Effects of 24 h Compression Interventions with Different Garments on Recovery Markers during Running
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Experimental Design
2.2. Compression Stockings
2.3. Running Protocols
2.4. Kinematic Assessment
2.5. Analysis of Heart Rate, Comfort, and Perceived Recovery
2.6. Skin Temperature
2.7. Statistical Analysis
3. Results
3.1. Effect of Compression Garments on Kinematics Parameters
3.2. Effect of Compression Garments on Skin Temperature
3.3. Effect of Compression Garments on Heart Rate, Comfort, and Recovery
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Engel, F.A.; Holmberg, H.C.; Sperlich, B. Is There Evidence that Runners can Benefit from Wearing Compression Clothing? Sports Med. 2016, 46, 1939–1952. [Google Scholar] [CrossRef] [PubMed]
- Brophy-Williams, N.; Driller, M.W.; Kitic, C.M.; Fell, J.W.; Halson, S.L. Wearing compression socks during exercise aids subsequent performance. J. Sci. Med. Sport 2019, 22, 123–127. [Google Scholar] [CrossRef] [PubMed]
- de Britto, M.A.; Lemos, A.L.; Dos Santos, C.S.; Stefanyshyn, D.J.; Carpes, F.P. Effect of a Compressive Garment on Kinematics of Jump-Landing Tasks. J. Strength Cond. Res. 2017, 31, 2480–2488. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, A.M.; Jamison, S.T.; McNally, M.P.; Pan, X.; Schmitt, L.C. Hip adductor activations during run-to-cut manoeuvres in compression shorts: Implications for return to sport after groin injury. J. Sports Sci. 2014, 32, 1333–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacRae, B.A.; Cotter, J.D.; Laing, R.M. Compression garments and exercise: Garment considerations, physiology and performance. Sports Med. 2011, 41, 815–843. [Google Scholar] [CrossRef] [PubMed]
- Wannop, J.W.; Worobets, J.T.; Madden, R.; Stefanyshyn, D.J. Influence of Compression and Stiffness Apparel on Vertical Jump Performance. J. Strength Cond. Res. 2016, 30, 1093–1101. [Google Scholar] [CrossRef]
- Oficial-Casado, F.; Aparicio, I.; Julian-Rochina, I.; Blanes, M.; Perez-Soriano, P. Effects of a fatiguing run in popliteal vein flow using sports compression socks. J. Ind. Text. 2018, 49, 967–978. [Google Scholar] [CrossRef]
- Lucas-Cuevas, A.G.; Priego Quesada, J.I.; Gimenez, J.V.; Aparicio, I.; Cortell-Tormo, J.M.; Perez-Soriano, P. Can Graduated Compressive Stockings Reduce Muscle Activity During Running? Res. Q. Exerc. Sport 2017, 88, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Brophy-Williams, N.; Driller, M.W.; Kitic, C.M.; Fell, J.W.; Halson, S.L. Effect of Compression Socks Worn Between Repeated Maximal Running Bouts. Int. J. Sports Physiol. Perform. 2017, 12, 621–627. [Google Scholar] [CrossRef]
- Struhar, I.; Kumstat, M.; Kralova, D.M. Effect of Compression Garments on Physiological Responses After Uphill Running. J. Hum. Kinet. 2018, 61, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimenes, S.V.; Marocolo, M.; Pavin, L.N.; Spigolon, L.M.P.; Barbosa Neto, O.; da Silva, B.V.C.; Duffield, R.; da Mota, G.R. Compression Stockings Used During Two Soccer Matches Improve Perceived Muscle Soreness and High-Intensity Performance. J. Strength Cond. Res. 2021, 35, 2010–2017. [Google Scholar] [CrossRef] [PubMed]
