Sorghum’s Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review
Abstract
:1. Introduction
2. General Plant Responses to Drought Stress
3. Sorghum Transcriptomics Studies in Response to Drought Stress
4. Sorghum Proteomics Studies in Response to Drought Stress
5. An Overview of Sorghum Molecular Responses to Drought Stress
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- FAOSTATS. Food and Agriculture Data; Food and Agriculture Organisation: Rome, Italy, 2019; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 11 February 2021).
- National Research Council. Lost Crops of Africa: Grains; National Academy Press: Washington, DC, USA, 1996; Volume 1. [Google Scholar]
- House, L.R. A Guide to Sorghum Breeding, 2nd ed.; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 1985. [Google Scholar]
- Doggett, H. Sorghum, 2nd ed.; Longman Scientific & Technical: Essex, UK, 1988. [Google Scholar]
- Dahlberg, J.; Berenji, J.; Sikora, V.; Latkovic, D. Assessing sorghum [Sorghum bicolor (L) Moench] germplasm for new traits: Food, fuels & unique uses. Maydica 2011, 56–1750, 85–92. [Google Scholar]
- Wilkes, G. Strategies for Sustaining Crop. Germplasm Preservation, Enhancement, and Use; Consultative Group on International Agricultural Research, CGIAR Secretariat: Washington, DC, USA, 1992. [Google Scholar]
- Kimber, C.T.; Dahlberg, J.A.; Kresovich, S. The gene pool of Sorghum bicolor and its improvement. In Genomics of the Saccharinae; Paterson, A.H., Ed.; Springer: New York, NY, USA, 2013; Volume 11, pp. 23–41. [Google Scholar]
- Upadhyaya, H.D.; Sharma, S.; Dwivedi, S.L.; Singh, S.K. Sorghum genetics resources: Conservation and diversity assessment for enhanced utilization in sorghum improvement. In Genetics, Genomics and Breeding of Sorghum; Wang, H., Upadhyaya, H.D., Kole, C., Eds.; CRC Press: New York, NY, USA, 2014; pp. 28–55. [Google Scholar]
- Upadhyaya, H.D.; Vetriventhan, M.; Asiri, A.M.; Azevedo, V.C.R.; Sharma, H.C.; Sharma, R.; Sharma, S.P.; Wang, Y.H. Multi-trait diverse germplasm sources from mini core collection for sorghum improvement. Agric. Basel 2019, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.S.; Reddy, B.V.S.; Sharma, H.C.; Hash, C.T.; Rao, P.S.; Ramaiah, B.; Reddy, P.S. Recent advances in sorghum genetic enhancement research at ICRISAT. Am. J. Plant. Sci. 2011, 2, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Boyer, J.S. Plant productivity and environment. Science 1982, 218, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Mundia, C.W.; Secchi, S.; Akamani, K.; Wang, G. A regional comparison of factors affecting global sorghum production: The case of North America, Asia and Africa’s Sahel. Sustainability 2019, 11, 2135. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Summary for Policymakers; Cambridge University Press: Cambridge, UK, 2007; pp. 7–22. [Google Scholar]
- Nelson, G.C.; Rosegrant, M.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; Msangi, S.; Ringler, C.; Palazzo, A.; Batka, M.; et al. Climate Change. Impact on Agriculture and Costs of Adapation; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar]
- Clarke, J.M.; Karamanos, A.J.; Simpson, G.M. Case example of research progress in drought-stressed physiology. In Water Stress on Plants; Simpson, C.D., Ed.; Praeger Publishers: New York, NY, USA, 1981; pp. 140–199. [Google Scholar]
- Rosenow, D.T.; Quisenberry, J.E.; Wendt, C.W.; Clark, L.E. Drought tolerant sorghum and cotton germplasm. Agr. Water Manag. 1983, 7, 207–222. [Google Scholar] [CrossRef]
- Amelework, B.A.; Shimelis, H.A.; Tongoona, P.; Mengistu, F.; Laing, M.D.; Ayele, D.G. Sorghum production systems and constraints, and coping strategies under drought-prone agro-ecologies of Ethiopia. South Afr. J. Plant Soil 2016, 33, 207–217. [Google Scholar] [CrossRef]
- Burke, J.J.; Chen, J.; Burow, G.; Mechref, Y.; Rosenow, D.; Payton, P.; Xin, Z.; Hayes, C.M. Leaf dhurrin content is a quantitative measure of the level of pre- and postflowering drought tolerance in sorghum. Crop. Sci. 2013, 53, 1056–1065. [Google Scholar] [CrossRef]
- Varoquaux, N.; Cole, B.; Gao, C.; Pierroz, G.; Baker, C.R.; Patel, D.; Madera, M.; Jeffers, T.; Hollingsworth, J.; Sievert, J.; et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc. Natl. Acad. Sci. USA 2019, 116, 27124–27132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrell, A.K.; Hammer, G.L.; Douglas, A.C.L. Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop. Sci. 2000, 40, 1026–1037. [Google Scholar] [CrossRef]
- Thomas, H.; Howarth, C.J. Five ways to stay green. J. Exp. Bot. 2000, 51, 329–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, A.C.; Subudhi, P.K.; Rosenow, D.T.; Nguyen, H.T. Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol. Biol. 2002, 48, 713–726. [Google Scholar] [CrossRef]
- Paterson, A.H.; Bowers, J.E.; Bruggmann, R.; Dubchak, I.; Grimwood, J.; Gundlach, H.; Haberer, G.; Hellsten, U.; Mitros, T.; Poliakov, A.; et al. The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Goodstein, D.M.; Shu, S.Q.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Agarwala, R.; Barrett, T.; Beck, J.; Benson, D.A.; Bollin, C.; Bolton, E.; Bourexis, D.; Brister, J.R.; Bryant, S.H.; Canese, K.; et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018, 46, D8–D13. [Google Scholar]
- Sasaki, T.; Antonio, B.A. Plant genomics: Sorghum in sequence. Nature 2009, 457, 547–548. [Google Scholar] [CrossRef]
- Edwards, D.; Batley, J. Plant genome sequencing: Applications for crop improvement. Plant Biotechnol. J. 2010, 8, 2–9. [Google Scholar] [CrossRef]
- Bolger, M.E.; Weisshaar, B.; Scholz, U.; Stein, N.; Usadel, B.; Mayer, K.F.X. Plant genome sequencing-applications for crop improvement. Curr. Opin. Biotechnol. 2014, 26, 31–37. [Google Scholar] [CrossRef]
- Mullet, J.E.; Klein, R.R.; Klein, P.E. Sorghum bicolor-an important species for comparative grass genomics and a source of beneficial genes for agriculture. Curr. Opin. Plant Biol. 2001, 5, 118–121. [Google Scholar] [CrossRef]
- Paterson, A.H. The sorghum genome sequence: A core resource for Saccharinae genomics. In Genomics of the Saccharinae; Paterson, A.H., Ed.; Springer: New York, NY, USA, 2013; Volume 11, pp. 105–117. [Google Scholar]
- Ware, D.H.; Jaiswal, P.J.; Ni, J.J.; Yap, I.; Pan, X.K.; Clark, K.Y.; Teytelman, L.; Schmidt, S.C.; Zhao, W.; Chang, K.; et al. Gramene, a tool for grass genomics. Plant Physiol. 2002, 130, 1606–1613. [Google Scholar] [CrossRef] [Green Version]
- Valentin, G.; Abdel, T.; Gaetan, D.; Jean-Francois, D.; Matthieu, C.; Mathieu, R. GreenPhylDB v5: A comparative pangenomic database for plant genomes. Nucleic Acids Res. 2021, 49, D1464–D1471. [Google Scholar]
- Spannagl, M.; Nussbaumer, T.; Bader, K.C.; Martis, M.M.; Seidel, M.; Kugler, K.G.; Gundlach, H.; Mayer, K.F.X. PGSB PlantsDB: Updates to the database framework for comparative plant genome research. Nucleic Acids Res. 2016, 44, D1141–D1147. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.F.; Schlueter, S.D.; Brendel, V. PlantgDB, plant genome database and analysis tools. Nucleic Acids Res. 2004, 32, D354–D359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, T.; You, Q.; Zhang, L.W.; Yi, X.; Yan, H.Y.; Xu, W.Y.; Su, Z. SorghumFDB: Sorghum functional genomics database with multidimensional network analysis. Database Oxf. 2016, 2016, baw099. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Zhao, W.M.; Wang, Y.Q.; Xia, Y.; Wu, X.Y.; Zhang, L.M.; Tang, B.X.; Zhu, J.W.; Fang, L.; Du, Z.L.; et al. SorGSD: A sorghum genome SNP database. Biotechnol. Biofuels 2016, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Mochizuki, T.; Tanizawa, Y.; Fujisawa, T.; Ohta, T.; Nikoh, N.; Shimizu, T.; Toyoda, A.; Fujiyama, A.; Kurata, N.; Nagasaki, H.; et al. DNApod: DNA polymorphism annotation database from next-generation sequence read archives. PLoS ONE 2017, 2, e0172269. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, A.; Nishiyama, M.Y.J.; Fuentes, B.G.; Souza, G.M.; Janies, D.; Gray, J.; Grotewold, E. GRASSIUS: A platform for comparative regulatory genomics across the grasses. Plant Physiol. 2009, 149, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.J.; Hao, Z.Q.; Yin, S.W.; Li, G.L. GreenCircRNA: A database for plant CircRNAs that act as miRNA decoys. Database Oxf. 2020, 2020, baaa039. [Google Scholar] [CrossRef]
- Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.C.; Kanehisa, M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35, W182–W185. [Google Scholar] [CrossRef] [Green Version]
- Kozomara, A.; Griffiths-Jones, S. miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014, 42, D68–D73. [Google Scholar] [CrossRef] [Green Version]
- Makita, Y.; Shimada, S.; Kawashima, M.; Kondou-Kuriyama, T.; Toyoda, T.; Matsui, M. Morokoshi: Transcriptome database in Sorghum bicolor. Plant Cell Physiol. 2015, 56, e6. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Tian, F.; Yang, D.-C.; Meng, Y.-Q.; Kong, L.; Luo, J.; Gao, G. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2016, 45, D1040–D1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.R.; Liu, C.C.; Sun, C.H.; Chen, Y.T. Plant stress RNA-seq Nexus: A stress-specific transcriptome database in plant cells. BMC Genom. 2018, 19, 966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.B.; Zhuang, Z.H.; Zhao, P.X.C. psRNAtarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018, 46, W49–W54. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Singh, A.; Zahra, S.; Kumar, S. PtRFdb: A database for plant transfer RNA-derived fragments. Database Oxf. 2018, 2018, bay063. [Google Scholar] [CrossRef]
- Wu, H.-J.; Ma, Y.-K.; Chen, T.; Wang, M.; Wang, X.-J. PsRobot: A web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res. 2012, 49, W22–WW28. [Google Scholar] [CrossRef] [PubMed]
- Stocks, M.B.; Mohorianu, I.; Beckers, M.; Paicu, C.; Moxon, S.; Thody, J.; Dalmay, T.; Moulton, V. The UEA sRNA Workbench (version 4.4): A comprehensive suite of tools for analyzing miRNAs and sRNAs. Bioinformatics 2018, 34, 3382–3384. [Google Scholar] [CrossRef]
- Hooper, C.M.; Castleden, I.R.; Aryamanesh, N.; Jacoby, R.P.; Millar, A.H. Finding the subcellular location of barley, wheat, rice and maize proteins: The compendium of crop proteins with annotated locations (cropPAL). Plant Cell Physiol. 2016, 57, e9. [Google Scholar] [CrossRef] [Green Version]
- Clemente, H.S.; Pont-Lezica, R.; Jamet, E. Bioinformatics as a tool for assessing the quality of sub-cellular proteomic strategies and inferring functions of proteins: Plant cell wall proteomics as a test case. Bioinform. Biol. Insights 2009, 3, 15–28. [Google Scholar] [CrossRef]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef]
- Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; et al. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar]
- Tian, T.; Liu, Y.; Yan, H.Y.; You, Q.; Yi, X.; Du, Z.; Xu, W.Y.; Su, Z. AgriGo v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 4th ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2010. [Google Scholar]
- Molles, M.C., Jr. Ecology: Concepts and Applications, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Levitt, J. Responses of Plants to Environmental Stresses, 2nd ed.; Academic Press: New York, NY, USA, 1980; Volume II. [Google Scholar]
- Bray, E.A. Molecular responses to water deficit. Plant Physiol. 1993, 103, 1035–1040. [Google Scholar] [CrossRef] [Green Version]
- Bray, E.A. Plant responses to water deficit. Trends Plant Sci. 1997, 2, 48–54. [Google Scholar] [CrossRef]
- Xiong, L.; Zhu, J.K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 2002, 25, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Clarke, J.M.; Durley, R.C. The responses of plants to drought stress. In Water Stress on Plants; Simpson, G.M., Ed.; Praeger Publishers: New York, NY, USA, 1981; pp. 89–139. [Google Scholar]
- Hale, M.G.; Orcutt, D.M.; Thompson, L.K. The Physiology of Plants Under Stress; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef] [Green Version]
- Seki, M.; Kamei, A.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Molecular responses to drought, salinity and frost: Common and different paths for plant protection. Curr. Opin. Biotechnol. 2003, 14, 194–199. [Google Scholar] [CrossRef]
- Shinozaki, K.; Yamaguchi-Shinozaki, K. Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 1996, 7, 161–167. [Google Scholar] [CrossRef]
- Davies, W.J.; Kudoyarova, G.; Hartung, W. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. J. Plant Growth Regul. 2005, 24, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Amelework, B.; Shimelis, H.; Tongoona, P.; Laing, M. Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: A review. Afr. J. Agric. Res. 2015, 10, 3029–3040. [Google Scholar]
- Tari, I.; Laskay, G.; Takacs, Z.; Poor, P. Responses of sorghum to abiotic stresses: A review. J. Agron. Crop Sci. 2012, 199, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Blum, A. Sorghum physiology. In Physiology and Biotechnology Intergration for Plant Breeding; Nguyen, H., Blum, A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2004; pp. 141–223. [Google Scholar]
- Blum, A.; Arkin, G.F. Sorghum root-growth and water-use as affected by water-supply and growth duration. Field Crop. Res. 1984, 9, 131–142. [Google Scholar] [CrossRef]
- Goche, T.; Shargie, N.G.; Cummins, I.; Brown, A.P.; Chivasa, S.; Ngara, R. Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Sci. Rep. 2020, 10, 11835. [Google Scholar] [CrossRef] [PubMed]
- Ogbagaa, C.C.; Stepien, P.; Johnson, G.N. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought. Physiol. Plant 2014, 152, 389–401. [Google Scholar] [CrossRef]
- Johnson, S.M.; Lim, F.L.; Finkler, A.; Fromm, H.; Slabas, A.R.; Knight, M.R. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genom. 2014, 15, 456. [Google Scholar] [CrossRef] [Green Version]
- Fracasso, A.; Trindade, L.M.; Amaducci, S. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biol. 2016, 16, 115. [Google Scholar] [CrossRef]
- Ebercon, A.; Blum, A.; Jordan, W.R. A rapid colorimetric method for epicuticular wax content of sorghum leaves. Crop. Sci. 1977, 17, 179–180. [Google Scholar] [CrossRef] [Green Version]
