MND Phenotypes Differentiation: The Role of Multimodal Characterization at the Time of Diagnosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Statistical Analyses
3. Results
3.1. Demographic, Onset, Clinical, Neurophysiological, Extra-Motor, and Genetic Data Comparisons
3.2. ROC Analysis
3.3. Regression Analysis with Longitudinal Data
4. Discussion
4.1. Findings in pLMN Patients
4.2. Findings in pUMN Patients
4.3. Common Observations in pLMN and pUMN Phenotypes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, L.J.; Price, A.C.; Kaiser, A.; Shaikh, A.Y.; Liu, Z. Mechanisms for Neuronal Degeneration in Amyotrophic Lateral Sclerosis and in Models of Motor Neuron Death (Review). Int. J. Mol. Med. 2000, 5, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Swinnen, B.; Robberecht, W. The Phenotypic Variability of Amyotrophic Lateral Sclerosis. Nat. Rev. Neurol. 2014, 10, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Chiò, A.; Calvo, A.; Moglia, C.; Mazzini, L.; Mora, G.; Mutani, R.; Balma, M.; Cammarosano, S.; Canosa, A.; Gallo, S.; et al. Phenotypic Heterogeneity of Amyotrophic Lateral Sclerosis: A Population Based Study. J. Neurol. Neurosurg. Psychiatry 2011, 82, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Bäumer, D.; Talbot, K.; Turner, M.R. Advances in Motor Neurone Disease. J. R. Soc. Med. 2014, 107, 14–21. [Google Scholar] [CrossRef]
- Turner, M.R.; Barohn, R.J.; Corcia, P.; Fink, J.K.; Harms, M.B.; Kiernan, M.C.; Ravits, J.; Silani, V.; Simmons, Z.; Statland, J.; et al. Primary Lateral Sclerosis: Consensus Diagnostic Criteria. J. Neurol. Neurosurg. Psychiatry 2020, 91, 373–377. [Google Scholar] [CrossRef]
- Van den Berg-Vos, R.M.; Visser, J.; Franssen, H.; De Visser, M.; De Jong, J.M.B.V.; Kalmijn, S.; Wokke, J.H.J.; Van den Berg, L.H. Sporadic Lower Motor Neuron Disease with Adult Onset: Classification of Subtypes. Brain 2003, 126, 1036–1047. [Google Scholar] [CrossRef]
- Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A Revised ALS Functional Rating Scale That Incorporates Assessments of Respiratory Function. BDNF ALS Study Group (Phase III). J. Neurol. Sci. 1999, 169, 13–21. [Google Scholar] [CrossRef]
- Bove, G.M. Medical Research Council. Aids to Examination of the Peripheral Nervous System. Memorandum No. 45. London: Her Majesty’s Stationary Office 1976. J. Bodyw. Mov. 2008, 45, 185–190. [Google Scholar] [CrossRef]
- Turner, M.R.; Cagnin, A.; Turkheimer, F.E.; Miller, C.C.J.; Shaw, C.E.; Brooks, D.J.; Leigh, P.N.; Banati, R.B. Evidence of Widespread Cerebral Microglial Activation in Amyotrophic Lateral Sclerosis: An [11C](R)-PK11195 Positron Emission Tomography Study. Neurobiol. Dis. 2004, 15, 601–609. [Google Scholar] [CrossRef]
