Evaluation of the Antimicrobial Activity of ZnO Nanoparticles against Enterotoxigenic Staphylococcus aureus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain
2.2. Preparation of ZnO NPs
2.3. Determination of the Effects of ZnO NPs against nuc Gene by PCR
2.4. Antimicrobial Activity of ZnO NPs
2.5. Minimum Inhibitory Concentrations (MIC) of ZnO NPs
2.6. Growth Inhibitory Effects of ZnO NPs against S. aureus
2.7. Determination of Effects of ZnO NPs against S. aureus Enterotoxin A by ELISA
2.8. