2.07); S1337 (_1) ↓(C) |
A0A0G2K1Q9 | Epb41l3 | Erythrocyte membrane protein band 4.1-like 3 | S94 (_2) ↑(MW); S97 (_2) ↓(−2.99) |
A0A0G2K527 | Git1 | ARF GTPase-activating protein Git1 | T383 (_1) ↓(C); T383 (_2) ↓(C) |
A0A0G2K5C6 | Map1a | Microtubule-associated protein 1A | S1518 (_1) ↑(2.76); S2001 (_3) ↑(2.37); S2005 (_3)↑(2.37) |
P15205 | Map1b | Microtubule-associated protein 1B | S930 (_1) ↑(6.14); T965 (_2) ↓(−2.34); S1315 (_3) ↑(3.62); S1389 (_2) ↑(2.09); S1393 (_2) ↑(2.09) |
F1MAQ5 | Map2 | Microtubule-associated protein 2 | T1606 (_2) ↑(2.84); S1782 (_2) ↑(2.12); S1784 (_2) ↑(3.20); S1784 (_3) ↓(−3.09) |
D4A1Q2 | Mapt | Microtubule-associated protein tau | S436 (_2) ([2.95); S440 (_2) ↑(2.74); T648 (_3) ↑(2.00); S661 (_1) ↑(MW) |
Q920Q0 | Palm | Paralemmin-1 | S112 (_3) ↑(2.11) |
D3Z9C7 | Pclo | Protein piccolo | S3054 (_1) ↓(C); S3326 (_1) ↑(2.34) |
Q6IRK8 | Sptan1 | Spectrin α chain 1 | S1029 (_1) ↑(MW) |
Q9QXY2 | Srcin1 | Src kinase signaling inhibitor 1 | S342 (_2) ↓(C) |
P61265 | Stx1b | Syntaxin-1B protein | S10 (_1) ↑(6.58) |
D3ZU84 | Stxbp5l | Syntaxin-binding protein 5-like | S723 (_3) ↑(2.12); S724 (_3) ↑(2.12); S727 (_3) ↑(2.12) |
P09951 | Syn1 | Synapsin-1 | S430 (_3) ↓(C) |
D3ZQL7 | Tppp | Tubulin polymerization-promoting protein | S34 (_1) ↑(6.74) |
Protein ID | Gene | Protein Name | Position, Fold Change |
---|---|---|---|
Q5QD51 | Akap12 | A-kinase anchor protein 1 | S614 (_2) ↑(5.04); S616 (_2) ↑(5.04) |
A0A0G2K6R9 | Ank2 | Ankyrin 2 | S1730 (_3) ↑(4.85); S1731 (_3) ↑(4.85); S1734 (_3) ↑(4.85); S2243 (_2) ↑(MW); S2246 (_2) ↓(C); S2532 (_2) ↑(2.17); T2535 (_2) ↑(2.17) |
D4A9G6 | Arhgap33 | Rho GTPase-activating protein 33 | T974 (_1) ↓(C) |
D4AD82 | Arhgap35 | Rho GTPase-activating protein 35 | S1179 (_1) ↑(2.99) |
A0A1B0GWY | Arhgef2 | Rho guanine nucleotide exchange factor 2 | S916 (_1) ↓(C) |
D4A1D2 | Arhgef26 | Rho guanine nucleotide exchange factor 26 | S390 (_1) ↑(3.70) |
A0A0G2QC21 | Arhgef7 | Rho guanine nucleotide exchange factor 7 | S228 (_1) ↓(C) |
Q5HZA7 | Bin1 | Bin1 protein | S265 (_1) ↑(MW) |
M9MMM8 | Brsk2 | Ser/Thr-protein kinase BRSK2 | T364 (_2) ↓(C); S398 (_3) ↓(C) |
G3V984 | Bsn | Protein bassoon | S1098 (_2) ↑(2.48); T1100 (_3) ↑(MW) |
P11275 | Camk2a | Ca2+/calmodulin-dependent protein kinase type II subunit α | S330 (_2) ↑(2.81); S330 (_3) ↑(2.25); S333 (_2) ↑(10.48); S333 (_3) ↑(3.44); T334 (_3) ↓(−2.22); T336 (_1) ↓(C); T336 (_3) ↓(−4.38) |
P35565 | Canx | Calnexin | S563 (_1) ↑(2.14) |
