The Association between 5-Hydroxytryptamine Receptor 1B rs13212041 Polymorphism and Trait Anxiety in Chinese Han College Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Blood Collection and DNA Isolation
2.3. SNP Selection
2.4. Genotyping
2.5. Data Analysis
3. Results
3.1. Clinical Characteristics of Samples
3.2. Basic Characteristic of SNP
3.3. Allele and Genotype Frequencies Analysis of SNPs
3.4. Association Analysis
3.5. FPRP and Power Analysis
3.6. MDR Analysis
3.7. LD and Haplotypes Analysis
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Indovina, I.; Robbins, T.W.; Nunez-Elizalde, A.O.; Dunn, B.D.; Bishop, S.J. Fear-conditioning mechanisms associated with trait vulnerability to anxiety in humans. Neuron 2011, 69, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Sandi, C.; Richter-Levin, G. From high anxiety trait to depression: A neurocognitive hypothesis. Trends Neurosci. 2009, 32, 312–320. [Google Scholar] [CrossRef]
- Bradley, B.P.; Mogg, K.; White, J.; Groom, C.; de Bono, J. Attentional bias for emotional faces in generalized anxiety disorder. Br. J. Clin. Psychol. 1999, 38, 267–278. [Google Scholar] [CrossRef]
- Maner, J.K.; Schmidt, N.B. The role of risk avoidance in anxiety. Behav. Ther. 2006, 37, 181–189. [Google Scholar] [CrossRef]
- Mogg, K.; Bradley, B.P. Selective orienting of attention to masked threat faces in social anxiety. Behav. Res. Ther. 2002, 40, 1403–1414. [Google Scholar] [CrossRef]
- Dugas, M.J.; Freeston, M.H.; Ladouceur, R.; Rheaume, J.; Provencher, M.; Boisvert, J.M. Worry themes in primary GAD, secondary GAD, and other anxiety disorders. J. Anxiety Disord. 1998, 12, 253–261. [Google Scholar] [CrossRef]
- Zmudzka, E.; Salaciak, K.; Sapa, J.; Pytka, K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sci. 2018, 210, 106–124. [Google Scholar] [CrossRef]
- Sari, Y. Serotonin1B receptors: From protein to physiological function and behavior. Neurosci. Biobehav. Rev. 2004, 28, 565–582. [Google Scholar] [CrossRef]
- Nautiyal, K.M.; Tritschler, L.; Ahmari, S.E.; David, D.J.; Gardier, A.M.; Hen, R. A Lack of Serotonin 1B Autoreceptors Results in Decreased Anxiety and Depression-Related Behaviors. Neuropsychopharmacology 2016, 41, 2941–2950. [Google Scholar] [CrossRef] [Green Version]
- Groenink, L.; van Bogaert, M.J.; van der Gugten, J.; Oosting, R.S.; Olivier, B. 5-HT1A receptor and 5-HT1B receptor knockout mice in stress and anxiety paradigms. Behav. Pharmacol. 2003, 14, 369–383. [Google Scholar] [CrossRef]
- Nautiyal, K.M.; Tanaka, K.F.; Barr, M.M.; Tritschler, L.; Le Dantec, Y.; David, D.J.; Gardier, A.M.; Blanco, C.; Hen, R.; Ahmari, S.E. Distinct Circuits Underlie the Effects of 5-HT1B Receptors on Aggression and Impulsivity. Neuron 2015, 86, 813–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.; Parsons, L.H. Anxiogenic-like effect of serotonin(1B) receptor stimulation in the rat elevated plus-maze. Pharmacol. Biochem. Behav. 2002, 71, 581–587. [Google Scholar] [CrossRef]
- Tatarczynska, E.; Klodzinska, A.; Stachowicz, K.; Chojnacka-Wojcik, E. Effects of a selective 5-HT1B receptor agonist and antagonists in animal models of anxiety and depression. Behav. Pharmacol. 2004, 15, 523–534. [Google Scholar] [CrossRef]
- Chojnacka-Wojcik, E.; Klodzinska, A.; Tatarczynska, E. The anxiolytic-like effect of 5-HT1B receptor ligands in rats: A possible mechanism of action. J. Pharm. Pharmacol. 2005, 57, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Lappalainen, J.; Long, J.C.; Eggert, M.; Ozaki, N.; Robin, R.W.; Brown, G.L.; Naukkarinen, H.; Virkkunen, M.; Linnoila, M.; Goldman, D. Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch. Gen. Psychiatry 1998, 55, 989–994. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.-F.; Chang, Y.-T.; Fann, C.S.-J.; Chang, C.-J.; Chen, Y.-H.; Hsu, Y.-P.; Yu, W.-Y.; Cheng, A.T.-A. Association study of novel human serotonin 5-HT(1B) polymorphisms with alcohol dependence in Taiwanese Han. Biol. Psychiatry 2002, 51, 896–901. [Google Scholar] [CrossRef]
- Strac, D.S.; Erjavec, G.N.; Perkovic, M.N.; Nenadic-Sviglin, K.; Konjevod, M.; Grubor, M.; Pivac, N. The association between HTR1B gene rs13212041 polymorphism and onset of alcohol abuse. Neuropsychiatr. Dis. Treat. 2019, 15, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Popova, N.K. From genes to aggressive behavior: The role of serotonergic system. Bioessays 2006, 28, 495–503. [Google Scholar] [CrossRef]
- Olivier, B.; van Oorschot, R. 5-HT1B receptors and aggression: A review. Eur. J. Pharmacol. 2005, 526, 207–217. [Google Scholar] [CrossRef]
- Conner, T.S.; Jensen, K.P.; Tennen, H.; Furneaux, H.M.; Kranzler, H.R.; Covault, J. Functional polymorphisms in the serotonin 1B receptor gene (HTR1B) predict self-reported anger and hostility among young men. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Muller, D.; Grevet, E.H.; Panzenhagen, A.C.; Cupertino, R.B.; da Silva, B.S.; Kappel, D.B.; Mota, N.R.; Blaya-Rocha, P.; Teche, S.P.; Vitola, E.S.; et al. Evidence of sexual dimorphism of HTR1B gene on major adult ADHD comorbidities. J. Psychiatr. Res. 2017, 95, 269–275. [Google Scholar] [CrossRef]
- Herman, A.I.; Balogh, K.N. Polymorphisms of the serotonin transporter and receptor genes: Susceptibility to substance abuse. Subst. Abus. Rehabil. 2012, 3, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Grubor, M.; Zivkovic, M.; Sagud, M.; Nikolac Perkovic, M.; Mihaljevic-Peles, A.; Pivac, N.; Muck-Seler, D.; Svob Strac, D. HTR1A, HTR1B, HTR2A, HTR2C and HTR6 Gene Polymorphisms and Extrapyramidal Side Effects in Haloperidol-Treated Patients with Schizophrenia. Int. J. Mol. Sci. 2020, 21, 2345. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Ding, M.; Xuan, J.F.; Xing, J.X.; Pang, H.; Wang, B.J.; Yao, J. Polymorphisms in the human serotonin receptor 1B (HTR1B) gene are associated with schizophrenia: A case control study. BMC Psychiatry 2018, 18, 303. [Google Scholar] [CrossRef] [Green Version]
- Meier, S.M.; Trontti, K.; Purves, K.L.; Als, T.D.; Grove, J.; Laine, M.; Pedersen, M.G.; Bybjerg-Grauholm, J.; Bækved-Hansen, M.; Sokolowska, E.; et al. Genetic Variants Associated with Anxiety and Stress-Related Disorders: A Genome-Wide Association Study and Mouse-Model Study. JAMA Psychiatry 2019, 76, 924–932. [Google Scholar] [CrossRef]
