Predicting Health Risks of Adult Asthmatics Susceptible to Indoor Air Quality Using Improved Logistic and Quantile Regression Models
Abstract
:1. Introduction
1.1. Asthma and Exposome
1.2. Asthma Care and Management
1.3. Our Contributions
2. Materials and Methods
2.1. Study Design
2.1.1. Asthma Risk Measurement
2.1.2. Indoor Air Quality Measurement
2.1.3. Population Data
2.2. Exposure Estimation
2.3. Risk Prediction Modeling
2.3.1. Logistic Regression Classification with a Neural Network Based Transfer Learning
2.3.2. Qunatile Regression with a Variable Sliding Window Method
2.4. A Predictive Modeling Framework and Its Use Case
2.4.1. Training, Validation and Testing
2.4.2. Model Use
3. Results
3.1. Performance Evaluation of Classification Models
3.1.1. Evaluation Metrics
3.1.2. Classification Model Performance in Risk Prediction
3.2. Performance Evaluation of Quantile Regression Models
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Purdy, S.; Griffin, T.; Salisbury, C.; Sharp, D. Ambulatory care sensitive conditions: Terminology and disease coding need to be more specific to aid policy makers and clinicians. Public Health 2009, 123, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Loftus, P.A.; Wise, S.K. Epidemiology and economic burden of asthma. Int. Forum Allergy Rhinol. 2015, 5, S7–S10. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.B.; Hayes, L.D.; Brown, K.; Hoo, E.C.; Ethier, K.A. CDC National Health Report: Leading causes of morbidity and mortality and associated behavioral risk and protective factors—United States, 2005–2013. MMWR Suppl. 2014, 63, 3–27. [Google Scholar]
- Nunes, C.; Pereira, A.M.; Morais-Almeida, M. Asthma costs and social impact. Asthma Res. and Pract. 2017, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, C.S.; Morrow, A.L.; Shults, J.; Nakas, N.; Strope, G.L.; Adelman, R.D. Outcomes evaluation of a comprehensive intervention program for asthmatic children enrolled in Medicaid. Pediatrics 2000, 105, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Forno, E.; Celedón, J.C. Predicting asthma exacerbations in children. Curr. Opin. Pulm. Med. 2012, 18, 63. [Google Scholar] [CrossRef]
- Hermann, M.; Pentek, T.; Otto, B. Design principles for industrie 4.0 scenarios. In Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937. [Google Scholar]
- Thuemmler, C.; Bai, C. Health 4.0: How Virtualization and Big Data Are Revolutionizing Healthcare; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Adams, J.; Dorr, D.A.; Leung, M.; Popescu, B.; Rich, J. Predicting the Financial Risks of Seriously Ill Patients; CHCF: Oakland, CA, USA, 2011. [Google Scholar]
- Greineder, D.K.; Loane, K.C.; Parks, P. A randomized controlled trial of a pediatric asthma outreach program. J. Allergy Clin. Immunol. 1999, 103, 436–440. [Google Scholar] [CrossRef]
- Dorr, D.A.; Wilcox, A.B.; Brunker, C.P.; Burdon, R.E.; Donnelly, S.M. The effect of technology-supported, multidisease care management on the mortality and hospitalization of seniors. J. Am. Geriatr. Soc 2008, 56, 2195–2202. [Google Scholar] [CrossRef]
- Ainsworth, V.J. A Disease Management Program Utilizing “Life Coaches” for Children with Asthma. JCOM 2001, 8, S7–S10. [Google Scholar]
- Asher, M.I.; Ellwood, P. The Global Asthma Report 2014; Global Asthma Network: Auckland, New Zealand, 2014. [Google Scholar]
- Hindorff, L.A.; Sethupathy, P.; Junkins, H.A.; Ramos, E.M.; Mehta,, J.P.; Collins, F.S.; Manolio, T.A. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 2009, 106, 9362–9367. [Google Scholar] [CrossRef] [Green Version]