- de Glanville, K.M.; Hamlin, M.J. Positive effect of lower body compression garments on subsequent 40-kM cycling time trial performance. J. Strength Cond. Res. 2012, 26, 480–486. [Google Scholar] [CrossRef]
- Argus, C.K.; Driller, M.W.; Ebert, T.R.; Martin, D.T.; Halson, S.L. The effects of 4 different recovery strategies on repeat sprint-cycling performance. Int. J. Sports Physiol. Perform. 2013, 8, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Wilson, M.G.; Periard, J.D. Passive heat acclimation improves skeletal muscle contractility in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R101–R107. [Google Scholar] [CrossRef]
- Bongers, C.C.; Thijssen, D.H.; Veltmeijer, M.T.; Hopman, M.T.; Eijsvogels, T.M. Precooling and percooling (cooling during exercise) both improve performance in the heat: A meta-analytical review. Br. J. Sports Med. 2015, 49, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Tan, P.M.; Lee, J.K. The role of fluid temperature and form on endurance performance in the heat. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 1), 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffries, O.; Waldron, M. The effects of menthol on exercise performance and thermal sensation: A meta-analysis. J. Sci. Med. Sport 2019, 22, 707–715. [Google Scholar] [CrossRef]
- Kotaka, T.; Kimura, S.; Kashiwayanagi, M.; Iwamoto, J. Camphor induces cold and warm sensations with increases in skin and muscle blood flow in human. Biol. Pharm. Bull. 2014, 37, 1913–1918. [Google Scholar] [CrossRef] [Green Version]
- Souza, R.B. An Evidence-Based Videotaped Running Biomechanics Analysis. Phys. Med. Rehabil. Clin. N. Am. 2016, 27, 217–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, C.M.; Green, J.M.; Bishop, P.A.; Sjokvist, J.; Schumacker, R.E.; Richardson, M.T.; Curtner-Smith, M. A practical approach to monitoring recovery: Development of a perceived recovery status scale. J. Strength Cond. Res. 2011, 25, 620–628. [Google Scholar] [CrossRef]
- Mundermann, A.; Nigg, B.M.; Stefanyshyn, D.J.; Humble, R.N. Development of a reliable method to assess footwear comfort during running. Gait Posture 2002, 16, 38–45. [Google Scholar] [CrossRef]
- Moreira, D.G.; Costello, J.T.; Brito, C.J.; Adamczyk, J.G.; Ammer, K.; Bach, A.J.E.; Costa, C.M.A.; Eglin, C.; Fernandes, A.A.; Fernández-Cuevas, I.; et al. Thermographic imaging in sports and exercise medicine: A Delphi study and consensus statement on the measurement of human skin temperature. J. Therm. Biol. 2017, 69, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Steketee, J. Spectral emissivity of skin and pericardium. Phys. Med. Biol. 1973, 18, 686–694. [Google Scholar] [CrossRef]
- Brophy-Williams, N.; Driller, M.W.; Shing, C.M.; Fell, J.W.; Halson, S.L. Confounding compression: The effects of posture, sizing and garment type on measured interface pressure in sports compression clothing. J. Sports Sci. 2015, 33, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, D.E. What we can learn about running from barefoot running: An evolutionary medical perspective. Exerc. Sport Sci. Rev. 2012, 40, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Hobara, H.; Sato, T.; Sakaguchi, M.; Sato, T.; Nakazawa, K. Step frequency and lower extremity loading during running. Int. J. Sports Med. 2012, 33, 310–313. [Google Scholar] [CrossRef] [Green Version]