Q7TT49 | Cdc42bpb | Ser/Thr-proteine kinae MRCK β | S1692 (_2) ↓(−3.11); S1695 (_2) ↓(−3.11) |
Q62950 | Crmp1 | Dihydropyrimidinase-related protein 1 | S8 (_1) ↑(2.65) |
F1M787 | Ctnnd2 | Catenin δ2 | S515 (_2) ↑(4.35) |
A0A1B0GWS4 | Cttn | Src substrate cortactin | S125 (_2) ↑(2.41); S125 (_3) ↑(2.04); S135 (_3) ↑(2.14) |
A0A0G2K7F5 | Dlg4 | Disks large homolog 4 | S413 (_2) ↓(C) |
G3V849 | Dlgap1 | Discs, large homolog-associated protein 1 | S421 (_2) ↑(2.33) |
A0A0G2JUI3 | Dlgap2 | Discs, large homolog-associated protein 2 | S947 (_2) ↑(MW) |
A0A0G2JX56 | Dnajc5 | DnaJ (Hsp40) homolog, subfamily C, member 5 | S8 (_1) ↑(MW) |
D4A0I5 | Dnajc6 | DnaJ (Hsp40) homolog, subfamily C, member 6 | Y750 (_1) ↓(C) |
Q62952 | Dpysl3 | Dihydropyrimidinase-related protein 3 | T507 (_2) ↓(C); T509 (_2) ↑(MW) |
D3ZMI4 | Epb41l1 | Band 4.1-like protein 1 | T489 (_1) ↑(2.46); S544 (_2) ↑(2.09); S544 (_3) ↑(10.71); S546 (_2) ↑(2.09); T1252 (_1) ↓(C); S1320 (_2) ↓(−3.09); S1322 (_2) ↓(−3.09); T1324 (_2) ↓(−9.45) |
A0A0G2K1Q9 | Epb41l3 | Erythrocyte membrane protein band 4.1-like 3 | S91 (_3) ↑(2.44) |
A0A0G2K5C6 | Map1a | Microtubule-associated protein 1A | S764 (_1) ↑(MW); S1236 (_2) ↑(MW); S1691 (_1) ↑(2.56); S2135 (_1) ↓(-2.55) |
P15205 | P15205 | Microtubule-associated protein 1B | S14 (_1) ↓(C); S614 (_1) ↓(-4.06); S985 (_1) ↓(C); S1239 (_2) ↓(C); S1244 (_2) ↓(C); S1254 (_2) ↓(−6.20); S1315 (_3) ↑(2.46); S1371 (_1) ↑(2.39); S1382 (_3) ↑(2.05); S1432 (_1) ↓(C); S1465 (_1) ↑(3.69); S1494 (_1) ↑(4.52); S1772 (_3) ↑(2.30); S1775 (_3) ↑(2.30); S1778 (_3) ↑(2.30) |
F1MAQ5 | Map2 | Microtubule-associated protein 2 | S362 (_2) ↑(2.64); S1064 (_1) ↓(−2.51); S1784 (_3)↑(2.10); S1785 (_3) ↑(2.76); S1793 (_2) ↑(MW); 1793 (_3) ↓(C); S1796 (_3) ↓(C); S1797 (_3) ↓(C) |
D4A1Q2 | Mapt | Microtubule-associated protein tau | S45 (_2) ↓(C); S423 (_3) ↑(2.15); T426 (_1) ↓(-2.68); T426 (_3) ↑[2.15]; S436 (_2) ↑[2.53]; S436 (_3) ↑(3.39); S440 (_2) ↑(2.42); S444 (_3) ↑(3.39); S447 (_1) ↑(2.39); S447 (_3) ↑(3.39); S480 (_2) ↑(2.04); S661 (_1) ↑(MW) |
Q920Q0 | Palm | Paralemmin-1 | T141 (_2) ↑(3.52); T145 (_2) ↑(3.52) |
D3Z9C7 | Pclo | Protein piccolo | S3054 (_1) ↓(−3.58); S3326 (_1) ↓(−2.52) |
D3ZZ81 | Ppfia1 | PTPRF-interacting protein alpha 1 | S239 (_2) ↓(−2.17); S242 (_2) ↓(−2.17) |
P63012 | Rab3a | Ras-related protein Rab-3A | S188 (_1) ↓(C) |
D3ZKQ4 | Rabl6 | RAB, member RAS oncogene family-like 6 | S474 (_2) ↑(5.34) |
Q5FVT1 | Ralbp1 | RalA-binding protein 1 | S48 (_2) ↓(C); S62 (_2) ↓(C) |
M0R920 | Ranbp3 | Ran-binding protein 3 | S409 (_1) ↑(MW) |
F1LM43 | Rasgrf1 | Ras-specific guanine nucleotide releasing factor 1 | S747 (_1) ↑(2.02) |
O08773 | Rgs14 | Regulator of G-protein signaling 14 | S286 (_1) ↓(−4.28) |
A0A0G2KAV8 | Rims1 | Regulating synaptic membrane exocytosis protein 1 | S409 (_1) ↑(2.33) |
A0A0G2K8W9 | Sptbn1 | Spectrin β chain | S2122 (_2) ↑(2.86); S2132 (_2) ↑(2.86); S2155 (_3) ↑(3.20) |
Q9QXY2 | Srcin1 | Src kinase signaling inhibitor 1 | S342 (_2) ↑(MW); S357 (_2) ↑(MW) |
D3ZU84 | Stxbp5l | Syntaxin-binding protein 5-like | S503 (_1) ↑(MW) |
Q02563 | Sv2a | Synaptic vesicle glycoprotein 2A | S127 (_1) ↓(−11.11) |
P09951 | Syn1 | Synapsin-1 | S436 (_3) ↑(2.15); S518 (_1) ↑(MW); S682 (_2) ↑(MW) |
D3ZCL8 | Syngap1 | Ras/Rap GTPase-activating protein SynGAP | S1103 (_2) ↑(2.45) |
P97610 | Syt12 | Synaptotagmin-12 | T103 (_1) ↓(C) |
D3ZQL7 | Tppp | Tubulin polymerization-promoting protein | S31 (_1) ↓(−4.52) |
Protein ID | Gene | Protein Name | Position, Fold Change |
---|---|---|---|
F1M2D4 | Arhgap23 | Rho GTPase-activating protein 23 | T560 (_2) ↑(MW) |
D4A987 | Arhgap31 | Cdc42 GTPase-activating protein | S455 (_2) ↓(-2.11); S459 (_2) ↓(−2.11) |
D4AD82 | Arhgap35 | Rho GTPase-activating protein 35 | Y1105 (_1) ↑(2.30) |
Q6TUE6 | Arhgap5 | Rho GTPase-activating protein 5 | T1171 (_2) ↓(C) |
G3V984 | Bsn | Protein bassoon | S1220 (_1) ↑(MW); S2842 (_1) ↑(MW) |
P11275 | Camk2a | Ca2+/calmodulin-dependent protein kinase type II subunit α | S330 (_2) ↓(−2.83) |
Q7TT49 | Cdc42bpb | Ser/Thr-proteine kinae MRCK β | S1692 (_1) ↑(MW) |
F1M787 | Ctnnd2 | Catenin δ2 | S515 (_2) ↓(−2.41) |
A0A1B0GWS4 | Cttn | Src substrate cortactin | S125 (_2) ↑(6.53) |
A0A0G2K7F5 | Dlg4 | Disks large homolog 4 | S414 (_2) ↑(2.17); S417 (_2) ↑(2.17) |
A0A0G2JUI3 | Dlgap2 | Discs, large homolog-associated protein 2 | S557 (_2) ↑(2.33) |
A0A0G2JX56 | Dnajc5 | DnaJ (Hsp40) homolog, subfamily C, member 5 | S10 (_2) ↑(2.68) |
P47942 | Dpysl2 | Dihydropyrimidinase-related protein 2 | S537 (_1) ↑(2.12) |
Q62952 | Dpysl3 | Dihydropyrimidinase-related protein 3 | T518 (_2) ↓(−3.10) |
D3ZMI4 | Epb41l1 | Band 4.1-like protein 1 | S544 (_3) ↑(2.30); S546 (_3) ↑(2.30); T550 (_3) ↑(2.30); T1324 (_2) ↑(2.53) |
A0A0G2K1Q9 | Epb41l3 | Erythrocyte membrane protein band 4.1-like 3 | T540 (_2) ↑(MW) |
A0A0G2K527 | Git1 | ARF GTPase-activating protein Git1 | S379 (_3) ↓(C); T383 (_3) ↓(C) |
A0A0G2K5C6 | Map1a | Microtubule-associated protein 1A | S1136 (_2) ↑(MW); S1232 (_3) ↓)C); S2432 (_1) ↑(MW) |
P15205 | Map1b | Microtubule-associated protein 1B | S929 (_2) ↓(-2.52); S930 (_2) ↓(-2.52); S956 (_2) ↓(−2.72); S960 (_2) ↑(MW); S963 (_3) ↓(C); S1239 (_2) ↓(C); S1244 (_1) ↑(MW); S1244 (_2) ↓(C); S1389 (_1) ↑(MW); S1494 (_1) ↓(−2.69); T1496 (_1) ↑(6.78); S1646 (_1) ↑(2.12); S1778 (_2) ↑(2.01); S1781 (_3) ↑(2.05) |
F1MAQ5 | Map2 | Microtubule-associated protein 2 | S1780 (_3) ↑(6.15); S1784 (_3) ↑(2.32); S1788 (_3) ↑(6.15) |
D4A1Q2 | Mapt | Microtubule-associated protein tau | S480 (_2) ↑(3.75); Y639 (_3) ↑(MW) |
Q920Q0 | Palm | Paralemmin-1 | S124 (_1) ↑(MW); T361 (_2) ↓(C); S365 (_2) ↓(C) |
D3Z9C7 | Pclo | Protein piccolo | S66 (_1) ↓(−2.45); T2103 (_1) ↓(−2.06) |
F1LSE6 | Ppfia3 | Liprin α3 | T678 (_1) ↓(C) |
P63012 | Rab3a | Ras-related protein Rab-3A | S190 (_1) ↑(MW) |
F1M386 | Rapgef2 | Rap guanine nucleotide exchange factor 2 | T1118 (_2) ↑(MW) |
A0A0G2KAV8 | Rims1 | Regulating synaptic membrane exocytosis protein 1 | S637 (_2) ↑(2.06); S640 (_2) ↑(2.06) |
A0A0G2K8W9 | Sptbn1 | Spectrin β chain | S2155 (_2) ↑(26.05) |
Q9QXY2 | Srcin1 | Src kinase signaling inhibitor 1 | T658 (_2) ↑(MW) |
Q02563 | Sv2a | Synaptic vesicle glycoprotein 2A | S80 (_2) ↑(MW); S81 (_2) ↑(MW); S127 (_1) ↑(2.24) |
P09951 | Syn1 | Synapsin-1 | S425 (_1) ↑(2.39); S508 (_1) ↑(2.22); S516 (_1) ↑(MW) |
D3ZZQ0 | Tnik | Similar to Traf2 and NCK interacting kinase, splice variant 4 | S335 (_2) ↑(MW); S766 (_1) ↓(C) |
Protein ID | Gene | Protein Name | Position, Fold Change |
---|---|---|---|
Q5QD51 | Akap12 | A-kinase anchor protein 12 | S273 (_2) ↓(C) |
A0A0G2K6R9 | Ank2 | Ankyrin 2 | S2698 (_2) ↓(C) |
Q5HZA7 | Bin1 | Bin1 protein | S265 (_1) ↑(MW) |
G3V984 | Bsn | Protein bassoon | S1034 (_2) ↑(3.26); S1035 (_2) ↑(3.26); S1098 (_2) ↓(−2.06); T1100 (_3) ↑(MW); S1469 (_2) ↓(C) |
P35565 | Canx | Calnexin | S582 (_1) ↓(−45.95) |
Q62950 | Crmp1 | Dihydropyrimidinase-related protein 1 | S566 (_2) ↑(2.64); S570 (_2) ↑(2.64) |
A0A0G2JT93 | Ctnnb1 | Catenin β1 | T556 (_1) ↑(2.06) |
F1M787 | Ctnnd2 | Catenin δ2 | S517 (_1) ↑(2.29) |
A0A1B0GWS4 | Cttn | Src substrate cortactin | S123 (_2) ↓(−4.09); S135 (_3) ↓(C) |
D4A0I5 | Dnajc6 | DnaJ (Hsp40) homolog, subfamily C, member 6 | S564 (_2) ↑(2.40) |
P47942 | Dpysl2 | Dihydropyrimidinase-related protein 2 | S542 (_1) ↑(MW) |
Q62952 | Dpysl3 | Dihydropyrimidinase-related protein 3 | Y499 (_3) ↓(−2.30); T509 (_3) ↓(−2.21); T514 (_2) ↓(C) |
A0A0G2K1Q9 | Epb41l3 | Erythrocyte membrane protein band 4.1-like 3 | S97 (_3) ↑(MW) |
A0A0G2K527 | Git1 | ARF GTPase-activating protein Git1 | S376 (_2) ↓(C); S379 (_3) ↑(MW); T383 (_3) ↑(MW) |
A0A0G2K5C6 | Map1a | Microtubule-associated protein 1A | S1860 (_1) ↑(7.34) |
P15205 | Map1b | Microtubule-associated protein 1B | S821 (_3) ↓(−2.08); S824 (_2) ↓(−2.28); S824 (_3) ↓(−2.08); S825 (_2) ↑(−2.28); S825 (_3) ↓(−2.08); S963 (_3) ↓(C); S1254 (_3) ↑(MW); S1317 (_3) ↑(MW); S1319 (_3) ↓(C); S1332 (_2) ↓(C); S1393 (_1) ↓(C) |
F1MAQ5 | Map2 | Microtubule-associated protein 2 | S724 (_2) ↓(C); Y744 (_2) ↓(C) |
D4A1Q2 | Mapt | Microtubule-associated protein tau | S423 (_3) ↓(C); T426 (_3) ↓(C);S649 (_2) ↓(−5.59); S649 (_3) ↑(3.33) |
Q920Q0 | Palm | Paralemmin-1 | S244 (_2) ↑(MW); T363 (_2) ↓(C); T367 (_2) ↑(MW]) |
D3Z9C7 | Pclo | Protein piccolo | S63 (_2) ↓(C); S2337 (_2) ↑(2.56); S2343 (_2) ↑(2.56); S3320 (_2) ↑(2.35); S3326 (_2) ↑(2.35) |
D3ZKH6 | Rabgap1l | Rab GTPase-activating protein 1-like | S490 (_1) ↑(MW) |
D3ZKQ4 | Rabl6 | RAB, member RAS oncogene family-like 6 | T606 (_2) ↓(C); S650 (_2) ↑(MW) |
F1M386 | Rapgef2 | Rap guanine nucleotide exchange factor 2 | S1115 (_2) ↑(MW) |
P61265 | Stx1b | Syntaxin-1B | S109 (_1) ↓(−2.56) |
P61765 | Stxbp1 | Syntaxin-binding protein 1 | S594 (_1) ↑(2.66) |
Q02563 | Sv2a | Synaptic vesicle glycoprotein 2A | S80 (_3) ↓(C); S81 (_3) ↓(C); T84 (_3) ↓(C); S127 (_1) ↑(2.70) |
P09951 | Syn1 | Synapsin-1 | S430 (_3) ↓(C); S432 (_3) ↑(2.25); S680 (_2) ↑(2.16) |
P97610 | Syt12 | Synaptotagmin-12 | S93 (_2) ↓(−2.25); S97 (_2) ↓(−2.25); T103 (_1) ↓(C) |
G3V6M3 | Syt2 | Synaptotagmin-2 | T125 (_1) ↑(299.42) |
Brain Region | Protein ID | Gene | Proteine Name | Alteration |
---|---|---|---|---|
Cortex | A0A0G3JSM8 | Cdc42 | Cell division control protein 42 homolog | ↑ (MW) |
P23385; G3V7U1 | Grm1 | Metabotropic glutamate receptor 1 | ↓ (−2.31) | |
P15387; A0A0H2UI34 | Kcnb1 | Potassium voltage-gated channel subfamily B member1 | ↓ (−2.26) | |
D4A7P2 | Lrrtm2 | Leucine-rich repeat transmembrane | ↑(2.43) | |
Q99P74 | Rab27b | Ras-related protein Rab-27B | ↑ (MW) | |
P35280 | Rab8a | Ras-related protein Rab-8A | ↑ (2.34) | |
D3ZWS0 | Scrib | Scribble planar cell polarity protein | ↓ (C) | |
A0A0U1RRP5 | Shank3 | SH3 and multiple ankyrin repeat domains protein 3 | ↓ (C) | |
Q9ET50 | Stau1 | Staufen double-stranded RNA-binding protein 1 | ↑ (2.08) | |
Hippocampus | F1LLX6 | Cadps | Calcium-dependent secretion activator 1 | ↑ (MW) |
P23385;G3V7U1 | Grm1 | Metabotropic glutamate receptor 1 | ↑ (2.16) | |
P59824; 0A096MJW6 | Il1rapl1 | Interleukin-1 receptor accessory protein-like 1 | ↓ (−2.03) | |
P35280 | Rab8a | Ras-related protein Rab-8A | ↓ (C) | |
Striatum | F1LMV6 | Dsp | Desmoplakin | ↑ (MW) |
Q99PS8 | Hrg | Histidine-rich glycoprotein | ↓ (−2.04) | |
A0A0G2K2Z2 | Inpp5k | Inositol polyphosphate-5-phosphatase K | ↑ (MW) | |
D3ZKG5 | Parvb | Parvin, beta | ↓ (2.01) | |
Q63644 | Rock1 | Rho-associated protein kinase 1 | ↓ (C) | |
P34901 | Sdc4 | Syndecan-4 | ↑ (2.20) | |
F1MA97 | Thsd7a | Thrombospondin type 1 domain-containing 7A | ↑ (2.19) | |
Q4QQV0 | Tubb6 | Tubulin beta chain | ↑ (2.10) | |
Cerebellum | Q5FVC2;A0A1B0GWY5 | Arhgef2 | Rho guanine nucleotide exchange factor 2 | ↓ (−2.38) |
Q5PQP4 | Cdc42ep2 | Cdc42 effector protein 2 | ↓ (C) | |
F1M7X3 | Cdh13 | Cadherin 13 | ↓ (C) | |
G3V6F4; P56558 | Ogt | O-linked N-acetylglucosamine transferase | ↑ (MW) | |
Q3B7V5 | Rab2b | Rab2b, member RAS oncogene family | ↓ (C) | |
D3ZZP2 | Rab39a | Rab39, member RAS oncogene family | ↓ (C) | |
P70550 | Rab8b | Ras-related protein Rab-8B | ↑ (MW) | |
A0A0G2JU11;F1M386 | Rapgef2 | Rap guanine nucleotide exchange factor 2 | ↓ (−2.41) | |
P28818; A0A0G2JZ23 | Rasgrf1 | Ras-specific guanine nucleotide-releasing factor 1 | ↓ (−2.21) | |
Q5BJU0 | Rras2 | Ras-related 2 | ↓ (C) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drastichova, Z.; Hejnova, L.; Moravcova, R.; Novotny, J. Proteomic Analysis Unveils Expressional Changes in Cytoskeleton- and Synaptic Plasticity-Associated Proteins in Rat Brain Six Months after Withdrawal from Morphine. Life 2021, 11, 683. https://doi.org/10.3390/life11070683
Drastichova Z, Hejnova L, Moravcova R, Novotny J. Proteomic Analysis Unveils Expressional Changes in Cytoskeleton- and Synaptic Plasticity-Associated Proteins in Rat Brain Six Months after Withdrawal from Morphine. Life. 2021; 11(7):683. https://doi.org/10.3390/life11070683
Chicago/Turabian StyleDrastichova, Zdenka, Lucie Hejnova, Radka Moravcova, and Jiri Novotny. 2021. "Proteomic Analysis Unveils Expressional Changes in Cytoskeleton- and Synaptic Plasticity-Associated Proteins in Rat Brain Six Months after Withdrawal from Morphine" Life 11, no. 7: 683. https://doi.org/10.3390/life11070683
APA StyleDrastichova, Z., Hejnova, L., Moravcova, R., & Novotny, J. (2021). Proteomic Analysis Unveils Expressional Changes in Cytoskeleton- and Synaptic Plasticity-Associated Proteins in Rat Brain Six Months after Withdrawal from Morphine. Life, 11(7), 683. https://doi.org/10.3390/life11070683