- Poletti, B.; Solca, F.; Carelli, L.; Madotto, F.; Lafronza, A.; Faini, A.; Monti, A.; Zago, S.; Calini, D.; Tiloca, C.; et al. The Validation of the Italian Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Amyotroph. Lateral Scler. Front. Degener. 2016, 17, 489–498. [Google Scholar] [CrossRef]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef]
- Kornitzer, J.; Abdulrazeq, H.F.; Zaidi, M.; Bach, J.R.; Kazi, A.; Feinstein, E.; Sander, H.W.; Souayah, N. Differentiating Flail Limb Syndrome from Amyotrophic Lateral Sclerosis. Am. J. Phys. Med. Rehabil. 2020, 99, 895–901. [Google Scholar] [CrossRef]
- Yoon, B.-N.; Choi, S.H.; Rha, J.-H.; Kang, S.-Y.; Lee, K.-W.; Sung, J.-J. Comparison between Flail Arm Syndrome and Upper Limb Onset Amyotrophic Lateral Sclerosis: Clinical Features and Electromyographic Findings. Exp. Neurobiol. 2014, 23, 253–257. [Google Scholar] [CrossRef]
- Riku, Y.; Atsuta, N.; Yoshida, M.; Tatsumi, S.; Iwasaki, Y.; Mimuro, M.; Watanabe, H.; Ito, M.; Senda, J.; Nakamura, R.; et al. Differential Motor Neuron Involvement in Progressive Muscular Atrophy: A Comparative Study with Amyotrophic Lateral Sclerosis. BMJ Open 2014, 4, e005213. [Google Scholar] [CrossRef]
- Min, Y.G.; Choi, S.J.; Hong, Y.H.; Kim, S.M.; Shin, J.Y.; Sung, J.J. Dissociated Leg Muscle Atrophy in Amyotrophic Lateral Sclerosis/Motor Neuron Disease: The ‘Split-Leg’ Sign. Sci. Rep. 2020, 10, 15661. [Google Scholar] [CrossRef]
- Tartaglia, M.C.; Rowe, A.; Findlater, K.; Orange, J.B.; Grace, G.; Strong, M.J. Differentiation between Primary Lateral Sclerosis and Amyotrophic Lateral Sclerosis: Examination of Symptoms and Signs at Disease Onset and during Follow-Up. Arch. Neurol. 2007, 64, 232–236. [Google Scholar] [CrossRef]
- Gordon, P.H.; Cheng, B.; Katz, I.B.; Mitsumoto, H.; Rowland, L.P. Clinical Features That Distinguish PLS, Upper Motor Neuron-Dominant ALS, and Typical ALS. Neurology 2009, 72, 1948–1952. [Google Scholar] [CrossRef]
- Statland, J.M.; Barohn, R.J.; Dimachkie, M.M.; Floeter, M.K.; Mitsumoto, H. Primary Lateral Sclerosis. Neurol. Clin. 2015, 33, 749–760. [Google Scholar] [CrossRef]
- Bede, P.; Pradat, P.F.; Lope, J.; Vourc’h, P.; Blasco, H.; Corcia, P. Primary Lateral Sclerosis: Clinical, Radiological and Molecular Features. Rev. Neurol. 2022, 178, 196–205. [Google Scholar] [CrossRef]
- de Carvalho, M.; Swash, M. Lower Motor Neuron Dysfunction in ALS. Clin. Neurophysiol. 2016, 127, 2670–2681. [Google Scholar] [CrossRef]
- De Vries, B.S.; Rustemeijer, L.M.M.; Bakker, L.A.; Schröder, C.D.; Veldink, J.H.; Van Den Berg, L.H.; Nijboer, T.C.W.; Van Es, M.A. Cognitive and Behavioural Changes in PLS and PMA:Challenging the Concept of Restricted Phenotypes. J. Neurol. Neurosurg. Psychiatry 2019, 90, 141–147. [Google Scholar] [CrossRef]
- Sbrollini, B.; Preti, A.N.; Zago, S.; Papagno, C.; Appollonio, I.M.; Aiello, E.N. Language Impairment in Motor Neuron Disease Phenotypes Different from Classical Amyotrophic Lateral Sclerosis: A Review. Aphasiology 2021, 1–24. [Google Scholar] [CrossRef]