- Sawka, M.N.; Cheuvront, S.N.; Kenefick, R.W. High skin temperature and hypohydration impair aerobic performance. Exp. Physiol. 2012, 97, 327–332. [Google Scholar] [CrossRef]
- Gillis, D.J.; House, J.R.; Tipton, M.J. The influence of menthol on thermoregulation and perception during exercise in warm, humid conditions. Eur. J. Appl. Physiol. 2010, 110, 609–618. [Google Scholar] [CrossRef]
- Leoz-Abaurrea, I.; Aguado-Jimenez, R. Upper Body Compression Garment: Physiological Effects While Cycling in a Hot Environment. Wilderness Environ. Med. 2017, 28, 94–100. [Google Scholar] [CrossRef]
- Barwood, M.J.; Corbett, J.; Feeney, J.; Hannaford, P.; Henderson, D.; Jones, I.; Kirke, J. Compression garments: No enhancement of high-intensity exercise in hot radiant conditions. Int. J. Sports Physiol. Perform. 2013, 8, 527–535. [Google Scholar] [CrossRef]
- Davis, J.K.; Bishop, P.A. Impact of clothing on exercise in the heat. Sports Med. 2013, 43, 695–706. [Google Scholar] [CrossRef]
- Stevens, C.J.; Best, R. Menthol: A Fresh Ergogenic Aid for Athletic Performance. Sports Med. 2017, 47, 1035–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priego Quesada, J.I.; Lucas-Cuevas, A.G.; Gil-Calvo, M.; Giménez, J.V.; Aparicio, I.; Cibrián Ortiz de Anda, R.M.; Salvador Palmer, R.; Llana-Belloch, S.; Pérez-Soriano, P. Effects of graduated compression stockings on skin temperature after running. J. Therm. Biol. 2015, 52, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Creasy, R.; Edge, J.A. The Effect of Graduated Compression Stockings on Running Performance. J. Strength Cond. Res. 2011, 25, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Maykut, J.N.; Taylor-Haas, J.A.; Paterno, M.V.; DiCesare, C.A.; Ford, K.R. Concurrent validity and reliability of 2d kinematic analysis of frontal plane motion during running. Int. J. Sports Phys. Ther. 2015, 10, 136–146. [Google Scholar] [PubMed]
ROI | Leg | Moment | Garments | Leg * Measurement | Leg * Garments | Measurement * Garments | Leg * Measurement * Garments |
---|---|---|---|---|---|---|---|
Mean skin temperature (°C) | |||||||
Anterior thigh | 0.37 | 0.02 | 0.03 | 0.73 | 0.32 | 0.45 | 0.88 |
Posterior thigh | 0.10 | 0.21 | 0.26 | 0.13 | 0.17 | 0.74 | 0.78 |
Anterior leg | 0.69 | <0.01 | 0.13 | 0.95 | 0.19 | 0.69 | 0.24 |
Posterior leg | 0.58 | 0.04 | 0.30 | 0.73 | 0.53 | 0.55 | 0.15 |
Maximum skin temperature (°C) | |||||||
Anterior thigh | 0.24 | <0.01 | 0.04 | 0.50 | 0.25 | 0.98 | 0.09 |
Posterior thigh | 0.89 | <0.01 | 0.43 | 0.32 | 0.20 | 0.41 | 0.53 |
Anterior leg | 0.49 | <0.001 | 0.27 | 0.60 | 0.08 | 0.85 | 0.19 |
Posterior leg | 0.82 | <0.01 | 0.51 | 0.67 | 0.34 | 0.71 | 0.44 |
Minimum skin temperature (°C) | |||||||
Anterior thigh | 0.71 | 0.04 | 0.04 | 0.10 | 0.63 | 0.56 | 0.09 |
Posterior thigh | 0.08 | 0.17 | 0.17 | 0.09 | 0.74 | 0.27 | 0.22 |
Anterior leg | 0.14 | 0.06 | 0.21 | 0.09 | 0.05 | 0.02 | 0.29 |
Posterior leg | 0.62 | <0.01 | 0.87 | 0.23 | 0.71 | 0.13 | 0.68 |
Δmean skin temperature (°C) | |||||||
Anterior thigh | 0.73 | - | 0.45 | - | 0.88 | - | - |
Posterior thigh | 0.13 | - | 0.74 | - | 0.78 | - | - |
Anterior leg | 0.95 | - | 0.69 | - | 0.24 | - | - |
Posterior leg | 0.73 | - | 0.55 | - | 0.15 | - | - |
ROI | Before Exercise | After Exercise | ||||||