- Sanjari, S.; Shobbar, Z.-S.; Ghanati, F.; Afshari-Behbahanizadeh, S.; Farajpour, M.; Jokar, M.; Khazaei, A.; Shahbazi, M. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowing drought stress. Plant Physiol. Biochem. 2021, 159, 383–391. [Google Scholar] [CrossRef]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought-from genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Kitano, H. Systems biology: A brief overview. Science 2002, 295, 1662–1664. [Google Scholar] [CrossRef] [Green Version]
- Korth, K.L. Genes and traits of interest for transgenic plants. In Plant Biotechnology and Genetics: Principles, Techniques, and Applications; Stewart, C.N., Jr., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 193–216. [Google Scholar]
- Cramer, G.R.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 2011, 11, 163. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Lowe, R.; Shirley, N.; Bleackley, M.; Dolan, S.; Shafee, T. Transcriptomics technologies. PLoS Comput. Biol. 2017, 13, e1005457. [Google Scholar] [CrossRef] [Green Version]
- Szymanski, M.; Barciszewska, M.Z.; Zywicki, M.; Barciszewski, J. Noncoding RNA transcripts. J. Appl. Genet. 2003, 44, 1–19. [Google Scholar] [PubMed]
- Guleria, P.; Mahajan, M.; Bhardwaj, J.; Yadav, S.K. Plant small RNAs: Biogenesis, mode of action and their roles in abiotic stresses. Genom. Proteom. Bioinform. 2011, 9, 183–199. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Weng, J.; Joshi, C.P.; Nguyen, H.T. Dehydration stress-induced changes in translatable RNAs in sorghum. Crop Sci. 1993, 33, 1397–1400. [Google Scholar] [CrossRef]
- Wood, A.J.; Goldsbrough, P.B. Characterization and expression of dehydrins in water-stressed Sorghum bicolor. Physiol. Plant 1997, 99, 144–152. [Google Scholar] [CrossRef]
- Buchanan, C.D.; Lim, S.; Salzman, R.A.; Kagiampakis, I.; Morishige, D.T.; Weers, B.D.; Klein, R.R.; Pratt, L.H.; Cordonnier-Pratt, M.M.; Klein, P.E.; et al. Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol. Biol. 2005, 58, 699–720. [Google Scholar] [CrossRef] [PubMed]
- Dugas, D.V.; Monaco, M.K.; Olson, A.; Klein, R.R.; Kumari, S.; Ware, D.; Klein, P.E. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genom. 2011, 12, 514. [Google Scholar] [CrossRef] [Green Version]
- Devnarain, N.; Crampton, B.G.; Olivier, N.; van der Westhuyzen, C.; Becker, J.V.W.; O’ Kennedy, M.M. Transcriptomic analysis of a Sorghum bicolor landrace identifies a role for beta-alanine betaine biosynthesis in drought tolerance. S. Afr. J. Bot. 2019, 127, 244–255. [Google Scholar] [CrossRef]
- Zhang, D.-F.; Zeng, T.-R.; Liu, X.-Y.; Gao, C.-X.; Li, Y.-X.; Li, C.-H.; Song, Y.-C.; Shi, Y.-S.; Wang, T.-Y.; Li, Y. Transcriptomic profiling of sorghum leaves and roots responsive to drought stress at the seedling stage. J. Inter. Agric. 2019, 18, 1980–1995. [Google Scholar] [CrossRef]
- Abdel-Grany, S.E.; Ullah, F.; Ben-Hur, A.; Reddy, A.S.N. Transcriptome analysis of drought-resistant and drought-sensitive sorghum (Sorghum bicolor) genotypes in response to PEG-induced drought stress. Int. J. Mol. Sci. 2020, 21, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azzouz-Olden, F.; Hunt, A.G.; Dinkins, R. Transcriptome analysis of drought-tolerant sorghum genotype SC56 in response to water stress reveals an oxidative stress defense strategy. Mol. Biol. Rep. 2020, 47, 3291–3303. [Google Scholar] [CrossRef] [Green Version]
- Katiyar, A.; Smita, S.; Muthusamy, S.K.; Chinnusamy, V.; Pandey, D.M.; Bansal, K.C. Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Front. Plant Sci. 2015, 6, 506. [Google Scholar] [CrossRef] [Green Version]
- Hamza, N.B.; Sharma, N.; Tripathi, A.; Sanan-Mishra, N. MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr. Patterns 2016, 20, 88–98. [Google Scholar] [CrossRef]
- Close, T.J. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant 1996, 97, 795–803. [Google Scholar] [CrossRef]
- Campbell, S.A.; Close, T.J. Dehydrins: Genes, proteins, and associations with phenotypic traits. New Phytol. 1997, 137, 61–74. [Google Scholar] [CrossRef]
- Monshausen, G.B.; Gilroy, S. The exploring root—root growth responses to local environmental conditions. Curr. Opin. Plant Biol. 2009, 12, 766–772. [Google Scholar] [CrossRef]
- Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef]
- Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 1993, 125, 27–58. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Knight, H.; Knight, M.R. Abiotic stress signalling pathways: Specificity and cross-talk. Trends Plant Sci. 2001, 6, 262–267. [Google Scholar] [CrossRef]
- Osmolovskaya, N.; Shumilina, J.; Kim, A.; Didio, A.; Grishina, T.; Bilova, T.; Keltsieva, O.A.; Zhukov, V.; Tikhonovich, I.; Tarakhovskaya, E.; et al. Methodology of drought stress research: Experimental setup and physiological characterization. Int. J. Mol. Sci. 2018, 19, 4089. [Google Scholar] [CrossRef] [Green Version]