- Morawska, L.; Salthammer, T. Fundamentals of Indoor Particles and Settled Dust; Wiley Online Library: Hoboken, NJ, USA, 2003. [Google Scholar]
- Wild, C.P. The exposome: From concept to utility. Int. J. Epidemiol. 2012, 41, 24–32. [Google Scholar] [CrossRef]
- Adler, T.; Sawyer, K.; Shelton-Davenport, M. The Exposome: A Powerful Approach for Evaluating Environmental Exposures and Their Influences on Human Disease; ESEH-Committee Newsletter; The National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Schima, R.; Goblirsch, T.; Salbach, C.; Franczyk, B.; Aleithe, M.; Bumberger, J.; Dietrich, P. Research in Progress: Implementation of an Integrated Data Model for an Improved Monitoring of Environmental Processes. In Business Information Systems Workshops; Lecture Notes in Business Information Processing; Springer: Cham, Switzerland, 2017; pp. 332–339. [Google Scholar] [CrossRef]
- Jie, Y.; Ismail, N.H.; Jie, X.; Isa, Z.M. Do indoor environments influence asthma and asthma-related symptoms among adults in homes? A review of the literature. J. Formos. Med. Assoc 2011, 110, 555–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsui, E.C.; Abramson, S.L.; Sandel, M.T. Indoor environmental control practices and asthma management. Pediatrics 2016, 138, e20162589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, G.; Eick, S.; Jones, R. How is the indoor environment related to asthma?: Literature review. J. Adv. Nurs. 2005, 52, 328–339. [Google Scholar] [CrossRef]
- Brooks, B.O.; Utter, G.M.; DeBroy, J.A.; Schimke, R.D. Indoor air pollution: An edifice complex. J. Toxicol. Clin. Toxicol. 1991, 29, 315–374. [Google Scholar] [CrossRef] [PubMed]
- Simoni, M.; Jaakkola, M.; Carrozzi, L.; Baldacci, S.; Di Pede, F.; Viegi, G. Indoor air pollution and respiratory health in the elderly. Eur. Respir. J. 2003, 21, 15s–20s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentayeb, M.; Simoni, M.; Norback, D.; Baldacci, S.; Maio, S.; Viegi, G.; Annesi-Maesano, I. Indoor air pollution and respiratory health in the elderly. J. Environ. Sci. Health Part A 2013, 48, 1783–1789. [Google Scholar] [CrossRef] [PubMed]
- Asthana, S.; Strong, R.; Megahed, A. HealthAdvisor: Recommendation System for Wearable Technologies enabling Proactive Health Monitoring. arXiv 2016, arXiv:1612.00800. [Google Scholar]
- Kothamasu, R.; Huang, S.H.; VerDuin, W.H. System health monitoring and prognostics—A review of current paradigms and practices. Int. J. Adv. Manuf. Technol. 2006, 28, 1012–1024. [Google Scholar] [CrossRef]
- Gay, V.; Leijdekkers, P. A health monitoring system using smart phones and wearable sensors. Int. J. Adv. Manuf. Technol. 2007, 8, 29–35. [Google Scholar]
- Shen, Y.; Giurgiutiu, V. Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors. Int. J. Adv. Manuf. Technol. 2014, 25, 506–520. [Google Scholar] [CrossRef]
- Lv, Y.; Zhao, H.; Liang, Z.; Dong, H.; Liu, L.; Zhang, D.; Cai, S. A Mobile Phone Short Message Service Improves Perceived Control of Asthma: A Randomized Controlled Trial. Telemed. E-Health 2012, 18, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Licskai, C.J.; Sands, T.W.; Ferrone, M. Development and pilot testing of a mobile health solution for asthma self-management: Asthma action plan smartphone application pilot study. Can. Respir. J. 2013, 20, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.C. The Promise of Improving Asthma Control Using Mobile Health. J. Allergy Clin. Immunol. Pract. 2016, 4, 738–739. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, J.; Jeong, I.C. Machine learning approaches to personalize early prediction of asthma exacerbations. Ann. N. Y. Acad. Sci. 2017, 1387, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Jalali, L.; Dao, M.S.; Jain, R.; Zetts, K. Complex asthma risk factor recognition from heterogeneous data streams. In Proceedings of the IEEE International Conference on Multimedia and Expo Workshops, Turin, Italy, 29 June–3 July 2015; pp. 1–6. [Google Scholar]
- Luo, G.; Sward, K. A roadmap for optimizing asthma care management via computational approaches. JMIR Med. Inform. 2017, 5, e32. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Wu, X. 10 challenging problems in data mining research. Int. J. Inf. Technol. Decis. Mak. 2006, 5, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Jee, K.; Kim, G.H. Potentiality of big data in the medical sector: Focus on how to reshape the healthcare system. Healthc. Inform. Res. 2013, 19, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Wills, M.J. Decisions through data: Analytics in healthcare. J. Healthc. Manag. 2014, 59, 254–262. [Google Scholar] [CrossRef]
- Raghupathi, W.; Raghupathi, V. An overview of health analytics. J. Health Med. Informat. 2013, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Belle, A.; Thiagarajan, R.; Soroushmehr, S.; Navidi, F.; Beard, D.A.; Najarian, K. Big data analytics in healthcare. BioMed Res. Int. 2015, 2015, 370194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Su, H.; Khalilia, M.; Lin, S.; Peng, Y.; Davis, T.; Hirsh, D.A.; Searles, E.; Tejedor-Sojo, J.; Thompson, M.; et al. Cloud-based predictive modeling system and its application to asthma readmission prediction. AMIA Annu. Symp. Proc. 2015, 2015, 406. [Google Scholar] [PubMed]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Hoens, T.R.; Chawla, N.V. Imbalanced datasets: From sampling to classifiers. In Imbalanced Learning: Foundations, Algorithms, and Applications; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- López, V.; Fernández, A.; García, S.; Palade, V.; Herrera, F. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 2013, 250, 113–141. [Google Scholar] [CrossRef]
- Wan, Q.; Deng, X.; Li, M.; Yang, H. SDDSMOTE: Synthetic Minority Oversampling Technique based on Sample Density Distribution for Enhanced Classification on Imbalanced Microarray Data. In Proceedings of the 6th International Conference on Compute and Data Analysis, Shanghai, China, 25–27 February 2022; pp. 35–42. [Google Scholar]
- Miller, G.W.; Jones, D.P. The Nature of Nurture: Refining the Definition of the Exposome. Toxicol. Sci. 2013, 137, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Betts, K.S. Characterizing Exposomes: Tools for Measuring Personal Environmental Exposures. Environ. Health Perspect. 2012, 120. [Google Scholar] [CrossRef] [Green Version]
- Belisario, J.S.M.; Huckvale, K.; Greenfield, G.; Car, J.; Gunn, L.H. Smartphone and tablet self management apps for asthma. Cochrane Database Syst. Rev. 2013, 2013, CD010013. [Google Scholar] [CrossRef]
- Wu, A.C.; Carpenter, J.F.; Himes, B.E. Mobile health applications for asthma. J. Allergy Clin. Immunol. Pract. 2015, 3, 446–448.e16. [Google Scholar] [CrossRef]
- Bellazzi, R.; Zupan, B. Predictive data mining in clinical medicine: Current issues and guidelines. Int. J. Med. Inform. 2008, 77, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Clement Clarke International, Predictive Normal Values (Nomogram, EU Scale). Available online: http://www.peakflow.com/top_nav/normal_values/index.html (accessed on 19 August 2018).
- American Lung Association. Measuring Your Peak Flow Rate. Available online: https://www.lungusa.org (accessed on 3 October 2022).