---|---|---|---|---|---|---|---|---|
Control | Compression | Menthol | Camphor | Control | Compression | Menthol | Camphor | |
Mean Skin Temperature (°C) | ||||||||
Anterior thigh | 31.6 (1.5) | 30.8 (1.7) | 31.3 (1.0) | 32.0 (1.0) | 32.7 (1.5) | 32.0 (1.1) | 32.6 (1.1) | 32.6 (1.1) |
Posterior thigh | 32.1 (1.3) | 31.6 (1.4) | 31.8 (0.9) | 32.1 (0.8) | 32.5 (1.2) | 32.0 (1.0) | 32.4 (1.0) | 32.4 (1.1) |
Anterior leg | 32.2 (0.9) | 31.6 (1.1) | 31.7 (1.0) | 32.1 (0.9) | 32.9 (1.0) | 32.3 (0.8) | 32.7 (0.6) | 32.7 (0.6) |
Posterior leg | 31.9 (1.0) | 31.5 (1.3) | 31.6 (0.7) | 32.0 (0.6) | 32.6 (1.2) | 32.1 (1.1) | 32.6 (0.8) | 32.5 (0.9) |
Maximum skin temperature (°C) | ||||||||
Anterior thigh | 33.6 (1.2) | 33.0 (1.5) | 33.6 (1.0) | 33.6 (0.9) | 35.0 (1.1) | 34.3 (0.8) | 34.8 (0.8) | 34.8 (0.8) |
Posterior thigh | 33.7 (1.1) | 33.4 (1.1) | 33.3 (0.9) | 33.6 (0.6) | 34.5 (0.9) | 34.1 (0.7) | 34.6 (0.6) | 34.4 (1.0) |
Anterior leg | 33.6 (0.9) | 33.3 (1.1) | 33.4 (1.1) | 33.6 (0.9) | 34.9 (0.9) | 34.4 (0.7) | 34.7 (0.6) | 34.7 (0.6) |
Posterior leg | 33.2 (1.0) | 33.0 (1.2) | 33.1 (0.9) | 33.2 (0.7) | 34.3 (0.9) | 33.9 (0.9) | 34.3 (0.8) | 34.2 (0.8) |
Minimum skin temperature (°C) | ||||||||
Anterior thigh | 28.9 (2.2) | 28.0 (1.9) | 28.5 (1.2) | 29.4 (1.5) | 30.0 (2.0) | 29.0 (1.8) | 29.9 (1.3) | 29.4 (1.5) |
Posterior thigh | 29.4 (2.1) | 28.6 (1.8) | 29.2 (1.3) | 29.4 (1.7) | 29.7 (2.2) | 28.9 (1.3) | 30.0 (1.2) | 29.4 (1.5) |
Anterior leg | 29.1 (2.1) | 28.4 (1.6) | 28.2 (1.8) | 29.4 (1.7) | 29.8 (2.5) | 28.8 (1.3) | 30.1 (1.1) | 29.7 (1.5) |
Posterior leg | 29.1 (2.3) | 28.9 (1.5) | 28.3 (1.6) | 29.2 (1.9) | 30.0 (2.4) | 29.8 (1.5) | 30.2 (1.8) | 30.0 (1.7) |
Δ mean skin temperature (°C) | ||||||||
Control | Compression | Menthol | Camphor | |||||
Anterior thigh | 1.1 (1.7) | 1.1 (1.5) | 1.3 (1.2) | 0.6 (1.2) | ||||
Posterior thigh | 0.4 (1.1) | 0.3 (1.2) | 0.6 (1.1) | 0.2 (1.3) | ||||
Anterior leg | 0.7 (1.0) | 0.6 (0.8) | 1.0 (0.8) | 0.6 (1.1) | ||||
Posterior leg | 0.7 (1.1) | 0.5 (1.2) | 0.9 (0.9) | 0.4 (1.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, J.; Kunzler, M.R.; Priego-Quesada, J.I.; Aparicio, I.; Pérez-Soriano, P.; Machado, Á.S.; Carpes, F.P. Effects of 24 h Compression Interventions with Different Garments on Recovery Markers during Running. Life 2021, 11, 905. https://doi.org/10.3390/life11090905
Carvalho J, Kunzler MR, Priego-Quesada JI, Aparicio I, Pérez-Soriano P, Machado ÁS, Carpes FP. Effects of 24 h Compression Interventions with Different Garments on Recovery Markers during Running. Life. 2021; 11(9):905. https://doi.org/10.3390/life11090905
Chicago/Turabian StyleCarvalho, Jean, Marcos Roberto Kunzler, Jose Ignacio Priego-Quesada, Inmaculada Aparicio, Pedro Pérez-Soriano, Álvaro Sosa Machado, and Felipe Pivetta Carpes. 2021. "Effects of 24 h Compression Interventions with Different Garments on Recovery Markers during Running" Life 11, no. 9: 905. https://doi.org/10.3390/life11090905
APA StyleCarvalho, J., Kunzler, M. R., Priego-Quesada, J. I., Aparicio, I., Pérez-Soriano, P., Machado, Á. S., & Carpes, F. P. (2021). Effects of 24 h Compression Interventions with Different Garments on Recovery Markers during Running. Life, 11(9), 905. https://doi.org/10.3390/life11090905