- Mastrangelo, A.M.; Marone, D.; Laido, G.; De Leonardis, A.M.; De Vita, P. Alternative splicing: Enhancing ability to cope with stress via transcriptome plasticity. Plant Sci. 2012, 185, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Syed, N.H.; Kalyna, M.; Marquez, Y.; Barta, A.; Brown, J.W.S. Alternative splicing in plants-coming of age. Trends Plant Sci. 2012, 17, 616–623. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, S.; Khokhar, W.; Jabre, I.; Reddy, A.S.N.; Byrne, L.J.; Wilson, C.M.; Syed, N.H. Alternative splicing and protein diversity: Plants versus animals. Front. Plant Sci. 2019, 10, 708. [Google Scholar] [CrossRef] [Green Version]
- Blackstock, W.P.; Weir, M.P. Proteomics: Quantitative and physical mapping of cellular proteins. Trends Biotechnol. 1999, 17, 121–127. [Google Scholar] [CrossRef]
- Pandey, A.; Mann, M. Proteomics to study genes and genomes. Nature 2000, 405, 837–846. [Google Scholar] [CrossRef]
- Monteoliva, L.; Albar, J.P. Differential proteomics: An overview of gel and non-gel based approaches. Brief. Funct. Genomic. Proteom. 2004, 3, 220–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkla, B.J.; Vera-Estrella, R.; Pantoja, O. Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 2013, 13, 1801–1815. [Google Scholar] [CrossRef]
- Kosova, K.; Vitamvas, P.; Prasil, I.T.; Renaut, J. Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J. Proteom. 2011, 74, 1301–1322. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, P.; Latef, A.A.H.A.; Rasool, S.; Akram, N.A.; Ashraf, M.; Gucel, S. Role of proteomics in crop stress tolerance. Front. Plant Sci. 2016, 7, 1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosova, K.; Vitamvas, P.; Urban, M.O.; Prasil, I.T.; Renaut, J. Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome. Front. Plant Sci. 2018, 9, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jedmowski, C.; Ashoub, A.; Beckhaus, T.; Berberich, T.; Karas, M.; Bruggemann, W. Comparative analysis of Sorghum bicolor proteome in response to drought stress and following recovery. Int. J. Proteom. 2014, 2014, 395905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Li, Y.; Ke, Q.; Kwak, S.-S.; Zhang, S.; Deng, X. Physiological and differential proteomic analyses of imitation drought stress response in Sorghum bicolor root at the seedling stage. Int. J. Mol. Sci. 2020, 21, 9174. [Google Scholar] [CrossRef] [PubMed]
- Fadoul, H.E.; El Siddig, M.A.; Abdalla, A.W.H.; El Hussein, A.A. Physiological and proteomic analysis of two contrasting Sorghum bicolor genotypes in response to drought stress. Aust. J. Crop Sci. 2018, 12, 1543–1551. [Google Scholar] [CrossRef]
- Rhodes, D.; Hanson, A.D. Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 357–384. [Google Scholar] [CrossRef]
- Hanson, A.D.; Rathinasabapathi, B.; Rivoal, J.; Burnet, M.; Dillon, M.O.; Gage, D.A. Osmoprotective compounds in the Plumbaginaceae-a natural experiment in metabolic engineering of stress tolerance. Proc. Natl. Acad. Sci. USA 1994, 91, 306–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathinasabapathi, B.; Sigua, C.; Ho, J.; Gage, D.A. Osmoprotectant beta-alanine betaine synthesis in the Plumbaginaceae: S-adenosyl-L-methionine dependent N-methylation of beta-alanine to its betaine is via N-methyl and N,N-dimethyl beta-alanines. Physiol. Plant 2000, 109, 225–231. [Google Scholar] [CrossRef]
- Rathinasabapathi, B.; Fouad, W.M.; Sigua, C.A. beta-alanine betaine synthesis in the Plumbaginaceae. Purification and characterization of a trifunctional, S-adenosyl-L-methionine-dependent N-methyltransferase from Limonium latifolium leaves. Plant Physiol. 2001, 126, 1241–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Szostkiewicz, I.; Korte, A.; Moes, D.; Yang, Y.; Christmann, A.; Grill, E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 2009, 324, 1064–1068. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Fung, P.; Nishimura, N.; Jensen, D.R.; Fujii, H.; Zhao, Y.; Lumba, S.; Santiago, J.; Rodrigues, A.; Chow, T.F.F.; et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 2009, 324, 1068–1071. [Google Scholar] [CrossRef] [Green Version]
- Hruz, T.; Laule, O.; Szabo, G.; Wessendorp, F.; Bleuler, S.; Oertle, L.; Widmayer, P.; Gruissem, W.; Zimmermann, P. GENEVESTIGATOR V3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008, 2008, 420747. [Google Scholar] [CrossRef]
Database | Website * | Features | References |
---|---|---|---|
Genomic resources/tools | |||
NCBI | http://ncbi.nlm.nih.gov | Plant genomics resource | [25] |
Phytozome | http://phytozome.jgi.doe.gov | Plant genomics resource | [24] |
