The Hemisphere of the Brain in Which a Stroke Has Occurred Visible in the Heart Rate Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Heart Rate Variability
2.3. Linear Methods
2.3.1. Time Domain
2.3.2. Frequency Domain
2.4. Nonlinear Methods
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seshadri, S.; Beiser, A.; Kelly-Hayes, M.; Kase, C.S.; Au, R.; Kannel, W.B.; Wolf, P.A. The Lifetime Risk of Stroke—Estimates from the Framingham Study. Stroke 2006, 37, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Woodruff, T.M.; Thundyil, J.; Tang, S.C.; Sobey, C.G.; Taylor, S.M.; Arumugam, T.V. Pathophysiology, Treatment, and Animal and Cellular Models of Human Ischemic Stroke. Mol. Neurodegener. 2011, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Méloux, A.; Béjot, Y.; Rochette, L.; Cottin, Y.; Vergely, C. Brain-Heart Interactions during Ischemic Processes. Stroke 2022, 51, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Valenza, G.; Sclocco, R.; Duggento, A.; Passamonti, L.; Napadow, V.; Barbieri, R.; Toschi, N. The Central Autonomic Network at Rest: Uncovering Functional MRI Correlates of Time-Varying Autonomic Outflow. Neuroimage 2019, 197, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yu, H.; Tang, W.; Ding, D.; Tang, J.; Liu, N.; Xue, Y.; Ren, X.; Shi, L.; Fu, J. Decreased Nocturnal Heart Rate Variability and Potentially Related Brain Regions in Arteriosclerotic Cerebral Small Vessel Disease. BMC Neurol. 2021, 21, 361. [Google Scholar] [CrossRef] [PubMed]
- Kallmünzer, B.; Breuer, L.; Kahl, N.; Bobinger, T.; Raaz-Schrauder, D.; Huttner, H.B.; Schwab, S.; Köhrmann, M. Serious Cardiac Arrhythmias after Stroke: Incidence, Time Course, and Predictors—A Systematic, Prospective Analysis. Stroke 2021, 43, 2892–2897. [Google Scholar] [CrossRef] [Green Version]
- Buitrago-Ricaurte, N.; Cintra, F.; Silva, G.S. Heart Rate Variability as an Autonomic Biomarker in Ischemic Stroke. Arq. Neuropsiquiatr. 2020, 78, 724–732. [Google Scholar] [CrossRef]
- Fyfe-Johnson, A.L.; Muller, C.J.; Alonso, A.; Folsom, A.R.; Gottesman, R.F.; Rosamond, W.D.; Whitsel, E.A.; Agarwal, S.K.; MacLehose, R.F. Heart Rate Variability and Incident Stroke: The Atherosclerosis Risk in Communities Study. Stroke 2016, 47, 1452–1458. [Google Scholar] [CrossRef] [Green Version]
- Lees, T.; Shad-Kaneez, F.; Simpson, A.; Nassif, N.; Lin, Y.; Lal, S. Heart Rate Variability as a Biomarker for Predicting Stroke, Post-stroke Complications and Functionality. Biomark. Insights 2018, 13, 1177271918786931. [Google Scholar] [CrossRef] [Green Version]
- Weiss, A.; Beloosesky, Y.; Kenett, R.; Grossman, E. Change in Systolic Blood Pressure during Stroke, Functional Status, and Long-Term Mortality in an Elderly Population. Am. J. Hypertens. 2016, 29, 432–438. [Google Scholar] [CrossRef]
- Chidambaram, H.; Gnanamoorthy, K.; Suthakaran, P.K.; Rajendran, K.; Pavadai, C. Assessment of Autonomic Dysfunction in Acute Stroke Patients at a Tertiary Care Hospital. J. Clin. Diagn. Res. 2017, 11, OC28–OC31. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Huang, P.-W.; Tang, S.-C.; Shieh, J.-S.; Lai, D.-M.; Wu, A.-Y.; Jeng, J.-S. Complexity of Heart Rate Variability Can Predict Stroke-in-Evolution in Acute Ischemic Stroke Patients. Sci. Rep. 2015, 5, 17552. [Google Scholar] [CrossRef] [PubMed]