- Alkobaisi, S.; Bae, W.D.; Horak, M.; Narayanappa, S.; Lee, J.; AbuKhousa, E.; Park, C.S.; Bae, D.J. Predictive and exposome analytics: A case study of asthma exacerbation management. J. Ambient. Intell. Smart Environ. 2019, 1–26. [Google Scholar] [CrossRef]
- Woo, J.; Rudasingwa, G.; Kim, S. Assessment of Daily Personal PM2. 5 Exposure Level According to Four Major Activities among Children. Appl. Sci. 2020, 10, 159. [Google Scholar] [CrossRef] [Green Version]
- Vineis, P.; Chadeau-Hyam, M.; Gmuender, H.; Gulliver, J.; Herceg, Z.; Kleinjans, J.; Kogevinas, M.; Kyrtopoulos, S.; Nieuwenhuijsen, M.; Phillips, D.H.; et al. The exposome in practice: Design of the EXPOsOMICS project. Int. J. Hyg. Environ. Health 2017, 220, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.A. Statistical Models: Theory and Practice; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Koenker, R.; Hallock, K.F. Quantile regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- He, X.; Zhu, L.X. A lack-of-fit test for quantile regression. J. Am. Stat. Assoc. 2003, 98, 1013–1022. [Google Scholar] [CrossRef]
- Duan, Q.; McGrory, C.A.; Brown, G.; Mengersen, K.; Wang, Y.G. Spatio-temporal quantile regression analysis revealing more nuanced patterns of climate change: A study of long-term daily temperature in Australia. arXiv 2021, arXiv:2103.05791. [Google Scholar] [CrossRef] [PubMed]
- Battineni, G.; Sagaro, G.G.; Chinatalapudi, N.; Amenta, F. Applications of machine learning predictive models in the chronic disease diagnosis. J. Pers. Med. 2020, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; IGI Global: Hershey, PA, USA, 2010; pp. 242–264. [Google Scholar]
- Liao, X.; Qian, Y.; Chen, Y.; Xiong, X.; Wang, Q.; Heng, P.A. MMTLNet: Multi-Modality Transfer Learning Network with adversarial training for 3D whole heart segmentation. Comput. Med. Imaging Graph. 2020, 85, 101785. [Google Scholar] [CrossRef]
- Bae, W.D.; Kim, S.; Park, C.S.; Alkobaisi, S.; Lee, J.; Seo, W.; Park, J.S.; Park, S.; Lee, S.; Lee, J.W. Performance improvement of machine learning techniques predicting the association of exacerbation of peak expiratory flow ratio with short term exposure level to indoor air quality using adult asthmatics clustered data. PLoS ONE 2021, 16, e0244233. [Google Scholar] [CrossRef]
- Kihm, A.; Ritter, N.; Vance, C. Is the German retail gasoline market competitive? A spatial-temporal analysis using quantile regression. Land Econom. 2016, 92, 718–736. [Google Scholar] [CrossRef]
- Koenker, R.; Machado, J.A. Goodness of fit and related inference processes for quantile regression. J. Am. Stat. Assoc. 1999, 94, 1296–1310. [Google Scholar] [CrossRef]
- Halligan, S.; Altman, D.G.; Mallett, S. Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: A discussion and proposal for an alternative approach. Eur. Radiol. 2015, 25, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.D.; Horak, M.; Alkobaisi, S.; Kim, S.; Narayanappa, S.; Park, C.S.; Bae, D.J. A two-step approach to predictive modeling of individual-based environmental health risks. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019; pp. 729–738. [Google Scholar]
Category | Variables | Measurement |
---|---|---|
Physiological data | yesterday’s PEFRs | twice a day (AM & PM) |
Indoor air pollutants & | PM2.5, CO2 | every 60 s interval via |
other variables | temperature, humidity | remote sensors installed at home |
Cooking behavior | the frequency of frying | level 1 (evey day)–level 7 (none) |
Living environment | distance from home to major roads | level 1 (<1 m)–level 5 (>11 m) |
Life style | income level | level 1–level 9 |
Overall (n = 19) | Women (n = 10) | Men (n = 9) | ||||
---|---|---|---|---|---|---|
P25 | P50 | P75 | P50 | P50 | ||
Data size | per patient (days) | 140 | 188 | 196 | 163 | 203 |
Age | (years) | 56 | 72 | 75 | 65 | 68 |
BMI | (Kg/m2) | 23.8 | 21.9 | 26.8 | 23.9 | 23.6 |
AM PEFR | (L/min) | 313.7 | 373.3 | 453.9 | 350.7 | 462.3 |
Daily average exposures (24 h) | ||||||
Temperature (°C) | 21.9 | 22.4 | 23.7 | 21.2 | 22.6 | |
Relative humidity (%) | 37.9 | 32.7 | 44.1 | 40.9 | 37.3 | |
PM2.5 (μg/m3) | 40.2 | 35.7 | 50.6 | 46.2 | 35.7 | |
CO2 (ppm) | 1005.9 | 886.9 | 1241.0 | 1030.4 | 918.4 |
Predictive | Predictive | |
---|---|---|
Actual | ||
Actual |
Method | Weighted Accuracy | Sensitivity | Specificity | Precision | Score | ROC AUC |
---|---|---|---|---|---|---|
LR with SMOTE * | 0.645 | 0.614 | 0.679 | 0.607 | 0.596 | 0.618 |
NN-based TL + LR with SMOTE * | 0.738 | 0.727 | 0.757 | 0.687 | 0.689 | 0.741 |
Ttrain | 30 | 35 | 45 | 50 | Average | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Errτ * | std | Errτ | std | Errτ | std | Errτ | std | Errτ | std | ||
Tau(τ) | – | 0.092 | 0.020 | 0.103 | 0.016 | 0.118 | 0.016 | 0.037 | 0.011 | 0.087 | 0.016 |
– | 0.057 | 0.005 | 0.112 | 0.014 | 0.068 | 0.018 | 0.042 | 0.009 | 0.070 | 0.011 | |
– | 0.019 | 0.020 | 0.053 | 0.034 | 0.021 | 0.009 | 0.032 | 0.006 | 0.031 | 0.017 | |
– | 0.030 | 0.009 | 0.015 | 0.010 | 0.016 | 0.006 | 0.012 | 0.014 | 0.018 | 0.010 | |
– | 0.030 | 0.010 | 0.009 | 0.005 | 0.025 | 0.015 | 0.045 | 0.010 | 0.027 | 0.010 | |
– | 0.033 | 0.015 | 0.050 | 0.026 | 0.048 | 0.010 | 0.078 | 0.021 | 0.052 | 0.018 | |
– | 0.046 | 0.015 | 0.101 | 0.006 | 0.071 | 0.015 | 0.055 | 0.022 | 0.068 | 0.014 | |
– | 0.111 | 0.020 | 0.105 | 0.027 | 0.100 | 0.012 | 0.056 | 0.019 | 0.093 | 0.020 | |
– | 0.143 | 0.020 | 0.157 | 0.009 | 0.152 | 0.011 | 0.113 | 0.023 | 0.141 | 0.016 | |
– | 0.173 | 0.026 | 0.169 | 0.023 | 0.145 | 0.014 | 0.153 | 0.009 | 0.160 | 0.018 | |
average | 0.0734 | 0.016 | 0.0874 | 0.017 | 0.0764 | 0.0126 | 0.0623 | 0.0144 | 0.0747 | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, W.D.; Alkobaisi, S.; Horak, M.; Park, C.-S.; Kim, S.; Davidson, J. Predicting Health Risks of Adult Asthmatics Susceptible to Indoor Air Quality Using Improved Logistic and Quantile Regression Models. Life 2022, 12, 1631. https://doi.org/10.3390/life12101631
Bae WD, Alkobaisi S, Horak M, Park C-S, Kim S, Davidson J. Predicting Health Risks of Adult Asthmatics Susceptible to Indoor Air Quality Using Improved Logistic and Quantile Regression Models. Life. 2022; 12(10):1631. https://doi.org/10.3390/life12101631
Chicago/Turabian StyleBae, Wan D., Shayma Alkobaisi, Matthew Horak, Choon-Sik Park, Sungroul Kim, and Joel Davidson. 2022. "Predicting Health Risks of Adult Asthmatics Susceptible to Indoor Air Quality Using Improved Logistic and Quantile Regression Models" Life 12, no. 10: 1631. https://doi.org/10.3390/life12101631
APA StyleBae, W. D., Alkobaisi, S., Horak, M., Park, C. -S., Kim, S., & Davidson, J. (2022). Predicting Health Risks of Adult Asthmatics Susceptible to Indoor Air Quality Using Improved Logistic and Quantile Regression Models. Life, 12(10), 1631. https://doi.org/10.3390/life12101631