Gramene | https://www.gramene.org | Grass genomics resource | [31] |
GreenPhylDB | http://www.greenphyl.org | Comparative and functional genomics in plants | [32] |
PGSB PlantsDB | http://pgsb.helmholtz-muenchen.de/plant/plantsdb.jsp | Comparative genomics in plants | [33] |
PlantGDB | http://www.plantgdb.org | Tools and resources for plant genomics | [34] |
SorghumFDB | http://structuralbiology.cau.edu.cn/sorghum/index.html | Sorghum functional genomics with network analysis | [35] |
SorGSD | http://sorgsd.big.ac.cn | Sorghum SNP data | [36] |
DNApod | http://tga.nig.ac.jp/dnapod | Genome-wide DNA polymorphism datasets of plants | [37] |
Transcriptomic resources | |||
Grassius | https://grassius.org/links.php | Grass transcription factors and gene promoters | [38] |
GreenCircRNA | http://greencirc.cn | Plant circular RNAs (circRNAs) | [39] |
KAAS | www.genome.jp/tools/kaas/ | Pathway enrichment analyses of transcripts to classify spatial and temporal pathways | [40] |
miRbase | http://www.mirbase.org | Plant microRNA (miRNA) data | [41] |
Morokoshi transcriptome database | http://matsui-lab.riken.jp/morokoshi/Home.html | Sorghum transcriptome data | [42] |
PlantTFDB | http://planttfdb.gao-lab.org/index.php | Plant transcription factors | [43] |
PSRN | http://syslab5.nchu.edu.tw | Plant stress-specific transcriptome data | [44] |
psRNATarget | http://plantgrn.noble.org/psRNATarget/ | Potential miRNA sorghum target predictions | [45] |
PtRFdb | http://www.nipgr.ac.in | Plant transfer RNA-derived fragments (tRFs) data | [46] |
psRobot; Plant small RNA analysis toolbox | http://omicslab.genetics.ac.cn/psRobot/ | Potential miRNA sorghum target predictions | [47] |
UEA sRNA workbench | http://srna-workbench.cmp.uea.ac.uk | Various smallRNA (sRNA) tools | [48] |
Proteomic resources | |||
CropPal | https://crop-pal.org | Protein subcellular location | [49] |
ProtAnnDB | http://www.polebio.lrsv.ups-tlse.fr/ProtAnnDB/ | Protein annotation | [50] |
ExPASy | https://www.expasy.org/ | Bioinformatics resources for proteomics | [51] |
Uniprot | https://www.uniprot.org | Protein sequence and functional information | [52] |
Gene ontology/metabolic pathways | |||
AgriGo | http://bioinfo.cau.edu.cn/agriGO/ | Gene ontology of plant and agricultural species | [53] |
KEGG | https://www.genome.jp/kegg/ | Gene functional information | [54] |
SorghumCyc | http://pathway.gramene.org/gramene/sorghumcyc.shtml | Metabolic pathways in sorghum | [31] |
S. bicolor Variety with Known Drought Phenotype 1 | Plant Tissue Sampled | Drought Experiment 2 | Techniques Used | Summary of Key Findings 3 | References |
---|---|---|---|---|---|
TX 430 | Shoots | Slow dehydration stress of intact seedlings over 3M NaCl for 22 h. | Northern blotting, hybridization against a maize dehydrin probe. | Up-regulation of the dehydrin mRNA with increase in stress duration. | [85] |
P954035—tolerant P721N—susceptible | Leaves Roots | Withholding water from seedlings and/or mature plants. | Northern blotting, hybridization against a maize dehydrin probe. | Up-regulation of the dehydrin mRNA in both seedlings and mature plants. | [86] |
BTx623 | Shoots Roots | 20% PEG-8000 in a hydroponics set-up for 3 and 27 h. Other stresses: 125 μM ABA and 150 mM NaCl. | Microarray, qRT-PCR | ABA and PEG-induced DEGs greatly overlapped in shoots than roots. >100-fold increase in some growth—related genes (e.g., a sorghum acting depolymerization factor homolog, a beta-expansin gene). Up-regulation of genes involved in lipid metabolism, proline biosynthesis, protection (dehydrins/LEA proteins), ROS detoxification, post-translational modification, protein folding and turnover, transcription factors. Photosynthesis related genes were down-regulated. | [87] |
BTx623 | Shoots Roots | 20% PEG-8000 in a hydroponics set-up for 27 h Another stress: 20 μM ABA. | RNA-seq, qRT-PCR | ABA treated samples showed a greater number of DEGs (both up-and down-regulated) than the PEG treatment. 12–30% of DEGs were common between PEG and ABA treatments, and tissue type. Genes for water stress-inducible protein 18 (WSI18), and LEAs, and dehydrins among the top five up-regulated DEGs in response to both treatments in roots and shoots, respectively. Up-regulation of DEGs involved in the following pathways, β-alanine betaine biosynthesis, amino acid metabolism, hormone biosynthesis and catabolism, plant defense (13-lipooxygenase and 13-hydroperoxide lyase), root disease response, abiotic stresses, cell growth processes, and regulation of transcriptional activity. | [88] |