- Badve, M.; Zhou, Z.; van de Beek, D.; Anderson, C.; Hackett, M. Frequency of Post-stroke Pneumonia: Systematic Review and Meta-Analysis of Observational Studies. Int. J. Stroke 2019, 14, 125–136. [Google Scholar] [CrossRef]
- Huikuri, H.V.; Stein, P.K. Clinical Application of Heart Rate Variability after Acute Myocardial Infarction. Front Physiol. 2012, 3, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart Rate Variability. Standards of Measurements, Physiological Interpretation, and Clinical Use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Huikuri, H.; Mäkikallio, T.; Perkiömäki, J. Measurement of Heart Rate Variability by Methods Based on Nonlinear Dynamics. J. Electrocardiol. 2003, 36, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.-K.; Costa, M.; Goldberger, A.L. Adaptive Data Analysis of Complex Fluctuation in Physiologic Time Series. Adv. Adapt. Data Anal. 2009, 1, 70. [Google Scholar] [CrossRef]
- Korpelainen, J.T.; Sotaniemi, K.A.; Huikuri, H.V.; Myllyä, V.V. Abnormal Heart Rate Variability as a Manifestation of Autonomic Dysfunction in Hemispheric Brain Infarction. Stroke 1996, 27, 2059–2063. [Google Scholar] [CrossRef]
- Colivicchi, F.; Bassi, A.; Santini, M.; Caltagirone, C. Cardiac Autonomic Derangement and Arrhythmias in Right-Sided Stroke with Insular Involvement. Stroke 2004, 35, 2094–2098. [Google Scholar] [CrossRef] [Green Version]
- Naver, H.; Blomstrand, C.; Wallin, B.G. Reduced Heart Rate Variability after Right-Sided Stroke. Stroke 1996, 27, 247–251. [Google Scholar] [CrossRef]
- Constantinescu, V.; Matei, D.; Costache, V.; Cuciureanu, D.; Arsenescu-Georgescu, C. Linear and Nonlinear Parameters of Heart Rate Variability in Ischemic Stroke Patients. Neurol. Neurochir. Pol. 2018, 52, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Ay, H.; Koroshetz, W.J.; Benner, T.; Vangel, M.G.; Melinosky, C.; Arsava, E.M.; Ayata, C.; Zhu, M.; Schwamm, L.H.; Sorensen, A.G. Neuroanatomic Correlates of Stroke-Related Myocardial Injury. Neurology 2006, 66, 1325–1329. [Google Scholar] [CrossRef] [PubMed]
- Laowattana, S.; Zeger, S.L.; Lima, J.A.C.; Goodman, S.N.; Wittstein, I.S.; Oppenheimer, S.M. Left Insular Stroke Is Associated with Adverse Cardiac Outcome. Neurology 2006, 66, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Candemir, M.; Onder, H. Assessing Autonomic Nervous Function by Heart Rate Variability and Heart Rate Turbulence in Patients with Acute Ischemic Stroke. Ann. Indian Acad. Neurol. 2020, 23, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Löve, A.; Siemund, R.; Andsberg, G.; Cronqvist, M.; Holtås, S.; Björkman-Burtscher, I. Comprehensive CT Evaluation in Acute Ischemic Stroke: Impact on Diagnosis and Treatment Decisions. Stroke Res. Treat. 2011, 2011, 726573. [Google Scholar] [CrossRef] [Green Version]
- Barber, P.A.; Demchuk, A.M.; Zhang, J.; Buchan, A.M. Validity and Reliability of a Quantitative Computed Tomography Score in Predicting Outcome of Hyperacute Stroke before Thrombolytic Therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 2000, 355, 1670–1674. [Google Scholar] [CrossRef]
- Błażejewska-Hyżorek, B.; Czernuszenko, A.; Członkowska, A.; Ferens, A.; Gąsecki, D.; Kaczorowski, R.; Karaszewski, B.; Karliński, M.; Kaźmierski, R.; Kłysz, B.; et al. Wytyczne Postępowania w Udarze Mózgu. Polski Przegląd Neurologiczny 2019, 15, 63655. [Google Scholar] [CrossRef]
- Guzik, P.; Piskorski, J.; Krauze, T.; Wykretowicz, A.; Wysocki, H. Heart Rate Asymmetry by Poincaré Plots of RR Intervals. Biomed. Tech. 2006, 51, 272–275. [Google Scholar] [CrossRef]
- Porta, A.; Casali, K.R.; Casali, A.G.; Gnecchi-Ruscone, T.; Tobaldini, E.; Montano, N.; Lange, S.; Geue, D.; Cysarz, D.; Van Leeuwen, P. Temporal Asymmetries of Short-Term Heart Period Variability Are Linked to Autonomic Regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R550–R557. [Google Scholar] [CrossRef] [Green Version]
- Richman, J.; Moorman, J. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Peng, C.-K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of Scaling Exponents and Crossover Phenomena in Nonstationary Heartbeat Time Series. Chaos 1995, 5, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castiglioni, P.; Parati, G.; Faini, A. Information-Domain Analysis of Cardiovascular Complexity: Night and Day Modulations of Entropy and the Effects of Hypertension. Entropy 2019, 21, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinza, C.; Floria, M.; Covic, A.; Covic, A.; Scripcariu, D.-V.; Burlacu, A. The Usefulness of Assessing Heart Rate Variability in Patients with Acute Myocardial Infarction (HeaRt-V-AMI). Sensors 2022, 22, 3571. [Google Scholar] [CrossRef]
- Hilz, M.J.; Schwab, S. Stroke-Induced Sudden-Autonomic Death: Areas of Fatality beyond the Insula. Stroke 2008, 39, 2421–2422. [Google Scholar] [CrossRef] [Green Version]
- Klingelhofer, J.; Sander, D. Cardiovascular Consequences of Clinical Stroke. Baillieres Clin. Neurol. 1997, 6, 309–335. [Google Scholar]
- Porta, A.; Gnecchi-Ruscone, T.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N. Progressive Decrease of Heart Period Variability Entropy-Based Complexity during Graded Head-up Tilt. J. Appl. Physiol. 2007, 103, 1143–1149. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Champéroux, P.; Fesler, P.; Judé, S.; Richard, S.; Le Guennec, J.Y.; Thireau, J. High-Frequency Autonomic Modulation: A New Model for Analysis of Autonomic Cardiac Control. Br. J. Pharmacol. 2018, 175, 3131–3143. [Google Scholar] [CrossRef]
- Eckberg, D.L. Sympathovagal Balance: A Critical Appraisal. Circulation 1997, 96, 3224–3232. [Google Scholar] [CrossRef]
- Billman, G.E. The LF/HF Ratio Does Not Accurately Measure Cardiac Sympatho-Vagal Balance. Front Physiol. 2013, 4, 26. [Google Scholar] [CrossRef] [PubMed]
Left-Hemisphere Stroke | Right-Hemisphere Stroke | p-Value * | |
---|---|---|---|
n | 39 (61%) | 25 (39%) | |
Mean Age (SD) | 66 (13) | 64 (12) | 0.3 |
Sex (f) n (%) | 20 (51%) | 12 (48%) | 0.8 |
AF (%) | 15 (37%) | 5 (20%) | 0.1 |
Hypertension (%) | 25 (64%) | 17 (68%) | 0.7 |
