Transcriptome Analysis of Low-Temperature-Treated Tetraploid Yellow Actinidia chinensis Planch. Tissue Culture Plantlets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Transcriptome Analysis of Tetraploidy Yellow Kiwifruit
2.2.1. Test Materials Preparing and RNA-Sequencing
2.2.2. Sequence Data Filtering
2.2.3. Comparison of Reads Obtained by Sequencing with the Reference Genome
2.2.4. Detection of Differentially Expressed Genes (DEGs)
2.2.5. Enrichment Analysis of DEGs in the GO Category and KEGG Pathway
2.2.6. Screening of Differentially Expressed Genes
2.3. RT-qPCR Analysis
3. Results
3.1. Effect of Cold Treatment on Tetraploid Yellow Kiwifruit
3.2. Results of Transcriptome Sequence Data Filtering
3.3. Detection of DEGs
3.4. Functional Classification and Enrichment Analysis of DEGs
3.5. Functional Classification and Enrichment Analysis of the KEGG Pathway
3.6. Screening and Analysis of Cold Tolerance-Related Genes
3.7. RT-qPCR Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minchin, P.E.H.; de Silva, N.; Snelgar, W.P.; Richardson, A.C. Modelling of colour development in the fruit of Actinidia chinensis ‘Hort16A’. N. Z. J. Crop Hort. 2003, 31, 3141–3153. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Liu, H.M.; Liu, X.Z. Production of transgenic kiwifruit plants harboring the SbtCry1Ac gene. Genet. Mol. Res. 2015, 14, 8483. [Google Scholar] [CrossRef] [PubMed]
- Vallespir, F.; Rodríguez, Ó.; Cárcel, J.A.; Rosselló, C.; Simal, S. Ultrasound assisted low-temperature drying of kiwifruit: Effects on drying kinetics, bioactive compounds and antioxidant activity. J. Sci. Food Agr. 2019, 99, 2901–2909. [Google Scholar] [CrossRef]
- Wu, J.H.; Ferguson, A.R.; Murray, B.G.; Geijskes, R.J.; Lakshmanan, P.; Taji, A. In vitro induction of autotetraploid Actinidia plants and their field evaluation for crop improvement. Acta Hortic. 2009, 829, 245–250. [Google Scholar] [CrossRef]
- Wu, J.H. Cultivar, environment and integration of cultural practices will determine the future of the kiwifruit industry. Scr. Hortic. 2020, 20, 171–178. [Google Scholar]
- Qi, X.J.; Fang, J.B.; Zhao, X.Z. Freeze injury investigation of kiwifruit in Zhengzhou area in 2009. J. Fruit Sci. 2011, 28, 55–60. (In Chinese) [Google Scholar]
- Ke, S.W. Transcriptome Sequencing and Cloning and Functional Study of Cold Tolerance Related Genes in Fine Stemmed Columnaris; South China Agricultural University: Guangdong, China, 2016. (In Chinese) [Google Scholar]
- Xie, K.; Bai, J.; Yang, Y.Y.; Duan, N.B.; Ma, Y.M.; Guo, T.; Yao, F.Y.; Ding, H.F. The RNA-seq transcriptome analysis identified genes related to rice seed dormancy. Biol. Plant. 2019, 63, 308–313. [Google Scholar] [CrossRef]
- Wu, Z.T.; Xu, F.; Yu, L.-L.; Ouyang, Y.; Geng, X.-X. Transcriptome analysis of developing castor bean seeds and identification of ricinoleic acid biosynthesis genes. Biol. Plant. 2021, 65, 273–282. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Ban, Q.; Zhu, X.; Jiang, C.; Wei, C.; Bennetzen, J.L. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genom. 2019, 20, 624. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Xue, L.; Cheng, J.; Yang, X.; Xie, H.; Song, X.; Qiang, S. Polyploidization-driven differentiation of freezing tolerance in Solidago canadensis. Plant Cell Environ. 2020, 43, 1394–1403. [Google Scholar] [CrossRef]