- Agosta, F.; Ferraro, P.M.; Riva, N.; Spinelli, E.G.; Chiò, A.; Canu, E.; Valsasina, P.; Lunetta, C.; Iannaccone, S.; Copetti, M.; et al. Structural Brain Correlates of Cognitive and Behavioral Impairment in MND. Hum. Brain Mapp. 2016, 37, 1614–1626. [Google Scholar] [CrossRef]
- Spinelli, E.G.; Agosta, F.; Ferraro, P.M.; Riva, N.; Lunetta, C.; Falzone, Y.M.; Comi, G.; Falini, A.; Filippi, M. Brain MR Imaging in Patients with Lower Motor Neuron-Predominant Disease. Radiology 2016, 280, 545–556. [Google Scholar] [CrossRef]
- Huey, E.D.; Koppel, J.; Armstrong, N.; Grafman, J.; Floeter, M.K. A Pilot Study of the Prevalence of Psychiatric Disorders in PLS and ALS. Amyotroph. Lateral Scler. 2010, 11, 293–297. [Google Scholar] [CrossRef] [PubMed]
- van Blitterswijk, M.; Vlam, L.; van Es, M.A.; van der Pol, W.L.; Hennekam, E.A.M.; Dooijes, D.; Schelhaas, H.J.; van der Kooi, A.J.; de Visser, M.; Veldink, J.H.; et al. Genetic Overlap between Apparently Sporadic Motor Neuron Diseases. PLoS ONE 2012, 7, e48983. [Google Scholar] [CrossRef] [PubMed]
- Silani, V.; Corcia, P.; Harms, M.B.; Rouleau, G.; Siddique, T.; Ticozzi, N. Genetics of Primary Lateral Sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2020, 21, 28–34. [Google Scholar] [CrossRef] [PubMed]
ALS (n = 41) | pLMN (n = 34) | pUMN (n = 19) | |
---|---|---|---|
Demographic features | |||
Age (years) | 65.41 (11.60) | 67.44 (12.66) | 63.16 (12.18) |
Gender (M/F) | 25/16 | 24/10 | 9/10 |
Education (years) | 11.33 (3.45) | 10.53 (4.62) | 14.35 (4.27) |
Onset features | |||
Onset side (left/right/bilateral) | 21/17/3 | 13/14/7 | 6/10/3 |
Onset limbs (upper/lower) | 23/18 | 17/17 | 4/15 * |
Onset involvement (proximal/distal) | 5/36 | 7/27 | 5/14 |
Clinical features | |||
Disease duration (months) | 13.14 (8.95) | 23.85 (30.82) | 25.68 (26.94) |
El Escorial Category (D/CP/ CP-LS/P/S) | 9/19/12/1/0 | 0/2/1/1/30 ** | 1/4/5/9/0 ** |
ALSFRS-r total score (0–48) | 38.04 (7.32) | 36.48 (7.37) | 37.00 (8.12) |
ALSFRS-r rate of progression (points/month) | 0.72 (0.68) | 0.46 (0.43) | 0.33 (0.43) * |
ALSFRS-r bulbar score (0–12) | 10.90 (1.85) | 11.12 (1.60) | 9.88 (3.01) |
ALSFRS-r fine motor score (0–12) | 8.07 (3.08) | 7.58 (3.69) | 9.35 (3.31) |
ALSFRS-r gross motor score (0–12) | 7.60 (3.27) | 6.74 (3.08) | 6.70 (2.51) |
ALSFRS-r respiratory score (0–12) | 11.46 (1.68) | 11.03 (2.04) | 11.05 (2.10) |
MRC total score (0–150) | 124.52 (24.28) | 112.16 (24.98) | 128.40 (27.82) |
MRC rate of progression (points/month) | 1.81 (1.69) | 2.01 (2.63) | 0.62 (1.27) ** |
MRC R UL score (0–40) | 32.35 (9.17) | 30.25 (10.10) | 35.84 (7.10) |
MRC L UL score (0–40) | 32.78 (7.49) | 31.25 (9.25) | 33.50 (11.05) |