R16 | Leaves | Withholding water from seedlings. Other stresses included heat shock and a combination of drought and heat. | Microarray, qRT-PCR | Highly up-regulated DEGs included those of LEA proteins, a proline biosynthetic enzyme P5CS2, a sodium ion transmembrane transporter HKT1. Genes involved in stress, response to water deprivation, response to ABA, amino acid regulation, fluid transport, regulation of photosynthesis were highly enriched. 380 genes were exclusively up-regulated in response to drought stress, including those associated with lipid transport, cell growth (expansins) and LEA proteins. Wax biosynthetic genes were up-regulated. | [73] |
IS22330—tolerant IS20351—susceptible | Leaf meristem | Withholding water from seedlings. | RNA-seq, qRT-PCR | Higher constitutive expression of genes involved in the secondary metabolic process and GST activity in the drought-tolerant variety. Alternative splicing events increased in the drought-tolerant variety following stress. 1599 and 636 DEGs identified in drought-susceptible and drought-tolerant varieties, respectively. 559 and 78 DEGs were both unique to, and up-regulated in the drought-susceptible and drought-tolerant varieties, respectively. The susceptible variety metabolized carbohydrates while the tolerant one activated amino acid biosynthesis in response to drought. | [74] |
South African landrace-LR6 | Leaves | Progressive water stress and re-watering as follows: Mild stress (4 days of withholding water), Severe stress (6 days of withholding water), Re-watering for 5 h after 7 days of water stress. | Microarray, qRT-PCR | The number of DEGs in general, and that of transcription factors (TFs) were greatest under severe stress > mild stress > recovery conditions. TF-related genes were highly responsive to water deprivation and re-watering. Other examples of highly up-regulated DEGs include those for mitochondrial transcription termination Factor (mTERF), anion-transporting ATPase family and LEA proteins (mild stress); putative homology to Abscisic acid-Insensitive 2 (ABI2), mannosyltransferase, acid phosphatase/oxidoreductase/transition metal ion binding (severe stress); protein kinase, zinc ion binding, and chloroplast chaperonin 10 proteins (re-watered samples). | [89] |
XGL-1—tolerant | Leaves, Roots | Withholding water from seedlings for 7 days, and sampling plant tissue from: mild drought (RWC ~ 60%), severe drought (RWC ~ 30%), re-watered (severe drought treatment plus re-watering for 2 days). | RNA-seq, qRT-PCR | 510, 559 and 3,687 DEGs in leaf samples, and 3,368, 5,093, and 4,635 in root samples of mild drought, severe drought and re-watered plants. More DEGs in roots than leaves Most enriched GO terms of DEGs in both tissues included a response to stimulus, temperature stimulus, light intensity, ABA stimulus, and response to water deprivation. 20 and 130 DEGs common to all three treatments were involved in hormone stimulus pathway in leaves and roots, respectively. ABA biosynthetic genes were up-regulated in roots in response to drought but down-regulated in re-watered samples, while auxin signaling-related genes showed a reciprocal expression pattern. 4 and 44 TF genes responded to all three treatments in leaves and roots, respectively. Expansins were up-regulated during recovery from stress, but down-regulated during water deprivation. | [90] |
BTx623 and SC56—resistant Tx7000 and PI-482662—sensitive | Whole seedlings | 20% PEG-8000 applied on 8-day old seedlings growing in nutrient medium for 1 and 6 h. | RNA-seq, qRT-PCR | The total number of DEGs was greater at 6 h than 1 h. 42 and 129 DEGs were common to all varieties at 1 h and 6 h of stress, most of which were up-regulated. Early responses to PEG treatment included genes for hormone signaling and TFs. Late responses to PEG treatment included genes involved in secondary metabolism, heat shock and ROS detoxification processes. Examples of highly up-regulated genes common to all varieties at both time points include those of WSI18, alpha-amylase and GST. Examples of genes up-regulated only in the drought-resistant varieties include LEAs, TFs, signaling, and lipid metabolism-related genes. | [91] |
SC56—tolerant Tx7000—susceptible | Leaves | Withholding water at anthesis for 13 days. | RNA-seq | Higher constitutive expression of genes in the tolerant variety than the susceptible variety, with enriched GO terms including translation, amino acid metabolism, carbohydrate metabolism, and cell homeostasis-related processes. 363 and 263 DEGs genes in the tolerant and susceptible variety, respectively. The tolerant variety responded to drought by up-regulating genes involved in translation, gene expression, metabolism, redox homeostasis, and drought regulatory genes, among others. | [92] |