- Luo, L.; Kong, X.; Gao, Z.; Zheng, Y.; Yang, Y.; Li, X.; Yang, D.; Geng, Y.; Yang, Y. Comparative transcriptome analysis reveals ecological adaption of cold tolerance in northward invasion of Alternanthera philoxeroides. BMC Genom. 2020, 21, 532. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Wang, J.; Li, Y.; Wu, S.; Yang, S.; Chao, J.; Chen, Y.; Zhang, S.; Shi, M.; Tian, W. Comparative transcriptome analysis reveals phytohormone signalings, heat shock module and ROS scavenger mediate the cold-tolerance of rubber tree. Sci. Rep. 2018, 8, 4931. [Google Scholar] [CrossRef]
- Dong, W.; Ma, X.; Jiang, H.; Zhao, C.; Ma, H. Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress. BMC Plant Biol. 2020, 20, 362. [Google Scholar] [CrossRef] [PubMed]
- Lu, C. Transcriptome Study and Discovery of Cold Resistance Genes in Liriodendron chinensis; Chinese Academy of Forestry Science: Beijin, China, 2015. (In Chinese) [Google Scholar]
- Li, S.; Liu, X.; Liu, H.; Zhang, X.; Ye, Q.; Zhang, H. Induction, identification and genetics analysis of tetraploid Actinidia chinensis. Roy. Soc. Open Sci. 2019, 6, 191052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.Z.; Li, Y.P.; Zhang, H.Y.; Wei, Z.; Zhang, Z.M.; Bian, W. Cold Tolerance Gene of Yellow Flesh Kiwifruit and Its Application. CN201910669692.1, 24 July 2019. [Google Scholar]
- Yue, J.; Liu, J.; Tang, W.; Wu, Y.Q.; Tang, X.; Li, W.; Yang, Y.; Wang, L.; Huang, S.; Fang, C.; et al. Kiwifruit Genome Database (KGD): A comprehensive resource for kiwifruit genomics. Hortic. Res. 2020, 7, 117. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Gene Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Z.; Sang, M.; Sun, X.; He, C.; Xin, P.; Zhang, H. Functional analysis of the FZF1 gene in Saccharomyces uvarum. Front. Microbiol. 2018, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Lee, D.W.; Jung, J.K. Rapid Cold-hardening of a subtropical species, Maruca vitrata (Lepidoptera: Crambidae), accompanies hypertrehalosemia by upregulating trehalose-6-phosphate synthase. Environ. Entomol. 2017, 6, 1432–1438. [Google Scholar] [CrossRef]
- Ma, H.; Liu, C.; Li, Z.; Ran, Q.; Xie, G.; Wang, B.; Fang, S.; Chu, J.; Zhang, J. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiol. 2018, 178, 753–770. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, K.E.; Nishimura, N.; Hitomi, K.; Getzoff, E.D.; Schroeder, J.I. Early abscisic acid signal transduction mechanisms: Newly discovered components and newly emerging questions. Genes Dev. 2010, 24, 1695–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Xu, S.L.; Oses-Prieto, J.A.; Putil, S.; Xu, P.; Wang, R.J.; Li, K.H.; Maltby, D.A.; An, L.H.; Burlingame, A.L.; et al. Proteomics analysis reveals post-translational mechanisms for cold-induced metabolic changes in Arabidopsis. Mol. Plant. 2011, 4, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, Y.; Zhang, Q.; Liu, N.; Xu, Q.; Hu, L. Differential physiological and metabolic response to low temperature in two zoysiagrass genotypes native to high and low latitude. PLoS ONE 2018, 13, e0198885. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhang, Z.; Zhao, W.; Yin, T.; Liu, X.; Zhang, H. Overexpression of MET4 leads to the ipregulation of stress-related genes and enhanced sulfite tolerance in Saccharomyces uvarum. Cells 2022, 11, 636. [Google Scholar] [CrossRef] [PubMed]