MRC R LL score (0–35) | 30.58 (6.73) | 24.46 (9.11) * | 30.40 (8.34) |
MRC L LL score (0–35) | 28.81 (8.24) | 25.33 (9.18) | 28.65 (9.88) |
UMN total score (0–16) | 7.31 (4.45) | 1.37 (2.62) ** | 12.20 (3.29) * |
UMN rate of progression (points/month) | 0.65 (0.59) | 0.07 (0.24) ** | 0.66 (0.77) |
UMN UL score (0–8) | 4.48 (2.77) | 0.93 (2.26) ** | 6.93 (1.48) * |
UML LL score (0–6) | 2.45 (1.97) | 0.41 (1.21) ** | 4.46 (1.40) * |
UMN cranial score (0–2) | 0.37 (0.68) | 0.03 (0.18) | 0.80 (0.77) * |
Cognitive, behavioral, and mood features | |||
Cognitive phenotype (motor/MND-CBI) | 24/11 | 21/8 | 10/4 |
Total ECAS score (0–136) | 105.73 (16.56) | 99.93 (19.76) | 110.84 (9.09) |
ALS specific functions (0–100) | 79.61 (13.42) | 74.56 (16.19) | 83.30 (7.59) |
Executive functions (0–48) | 36.76 (6.95) | 33.25 (9.83) | 37.23 (5.47) |
Language functions (0–28) | 24.34 (3.70) | 22.87 (4.24) | 26.07 (1.75) |
Verbal fluency (0–24) | 18.40 (5.12) | 18.43 (4.33) | 20.00 (2.82) |
ALS non-specific functions (0–36) | 26.20 (4.62) | 25.37 (5.73) | 27.53 (2.96) |
Memory functions (0–24) | 14.54 (4.38) | 14.09 (5.25) | 15.84 (2.99) |
Visuospatial functions (0–12) | 11.65 (0.72) | 11.28 (1.19) | 11.69 (0.63) |
ECAS carer behavior screen (0–10) | 0.38 (0.65) | 0.37 (0.56) | 0.58 (1.16) |
HADS total score (0–42) | 6.51 (5.66) | 5.85 (4.06) | 11.25 (5.15) * |
HADS depression score (0–21) | 2.82 (2.95) | 2.81 (2.11) | 5.58 (3.08) * |
HADS anxiety score (0–21) | 3.68 (3.30) | 3.03 (2.48) | 5.66 (3.02) |
Familiarity and genetic features | |||
Familiarity (no/yes) | 31/10 | 26/8 | 10/9 |
Genetic mutations (no/yes) | 13/6 | 15/5 | 7/1 |
Neurophysiological features | |||
CMAP amplitude R median nerve (μV) | 2.25 (2.36) | 2.25 (2.05) | NA |
CMAP amplitude L median nerve (μV) | 1.44 (1.78) | 3.10 (4.10) | NA |
CMAP amplitude R ulnar nerve (μV) | 5.07 (1.85) | 6.25 (3.21) | 8.10 (1.95) * |
CMAP amplitude L ulnar nerve (μV) | 4.99 (2.82) | 5.31 (3.19) | 5.76 (1.68) |
CMAP amplitude R peroneal nerve (μV) | 3.26 (2.23) | 2.09 (2.12) | 3.61 (1.59) |
CMAP amplitude L peroneal nerve (μV) | 2.56 (2.27) | 1.85 (1.67) | 4.22 (1.62) |
CMAP amplitude R tibial nerve (μV) | 4.00 (4.60) | 1.80 (0.96) | 6.95 (3.60) |
CMAP amplitude L tibial nerve (μV) | 1.93 (1.45) | 4.01 (4.93) | 8.90 (3.95) |
MEP CMCT R abductor pollicis brevis (ms) | 9.39 (1.41) | 8.35 (2.63) | 10.27 (1.88) |
MEP CMCT L abductor pollicis brevis (ms) | 7.64 (1.52) | 7.48 (1.53) | 7.99 (1.40) |
MEP CMCT R tibialis anterior (ms) | 15.23 (5.65) | 15.19 (2.25) | 30.66 (22.88) * |
MEP CMCT L tibialis anterior (ms) | 16.54 (6.65) | 13.84 (2.16) | 17.99 (4.43) |
Measure | AUC (%) | AUC Category | Cut-Off | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
MRC R LL | 67 | ND | 28.00 | 61 | 84 |
UMN total score | 89 | E | 0.50 | 72 | 97 |
UMN rate of progression | 90 * | E | 0.05 | 83 | 89 |