- Purves, K.L.; Coleman, J.R.I.; Meier, S.M.; Rayner, C.; Davis, K.A.S.; Cheesman, R.; Bækvad-Hansen, M.; Børglum, A.D.; Cho, S.W.; Deckert, J.J.; et al. A major role for common genetic variation in anxiety disorders. Mol. Psychiatry 2020, 25, 3292–3303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagel, M.; Jansen, P.R.; Stringer, S.; Watanabe, K.; de Leeuw, C.A.; Bryois, J.; Savage, J.E.; Hammerschlag, A.R.; Skene, N.G.; Muñoz-Manchado, A.B.; et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat. Genet. 2018, 50, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, Z.; Shi, Y.; Pu, M.; Yuan, Y.; Zhang, X.; Li, L.; Reynolds, G.P. Influence and interaction of genetic polymorphisms in the serotonin system and life stress on antidepressant drug response. J. Psychopharmacol. 2012, 26, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Gasso, P.; Rodriguez, N.; Blazquez, A.; Monteagudo, A.; Boloc, D.; Plana, M.T.; Lafuente, A.; Lázaro, L.; Arnaiz, J.A.; Mas, S. Epigenetic and genetic variants in the HTR1B gene and clinical improvement in children and adolescents treated with fluoxetine. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 75, 28–34. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, K.; Xu, Y.; Sun, N.; Shen, Y.; Xu, Q. An association study of the serotonin transporter and receptor genes with the suicidal ideation of major depression in a Chinese Han population. Psychiatry Res. 2009, 170, 204–207. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Oquendo, M.A.; Friedman, J.M.; Greenhill, L.L.; Brodsky, B.; Malone, K.M.; Khait, V.; Mann, J.J. Substance abuse disorder and major depression are associated with the human 5-HT1B receptor gene (HTR1B) G861C polymorphism. Neuropsychopharmacology 2003, 28, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Smoller, J.W.; Biederman, J.; Arbeitman, L.; Doyle, A.E.; Fagerness, J.; Perlis, R.H.; Sklar, P.; Faraone, S.V. Association between the 5HT1B receptor gene (HTR1B) and the inattentive subtype of ADHD. Biol. Psychiatry 2006, 59, 460–467. [Google Scholar] [CrossRef]
- Davidge, K.M.; Atkinson, L.; Douglas, L.; Lee, V.; Shapiro, S.; Kennedy, J.L.; Beitchman, J.H. Association of the serotonin transporter and 5HT1Dbeta receptor genes with extreme, persistent and pervasive aggressive behaviour in children. Psychiatr. Genet. 2004, 14, 143–146. [Google Scholar] [CrossRef]
- Koster, E.H.; Verschuere, B.; Crombez, G.; Van Damme, S. Time-course of attention for threatening pictures in high and low trait anxiety. Behav. Res. Ther. 2005, 43, 1087–1098. [Google Scholar] [CrossRef]
- Qi, S.; Luo, Y.; Tang, X.; Li, Y.; Zeng, Q.; Duan, H.; Li, H.; Hu, W. The temporal dynamics of directed reappraisal in high-trait-anxious individuals. Emotion 2016, 16, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistics notes. The odds ratio. BMJ 2000, 320, 1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sole, X.; Guino, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [Green Version]
- Sharp, T.; Barnes, N.M. Central 5-HT receptors and their function; present and future. Neuropharmacology 2020, 177, 108155. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Oksenberg, D.; Ashkenazi, A.; Peroutka, S.J.; Duncan, A.M.; Rozmahel, R.; Yang, Y.; Mengod, G.; Palacios, J.M.; O’Dowd, B.F. Characterization of the human 5-hydroxytryptamine1B receptor. J. Biol. Chem. 1992, 267, 5735–5738. [Google Scholar] [CrossRef]
- Cao, J.; LaRocque, E.; Li, D. Associations of the 5-hydroxytryptamine (serotonin) receptor 1B gene (HTR1B) with alcohol, cocaine, and heroin abuse. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 162, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Perroud, N.; Bondolfi, G.; Uher, R.; Gex-Fabry, M.; Aubry, J.M.; Bertschy, G.; Malafosse, A.; Kosel, M. Clinical and genetic correlates of suicidal ideation during antidepressant treatment in a depressed outpatient sample. Pharmacogenomics 2011, 12, 365–377. [Google Scholar] [CrossRef]
- Wacholder, S.; Chanock, S.; Garcia-Closas, M.; El Ghormli, L.; Rothman, N. Assessing the probability that a positive report isfalse: An approach for molecular epidemiology studies. J. Natl. Cancer Inst. 2004, 96, 434–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, J.; Sanders, A.R.; Molen, J.E.; Martinolich, L.; Mowry, B.J.; Levinson, D.F.; Crowe, R.R.; Silverman, J.M.; Gejman, P.V. Polymorphisms in the 5′-untranslated region of the human serotonin receptor 1B (HTR1B) gene affect gene expression. Mol. Psychiatry 2003, 8, 901–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, K.P.; Covault, J.; Conner, T.S.; Tennen, H.; Kranzler, H.R.; Furneaux, H.M. A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Mol. Psychiatry 2009, 14, 381–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selbach, M.; Schwanhausser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Djuranovic, S.; Nahvi, A.; Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 2012, 336, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.D.; Hahn, L.W.; Roodi, N.; Bailey, L.R.; Dupont, W.D.; Parl, F.F.; Moore, J.H. Multifactor-dimensionality reduction re veals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Gene 2001, 69, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Servin, B.; Stephens, M. Imputation-based analysis of association studies: Candidate regions and quantitative traits. PLoS Genet. 2007, 3, e114. [Google Scholar] [CrossRef]
LTA | HTA | t | p-Value | |
---|---|---|---|---|
Valid participants | 463 | 388 | ||
Gender | 1.208 | 0.227 | ||
Male | 86 | 85 | ||
Female | 377 | 303 | ||
Age (SD) | 19.11 ± 2.50 | 19.04 ± 2.45 | 0.414 | 0.230 |
STAI | 31.39 ± 4.11 | 54.27 ± 5.28 | −71.076 | <0.001 |
SNP_ID | 2nd-PCRP | 1st-PCRP | UEP_SEQ |
---|---|---|---|
rs130058 | ACGTTGGATGTCCTCAATTATTCCTCCGCC | ACGTTGGATGTTAGCTAGGCGCTCTGGAAG | GCTGAAACTAGAGGTCA |
rs11568817 | ACGTTGGATGGTTGTTCCTCTCCACACCG | ACGTTGGATGTTCACCCTCCTGCACTAGAC | cttcaTCTCCACACCGGGTCTTAG |
rs13212041 | ACGTTGGATGCGATTGTCAAGCCACAACTC | ACGTTGGATGGTAAAGTGACAGGTACATGA | caccCCATTATGTGTGCTAGTGCC |
rs6297 | ACGTTGGATGGCATTCCATAAACTGATACG | ACGTTGGATGAACTTGGTCCCCAAAGGTCG | agtcAGTGCACAAGTTGACTTGCC |
rs # | Chr.pos | Region | Minor Allele | p-Value for HWE Test | Call Rate | Haploreg | SNPinfo Web Server | |
---|---|---|---|---|---|---|---|---|
HTA | LTA | |||||||