- Janská, A.; Marsík, P.; Zelenková, S.; Ovesná, J. Cold stress and acclimation-what is important for metabolic adjustment? Plant Biol. 2010, 12, 395–405. [Google Scholar] [CrossRef]
- Chang, Y.; Nguyen, B.H.; Xie, Y.; Xiao, B.; Tang, N.; Zhu, W.; Mou, T.; Xiong, L. Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice. Front. Plant Sci. 2017, 8, 1102. [Google Scholar] [CrossRef]
- Ye, H.; Du, H.; Tang, N.; Li, X.; Xiong, L. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol. Biol. 2009, 71, 291–305. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, F.; Chen, D.; Chu, W.; Liu, H.; Xiang, Y. Genome-wide identification and analysis of the Populus trichocarpa TIFY gene family. Plant Physiol. Bioch. 2017, 115, 360–371. [Google Scholar] [CrossRef]
- Tarkowski, Ł.P.; van den Ende, W. Cold tolerance triggered by soluble sugars: A multifaceted countermeasure. Front. Plant Sci. 2015, 6, 203. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Yang, M.; Hu, D.; Yang, Z.; Ma, S.; Li, X.; Xiong, L. The OsMYB30 Transcription factor suppresses cold tolerance by interacting with a JAZ protein and suppressing β-Amylase expression. Plant Physiol. 2017, 173, 1475–1491. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.H.; Ferguson, A.R.; Murray, B.G. Manipulation of ploidy for kiwifruit breeding: In vitro chromosome doubling in diploid Actinidia chinensis Planch. Plant Cell Tiss. Organ. Cult. 2011, 106, 503–511. [Google Scholar] [CrossRef]
- Wu, J.H.; Ferguson, A.R.; Murray, B.G.; Jia, Y.; Datson, P.M.; Zhang, J. Induced polyploidy dramatically increases the size & alters the shape of fruit in Actinidia chinensis. Ann. Bot. 2012, 109, 169. [Google Scholar] [PubMed]
- Banerjee, A.; Roychoudhury, A. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 2017, 254, 3–16. [Google Scholar] [CrossRef]
- Miranda, J.A.; Avonce, N.; Suárez, R.; Thevelein, J.M.; van Dijck, P.; Iturriaga, G. A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 2007, 226, 1411–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, L.F.; Chao, D.Y.; Shi, M.; Zhu, M.Z.; Gao, J.P.; Lin, H.X. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 2008, 228, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Zhu, X.; Duan, N.; Liu, J.H. PtrBAM1, a β-amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant Cell Environ. 2014, 37, 2754–2767. [Google Scholar] [CrossRef]
- Asiche, W.O.; Mitalo, O.W.; Kasahara, Y.; Tosa, Y.; Mworia, E.G.; Owino, W.O.; Ushijima, K.; Nakano, R.; Yano, K.; Kubo, Y. Comparative transcriptome analysis reveals distinct ethylene-independent regulation of ripening in response to low temperature in kiwifruit. BMC Plant Biol. 2018, 18, 47. [Google Scholar] [CrossRef]