UMN UL | 84 | E | 0.50 | 83 | 86 |
UMN LL | 81 | E | 1.50 | 90 | 69 |
Measure | AUC (%) | AUC Category | Cut-Off | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
ALSFRS-r rate of progression | 74 | A | 0.31 | 82 | 68 |
MRC rate of progression | 82 * | E | 0.38 | 69 | 86 |
UMN total score | 81 | E | 10.50 | 73 | 77 |
UMN UL | 77 | A | 7.50 | 60 | 80 |
UMN LL | 78 | A | 2.50 | 93 | 60 |
UMN cranial | 66 | ND | 0.50 | 60 | 74 |
HADS depression score | 80 | E | 2.50 | 100 | 59 |
HADS total score | 76 | A | 7.50 | 83 | 66 |
CMAP amplitude R ulnar nerve | 79 | A | 8.95 | 60 | 94 |
MEP CMCT R tibialis anterior | 75 | A | 17.46 | 88 | 64 |
pLMN Patients | ||||
ALSFRS-r at 2 Years | Tested Predictor | Estimate | T Value | p Value |
31.38 ± 9.15 | MRC R LL | 0.38 | 1.94 | 0.05 * |
UMN total score | −0.05 | −0.05 | 0.95 | |
UMN rate of progression | −3.78 | −0.06 | 0.95 | |
UMN UL | −0.53 | −0.43 | 0.66 | |
UMN LL | −0.50 | −0.33 | 0.74 | |
pUMN Patients | ||||
ALSFRS-r at 2 Years | Tested predictor | Estimate | T Value | p Value |
29.91 ± 6.80 | ALSFRS-r rate of progression | −9.10 | −2.82 | 0.01 * |
MRC rate of progression | −2.95 | −2.78 | 0.02 * | |
UMN total score | 0.53 | 0.72 | 0.49 | |
UMN UL | 1.16 | 0.67 | 0.51 | |
UMN LL | 1.05 | 0.64 | 0.53 | |
UMN cranial | 2.50 | 0.68 | 0.51 | |
HADS depression score | 1.13 | 1.58 | 0.15 | |
HADS total score | 0.25 | 0.52 | 0.61 | |
CMAP amplitude R ulnar nerve | 1.63 | 0.55 | 0.68 | |
MEP CMCT R tibialis anterior | −0.03 | −7.55 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meo, G.; Ferraro, P.M.; Cillerai, M.; Gemelli, C.; Cabona, C.; Zaottini, F.; Roccatagliata, L.; Villani, F.; Schenone, A.; Caponnetto, C. MND Phenotypes Differentiation: The Role of Multimodal Characterization at the Time of Diagnosis. Life 2022, 12, 1506. https://doi.org/10.3390/life12101506
Meo G, Ferraro PM, Cillerai M, Gemelli C, Cabona C, Zaottini F, Roccatagliata L, Villani F, Schenone A, Caponnetto C. MND Phenotypes Differentiation: The Role of Multimodal Characterization at the Time of Diagnosis. Life. 2022; 12(10):1506. https://doi.org/10.3390/life12101506
Chicago/Turabian StyleMeo, Giuseppe, Pilar M. Ferraro, Marta Cillerai, Chiara Gemelli, Corrado Cabona, Federico Zaottini, Luca Roccatagliata, Flavio Villani, Angelo Schenone, and Claudia Caponnetto. 2022. "MND Phenotypes Differentiation: The Role of Multimodal Characterization at the Time of Diagnosis" Life 12, no. 10: 1506. https://doi.org/10.3390/life12101506
APA StyleMeo, G., Ferraro, P. M., Cillerai, M., Gemelli, C., Cabona, C., Zaottini, F., Roccatagliata, L., Villani, F., Schenone, A., & Caponnetto, C. (2022). MND Phenotypes Differentiation: The Role of Multimodal Characterization at the Time of Diagnosis. Life, 12(10), 1506. https://doi.org/10.3390/life12101506