rs13212041 | 6:77461407 | 3′-UTR | C | 0.356 | 0.666 | 100% | Promoter histone marks, DNAse, Proteins bound (FOS) | hsa-miR-622, hsa-miR-96 |
rs6297 | 6:77462224 | 3′-UTR | C | 1.000 | 0.713 | 100% | Promoter histone marks, Enhancer histone marks, DNAse, Motifs changed (Zbtb3) | Splicing (ESE or ESS) |
rs130058 | 6:77463564 | 5′-UTR | A | 0.781 | 0.757 | 100% | Promoter histone marks, Enhancer histone marks, DNAse, Motifs changed | TFBS |
rs11568817 | 6:77463665 | 5′-UTR | C | 0.501 | 0.633 | 100% | Promoter histone marks, Enhancer histone marks, DNAse | TFBS |
SNP | Control n (%) | Case n (%) | ORs (95% CI) | p-Value |
---|---|---|---|---|
rs13212041 | ||||
Genotype | - | |||
TT | 255 (55.1) | 246 (63.4) | 1 | - |
TC | 180 (38.9) | 122 (31.4) | 0.70 (0.53–0.94) | 0.019 * |
CC | 28 (6.1) | 20 (5.2) | 0.74 (0.41–1.35) | 0.366 |
Allele | ||||
T | 690 (74.5) | 614 (79.1) | 1 | - |
C | 236 (25.5) | 162 (20.9) | 0.77 (0.61–0.97) | 0.025 * |
rs6297 | ||||
Genotype | - | |||
TT | 357 (77.1) | 306 (78.9) | 1 | - |
TC | 98 (21.2) | 77 (19.9) | 0.92 (0.66–1.28) | 0.670 |
CC | 8 (1.7) | 5 (1.3) | 0.73 (0.24–2.25) | 0.780 |
Allele | ||||
T | 812 (87.7) | 689 (88.8) | 1 | - |
C | 114 (12.3) | 87 (11.218) | 0.90 (0.67–1.21) | 0.484 |
rs130058 | ||||
Genotype | - | |||
TT | 389 (84.0) | 315 (81.0) | 1 | |
TA | 72 (15.6) | 69 (17.8) | 0.48 (0.09–2.70) | 0.395 |
AA | 2 (0.4) | 4 (1.0) | 0.41 (0.07–2.23) | 0.282 |
Allele | ||||
T | 850 (91.8) | 699 (90.1) | 1 | - |
A | 76 (8.2) | 77 (9.9) | 1.23 (0.88–1.72) | 0.218 |
rs11568817 | ||||
Genotype | - | |||
AA | 367 (79.3) | 295 (76.0) | 1 | - |
AC | 92 (19.9) | 85 (21.9) | 0.46 (0.13–1.59) | 0.245 |
CC | 4 (0.9) | 8 (2.1) | 0.40 (0.12–1.35) | 0.127 |
Allele | ||||
A | 826 (89.2) | 675 (87.0) | 1 | - |
C | 100 (10.8) | 101 (13.0) | 1.24 (0.92–1.66) | 0.158 |
rs # | Group | Adjust Analysis | ||
---|---|---|---|---|
Control (%) | Case (%) | ORs (95%CI) | p-Value | |
rs13212041 | ||||
Dominant model | ||||
TT | 255 (55.1) | 246 (63.4) | 1.00 | - |
T/C + C/C | 208 (44.9) | 142 (36.6) | 0.71 (0.54–0.93) | 0.014 * |
Recessive model | ||||
T/T + T/C | 435 (94.0) | 368 (94.8) | 1.00 | - |
C/C | 28 (6.0) | 20 (5.2) | 0.84 (0.47–1.52) | 0.057 |
Overdominant model | ||||
T/T + C/C | 283 (61.1) | 266 (68.6) | 1.00 | |
T/C | 180 (38.9) | 122 (31.4) | 0.72 (0.54–0.96) | 0.024 * |
log-Additive model | ||||
0, 1, 2 | 463 (54.4) | 388 (45.6) | 0.77 (0.62–0.97) | 0.025 * |
rs6297 | ||||
Dominant model | ||||
TT | 357 (77.1) | 306 (78.9) | 1.00 | - |
T/C + C/C | 106 (22.9) | 82 (21.1) | 0.90 (0.65–1.25) | 0.537 |
Recessive model | ||||
T/T + T/C | 455 (98.3) | 383 (98.7) | 1.00 | |
C/C | 8 (1.7) | 5 (1.3) | 0.74 (0.24–2.29) | 0.600 |
Overdominant model | ||||
T/T + C/C | 365 (78.8) | 311 (80.2) | 1.00 | - |
T/C | 98 (21.2) | 77 (19.8) | 0.92 (0.66–1.29) | 0.635 |
log-Additive model | ||||
0, 1, 2 | 463 (54.4) | 388 (45.6) | 0.90 (0.67–1.21) | 0.486 |
rs130058 | ||||
Dominant model | ||||
T/T | 389 (84.0) | 315 (81.2) | 1.00 | - |
A/T + A/A | 74 (16.0) | 73 (18.8) | 1.22 (0.85–1.74) | 0.277 |
Recessive model | ||||
T/T + A/T | 461 (99.6) | 384 (99.0) | 1.00 | - |