RTx430 BTx642 | Leaves Roots | Plants grew over 17 weeks from seedlings to maturity and were sampled at weekly intervals. Watering withheld during pre-flowering and post-flowering growth stages. Other plants were re-watered after pre-flowering drought stress. | RNA-seq | A large-scale study with 198 leaf and 198 root transcriptomes. 10 272 DEGs observed accounting for 44% of all expressed genes. 10% of all expressed genes were modulated within the first week of drought stress treatments. Roots exhibited a greater number of DEG than leaves. Genotype specific differences were observed for both constitutive and drought-induced response. Tissue and developmental stage-specific differences in transcripts were observed. GST and proline biosynthetic genes were among the DEG with genotypic differences in expression. | [19] |
M35-1—tolerant C43—susceptible | Leaves | Grown for 30 days after sowing. Water withheld until leaf relative water content of 60–65%. | TruSeq small RNA library prep and Illumina sequencing | 96 miRNAs regulated specifically by drought stress: 32 up-, 49 down-, 15 genotype-contrasting regulation. The work demonstrated a genotype-dependent drought stress response, with the sensitive genotype having 17 drought differentially expressed miRNAs, with 18 in the tolerant line. tasi-RNA targetsmiR390-directed TAS3 homologs and auxin response factors. | [93] |
HSD 2945 HSD 3220 HSD 3221 HSD 3222 HSD 3223 HSD 3226 HSD 5299 HSD 5373 Arfa Gadamak—tolerant N98 Atlas | Leaves | Control plants watered every 10 days. Drought-stressed plants watered on 21-day interval. | qRT-PCR targeting 8 microRNA | Expression profiling of 8 microRNAs known to be down-regulated during abiotic stress (drought and control) across 11 sorghum genotypes. | [94] |
S. bicolor Variety with Known Drought Phenotype 1 | Plant Tissues | Drought Experiment | Techniques Used | Summary of Key Findings 2 | References |
---|---|---|---|---|---|
11434—tolerant 11431—susceptible | Leaves | Withholding water from seedlings until soil water potential of 1 MPa, Re-watering for 24 h. | 2D-DIGE, MALDI-TOF-MS | Transcription, protein synthesis, protein destination and storage—related proteins were generally more up-regulated in the drought-tolerant varieties than the sensitive type in response to drought and/or re-watering. Proteases were up-regulated in the drought-sensitive variety in response to water deprivation. | [115] |
SA1441—tolerant ICSB338—susceptible | Roots | Withholding water from seedlings for 8 days. | iTRAQ, qRT-PCR | Common and unique drought-responsive proteins were identified in the two varieties. The tolerant SA1441 up-regulated transcription, protein synthesis, protease inhibitors, signaling transduction, and transporter-related proteins in response to water deprivation. The sensitive ICSB338 down-regulated metabolism and protein synthesis but increased the proteolysis. | [71] |
BTx623 | Roots | 20% PEG-6000 applied on 16-day-old seedlings growing on nutrient medium over 24 h. | 2D-PAGE, CBB-G250 staining, MALDI-TOF-TOF MS | 65 drought-responsive root proteins (up- and down-regulation) with a 2-fold change in abundance detected on gels. 52 of the 65 proteins were positively identified. The 3-topmost represented functional groups were energy and carbohydrate metabolism, antioxidant/defense and protein synthesis/processing/degradation. Up-regulated proteins were mainly involved in carbohydrate/energy/lipid metabolism, antioxidant functions, stress response (LEA like-proteins), protein synthesis and transport, regulation of transcription, and signaling functions. | [116] |
EI9-tolerant Tabat-sensitive | Leaves | Withholding water from 14-day old seedlings for 7 days. | Nanoflow UPLC, MS | 36 proteins were detected. Of these, 23 were drought-induced in either one or both sorghum varieties. Identified proteins were involved in a range of functions, including response to stress, metabolic processes, photosynthesis, cell wall biosynthesis/degradation, and fatty acid biosynthesis. | [117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngara, R.; Goche, T.; Swanevelder, D.Z.H.; Chivasa, S. Sorghum’s Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review. Life 2021, 11, 704. https://doi.org/10.3390/life11070704
Ngara R, Goche T, Swanevelder DZH, Chivasa S. Sorghum’s Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review. Life. 2021; 11(7):704. https://doi.org/10.3390/life11070704
Chicago/Turabian StyleNgara, Rudo, Tatenda Goche, Dirk Z. H. Swanevelder, and Stephen Chivasa. 2021. "Sorghum’s Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review" Life 11, no. 7: 704. https://doi.org/10.3390/life11070704
APA StyleNgara, R., Goche, T., Swanevelder, D. Z. H., & Chivasa, S. (2021). Sorghum’s Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review. Life, 11(7), 704. https://doi.org/10.3390/life11070704