- Song, Y.; Sun, L.; Lin, M.; Chen, J.; Qi, X.; Hu, C.; Fang, J. Comparative transcriptome analysis of resistant and susceptible kiwifruits in response to Pseudomonas syringae pv. Actinidiae during early infection. PLoS ONE 2019, 14, e0211913. [Google Scholar]
Gene Name | Primer | Sequence (5′–3′) | Length (bp) |
---|---|---|---|
Elongation factor (RG) | Forward primer | ACAAGCTGGTGACAATGTGG | 127 |
Reverse primer | CGACCACCTTCATCCTTTGT | ||
Abscisic acid receptor PYL(CEY00_Acc03316, TG) | Forward primer | GGTTTGGGAGGCTACTGAGT | 149 |
Reverse primer | TCCATTCGCATTCATCGCTG | ||
BZIP transcription factor (CEY00_Acc13130, TG) | Forward primer | TGTTTCTTGTGGATTGGCGG | 332 |
Reverse primer | TGCCCCATGTAGTTTCCCAT | ||
TIFY protein (CEY00_Acc33627, TG) | Forward primer | ATCCCCTGACCCTCCCTATT | 237 |
Reverse primer | CTCCGGGTTCATCTTCGAGA | ||
Alpha-trehalose-phosphate synthase (CEY00_Acc26744, TG) | Forward primer | TCGTCGGGGAATGATGATGT | 225 |
Reverse primer | GCATTCGATCAAACGGGTCA | ||
Beta-amylase (CEY00_Acc28966, TG) | Forward primer | ATGCTTGGTGGGGATTGGTA | 226 |
Reverse primer | GCCCGATCTGTCTGTGTAGA | ||
Beta-glucosidase 1 GH1 family (CEY00_Acc14271, TG) | Forward primer | GGGCCTCGGTGAAGTTTTAC | 201 |
Reverse primer | CCCCTTGATGTTGACTCCCT | ||
Trehalose phosphatase (CEY00_Acc16756, TG) | Forward primer | CGGTTGCGACTAACTCATGG | 160 |
Reverse primer | GCATCTTCGTCGGTCTTGTC | ||
Beta-amylase 4 (CEY00_Acc08918, TG) | Forward primer | CTTGGAGATGGCGAAGAAGC | 149 |
Reverse primer | TCTGTGTAGGCAAGGTCAGG | ||
Beta-glucosidase 12-like (CEY00_Acc17108, TG) | Forward primer | CCAAATTCACACCCGAGCAA | 155 |
Reverse primer | TTACCGAGGTGAGATTGGCA | ||
Alpha-amylase (CEY00_Acc04508, TG) | Forward primer | ACAGGATCAACACAGGCTCA | 286 |
Reverse primer | ATCGGCTGTTGAGGTCTTGA |
Sample | Raw Reads num (Mb) | Raw Reads Base (Gb) | Raw Reads Q20 Rate (%) | Raw Reads Q30 Rate (%) | GC Rate (Mb) |
---|---|---|---|---|---|
C1 | 65.78 | 10.10 | 94.32 | 88.66 | 47.16 |
C2 | 66.96 | 9.80 | 94.8 | 89.28 | 47.04 |
C3 | 78.50 | 12.06 | 95.33 | 89.74 | 47.05 |
T1 | 64.12 | 9.84 | 94.00 | 88.06 | 47.27 |
T2 | 74.89 | 11.50 | 96.72 | 91.52 | 47.2 |
T3 | 81.16 | 12.47 | 95.67 | 90.2 | 47.44 |
Sample | Clean Reads num (Mb) | Clean Reads Base (Gb) | Clean Reads Q20 Rate (%) | Clean Reads Q30 Rate (%) | rRNA Ratio (%) |
C1 | 59.86 | 9.13 | 96.85 | 91.58 | 0.06 |
C2 | 58.98 | 8.99 | 96.94 | 91.76 | 0.03 |
C3 | 74.14 | 11.29 | 96.91 | 91.57 | 0.03 |
T1 | 58.22 | 8.87 | 96.6 | 91.04 | 0.03 |
T2 | 73.76 | 11.25 | 97.17 | 92.07 | 0.03 |
T3 | 77.45 | 11.79 | 96.98 | 91.74 | 0.06 |
Group | Total | Up | Down |
---|---|---|---|
C-vs-T | 1630 | 619 | 1011 |
C1-vs-T1 | 169 | 81 | 88 |
C2-vs-T2 | 281 | 133 | 148 |
C3-vs-T3 | 836 | 274 | 562 |
Gene ID | Gene Length | Gene Name | log2(FC) | Regulation |
---|---|---|---|---|
CEY00_Acc07445 | 648 | Pathogenesis-related leaf protein | 5.28215967 | Up |
CEY00_Acc03316 | 978 | Abscisic acid receptor PYL | 2.41039795 | Up |
CEY00_Acc10294 | 2193 | Probable indole-3-acetic acid-amido synthetase GH3 | 1.78757476 | Up |
CEY00_Acc13130 | 1934 | bZIP transcription factor family protein | 1.63993265 | Up |
CEY00_Acc33627 | 1598 | Protein TIFY | 1.41856611 | Up |
CEY00_Acc21162 | 1191 | Pathogenesis-related protein | 1.38666594 | Up |
CEY00_Acc11766 | 1492 | Cyclin D3-1 | −1.36287325 | Down |
CEY00_Acc06865 | 671 | The basic form of Pathogenesis-related protein | −1.38277358 | Down |
CEY00_Acc07128 | 1837 | Amino acid transporter | −1.48608531 | Down |
CEY00_Acc19743 | 469 | Hypothetical protein CICLE | −1.51643111 | Down |
CEY00_Acc06866 | 679 | The basic form of pathogenesis-related protein | −1.52680253 | Down |
CEY00_Acc13744 | 2123 | Indole-3-acetic acid-amido synthetase GH3.6 | −1.67570429 | Down |
CEY00_Acc16267 | 524 | Hypothetical protein CICLE | −1.72359172 | Down |
CEY00_Acc07415 | 2003 | Indole-3-acetic acid-amido synthetase GH3.1 | −1.74567531 | Down |
CEY00_Acc04564 | 706 | Auxin early response protein SAUR | −1.75092162 | Down |
CEY00_Acc21097 | 1536 | Cyclin-D3-1 | −1.75509953 | Down |
CEY00_Acc10793 | 1871 | Auxin transporter-like protein | −1.76951247 | Down |
CEY00_Acc10304 | 1525 | Cyclin D3-2 | −1.95276355 | Down |
CEY00_Acc32114 | 1035 | Hypothetical protein VITISV | −2.16269734 | Down |
CEY00_Acc26372 | 2067 | GH3 auxin-responsive promoter | −2.50991627 | Down |
CEY00_Acc04566 | 1001 | Auxin-induced protein 6B-like | −2.75593648 | Down |
CEY00_Acc28473 | 851 | Auxin-responsive protein IAA | −2.79532550 | Down |
CEY00_Acc23775 | 1717.72 | Cyclin_N domain-containing protein | −2.82746855 | Down |
CEY00_Acc03517 | 1315 | Hypothetical protein CICLE | −3.74278320 | Down |
CEY00_Acc07283 | 736 | Auxin-induced protein 15A-like | −4.08073735 | Down |
Gene ID | Gene Length (bp) | Gene Name | log2(FC) | Regulation |
---|---|---|---|---|
CEY00_Acc26744 | 2652 | Alpha-trehalose-phosphate synthase | 3.12212772 | Up |
CEY00_Acc28966 | 1926 | Beta-amylase | 2.16097859 | Up |
CEY00_Acc16695 | 1841 | Beta-amylase | 1.82925763 | Up |
CEY00_Acc14271 | 1766 | Beta-glucosidase 1 GH1 family | 1.59187712 | Up |
CEY00_Acc16756 | 1833 | Trehalose-phosphate phosphatase F | 1.49443763 | Up |
CEY00_Acc08918 | 1989 | Beta-amylase 4 | 1.34221944 | Up |
CEY00_Acc17108 | 1465 | Beta-glucosidase 12-like | −1.38324393 | Down |
CEY00_Acc04508 | 1435 | Alpha-amylase | −2.92269962 | Down |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, Z.; Liu, X.; Wei, Z.; Zhang, X.; Bian, W.; Li, S.; Zhang, H. Transcriptome Analysis of Low-Temperature-Treated Tetraploid Yellow Actinidia chinensis Planch. Tissue Culture Plantlets. Life 2022, 12, 1573. https://doi.org/10.3390/life12101573
Li Y, Zhang Z, Liu X, Wei Z, Zhang X, Bian W, Li S, Zhang H. Transcriptome Analysis of Low-Temperature-Treated Tetraploid Yellow Actinidia chinensis Planch. Tissue Culture Plantlets. Life. 2022; 12(10):1573. https://doi.org/10.3390/life12101573
Chicago/Turabian StyleLi, Yipei, Zhiming Zhang, Xiaozhen Liu, Zhuo Wei, Xianang Zhang, Wen Bian, Shengxing Li, and Hanyao Zhang. 2022. "Transcriptome Analysis of Low-Temperature-Treated Tetraploid Yellow Actinidia chinensis Planch. Tissue Culture Plantlets" Life 12, no. 10: 1573. https://doi.org/10.3390/life12101573
APA StyleLi, Y., Zhang, Z., Liu, X., Wei, Z., Zhang, X., Bian, W., Li, S., & Zhang, H. (2022). Transcriptome Analysis of Low-Temperature-Treated Tetraploid Yellow Actinidia chinensis Planch. Tissue Culture Plantlets. Life, 12(10), 1573. https://doi.org/10.3390/life12101573