A/A | 2 (0.4) | 4 (1.0) | 2.40 (0.44–13.17) | 0.297 |
Overdominant model | ||||
T/T + A/A | 391 (84.4) | 319 (82.2) | 1.00 | - |
A/T | 72 (15.6) | 69 (17.8) | 1.17 (0.82–1.69) | 0.384 |
log-Additive model | ||||
0, 1, 2 | 463 (54.4) | 388 (45.6) | 1.24 (0.88–1.73) | 0.216 |
rs11568817 | ||||
Dominant model | ||||
A/A | 367 (79.3) | 295 (76.0) | 1.00 | - |
A/C-C/C | 96 (20.7) | 93 (24.0) | 1.21 (0.87–1.67) | 0.259 |
Recessive model | ||||
A/A-A/C | 459 (99.1) | 380 (97.9) | 1.00 | - |
C/C | 4 (0.9) | 8 (2.1) | 2.42 (0.72–8.08) | 0.139 |
Overdominant model | ||||
A/A-C/C | 371 (80.1) | 303 (78.1) | 1.00 | - |
A/C | 92 (19.9) | 85 (21.9) | 1.13 (0.81–1.58) | 0.466 |
log-Additive model | ||||
0, 1, 2 | 463 (54.4) | 388 (45.6) | 1.24 (0.92–1.66) | 0.159 |
Models | OR (95% CI) | p | Statistical Power | Prior Probability | |||||
---|---|---|---|---|---|---|---|---|---|
0.25 | 0.1 | 0.01 | 0.001 | 0.0001 | |||||
rs13212041 | TC vs. TT | 0.70 (0.53–0.94) | 0.019 | 0.641 | 0.072 * | 0.189 * | 0.720 | 0.963 | 0.996 |
C vs. T | 0.77 (0.62–0.97) | 0.025 | 0.894 | 0.079 * | 0.206 | 0.740 | 0.966 | 0.997 | |
T/C + C/C vs. TT | 0.71 (0.54–0.93) | 0.014 | 0.676 | 0.054 * | 0.146 * | 0.654 | 0.950 | 0.995 | |
T/C vs. T/T + C/C | 0.72 (0.54–0.96) | 0.024 | 0.700 | 0.098 * | 0.245 | 0.781 | 0.973 | 0.997 | |
Log-additive | 0.77 (0.62–0.97) | 0.025 | 0.889 | 0.082 * | 0.212 | 0.747 | 0.968 | 0.997 |
Model | Bal. Acc. CV Training | Bal. Acc. CV Testing | CV Consistency | p |
---|---|---|---|---|
rs13212041 | 0.5492 | 0.5455 | 10/10 | 0.0050 |
rs13212041, rs6297 | 0.5582 | 0.5530 | 10/10 | 0.0008 |
rs130058, rs13212041, rs6297 | 0.5623 | 0.5480 | 8/10 | 0.0003 |
rs11568817, rs130058, rs13212041, rs6297 | 0.5658 | 0.5417 | 10/10 | 0.0002 |
rs13212041 | rs6297 | rs130058 | rs11568817 | Freq | OR (95% CI) | p-Value |
---|---|---|---|---|---|---|
T | T | T | A | 0.648 | 1.00 | --- |
C | C | T | A | 0.118 | 0.87 (0.64–1.18) | 0.370 |
C | T | T | A | 0.116 | 0.71 (0.52–0.97) | 0.032 * |
T | T | A | C | 0.090 | 1.15 (0.82–1.62) | 0.420 |
T | T | T | C | 0.028 | 1.14 (0.63–2.05) | 0.660 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, X.; Fang, S.; Zheng, Q.; Qi, S.; Tian, Y.; Ren, W. The Association between 5-Hydroxytryptamine Receptor 1B rs13212041 Polymorphism and Trait Anxiety in Chinese Han College Subjects. Life 2021, 11, 882. https://doi.org/10.3390/life11090882
Ruan X, Fang S, Zheng Q, Qi S, Tian Y, Ren W. The Association between 5-Hydroxytryptamine Receptor 1B rs13212041 Polymorphism and Trait Anxiety in Chinese Han College Subjects. Life. 2021; 11(9):882. https://doi.org/10.3390/life11090882
Chicago/Turabian StyleRuan, Xiaofei, Suwen Fang, Qi Zheng, Senqing Qi, Yingfang Tian, and Wei Ren. 2021. "The Association between 5-Hydroxytryptamine Receptor 1B rs13212041 Polymorphism and Trait Anxiety in Chinese Han College Subjects" Life 11, no. 9: 882. https://doi.org/10.3390/life11090882
APA StyleRuan, X., Fang, S., Zheng, Q., Qi, S., Tian, Y., & Ren, W. (2021). The Association between 5-Hydroxytryptamine Receptor 1B rs13212041 Polymorphism and Trait Anxiety in Chinese Han College Subjects. Life, 11(9), 882. https://doi.org/10.3390/life11090882