Diabetes (%) | 7 (18%) | 3 (12%) | 0.67 |
Smoking (%) | 14 (36%) | 9 (36%) | 0.99 |
CHD (%) | 6 (15%) | 4 (16%) | 0.9 |
HF (%) | 9 (23%) | 3 (12%) | 0.26 |
Dyslipidemia (%) | 7 (18%) | 4 (16%) | 0.84 |
Past Stroke or TIA (%) | 6 (15%) | 3 (12%) | 0.9 |
ASPECTS (SD) | 7.77 (2.03) | 7.52 (2.59) | 0.3 |
sICH (%) | 3 (8%) | 5 (20%) | 0.6 |
NIHSS baseline (SD) | 15.49 (5.79) | 14.46 (4.15) | 0.2 |
NIHSS discharge (SD) | 7.89 (5.85) | 5.83 (6.09) | 0.13 |
In-hospital mortality (%) | 2 (5%) | 1 (4%) | 0.83 |
mRS discharge (SD) | 3.32 (1.73) | 2.88 (1.61) | 0.2 |
mRS 30 days (SD) | 3.21 (1.66) | 2.84 (1.59) | 0.19 |
mRS 90 days (SD) | 3 (1.90) | 2.72 (1.76) | 0.4 |
mRS 12 months (SD) | 2.94 (1.98) | 2.33 (1.97) | 0.2 |
Antiarrhythmic Drugs | |||
Digoxin (%) | 3 (8%) | 1 (4%) | 0.55 |
Beta blocker (%) | 24 (62%) | 14 (56%) | 0.67 |
Other (%) | 2 (6%) | 1 (4%) | 0.7 |
Parameter | Left-Hemisphere Stroke NN Intervals (n = 39) | Right-Hemisphere Stroke NN Intervals (n = 25) | p-Value (LHNN vs. RHNN) | Effect Size (Cohen’s d) |
---|---|---|---|---|
Time-based analysis | ||||
MeanNN [ms] | 843 (123) | 854 (174) | 0.879 | −0.1 |
SDNN [ms] | 137 (60) | 113 (38) | 0.117 | 0.4 |
RMSSD [ms] | 113 (81) | 76 (61) | 0.061 | 0.5 |
pNN50 [%] | 33.35 (28.54) | 18.52 (23.75) | 0.020 | 0.5 |
Frequency-based analysis | ||||
LH/HF | 1.68 (2.50) | 2.24 (2.87) | 0.110 | −0.2 |
HFnu [%] | 48.42 (16.41) | 42.66 (17.88) | 0.110 | 0.3 |
LFnu [%] | 51.58 (16.41) | 57.34 (17.88) | 0.110 | -0.3 |
Nonlinear analysis | ||||
GI [%] | 52.31 (2.42) | 53.28 (3.43) | 0.289 | −0.3 |
PI [%] | 50.70 (1.86) | 51.37 (3.31) | 0.536 | −0.3 |
Sample entropy | 1.31 (0.53) | 0.92 (0.46) | 0.003 | 0.8 |
α1 | 0.90 (0.25) | 1.00 (0.27) | 0.187 | −0.4 |
Sample Entropy (LH)) | Sample Entropy (RH) | p-Value (LHNN vs. RHNN) | Effect Size (Cohen’s d) | |
---|---|---|---|---|
Day | 1.26 (0.54) | 0.94 (0.53) | 0.017 | 0.6 |
Night | 1.40 (0.48) | 1.17 (0.53) | 0.076 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aftyka, J.; Staszewski, J.; Dębiec, A.; Pogoda-Wesołowska, A.; Kowalska, A.; Jankowska, A.; Żebrowski, J. The Hemisphere of the Brain in Which a Stroke Has Occurred Visible in the Heart Rate Variability. Life 2022, 12, 1659. https://doi.org/10.3390/life12101659
Aftyka J, Staszewski J, Dębiec A, Pogoda-Wesołowska A, Kowalska A, Jankowska A, Żebrowski J. The Hemisphere of the Brain in Which a Stroke Has Occurred Visible in the Heart Rate Variability. Life. 2022; 12(10):1659. https://doi.org/10.3390/life12101659
Chicago/Turabian StyleAftyka, Joanna, Jacek Staszewski, Aleksander Dębiec, Aleksandra Pogoda-Wesołowska, Agata Kowalska, Anna Jankowska, and Jan Żebrowski. 2022. "The Hemisphere of the Brain in Which a Stroke Has Occurred Visible in the Heart Rate Variability" Life 12, no. 10: 1659. https://doi.org/10.3390/life12101659
APA StyleAftyka, J., Staszewski, J., Dębiec, A., Pogoda-Wesołowska, A., Kowalska, A., Jankowska, A., & Żebrowski, J. (2022). The Hemisphere of the Brain in Which a Stroke Has Occurred Visible in the Heart Rate Variability. Life, 12(10), 1659. https://doi.org/10.3390/life12101659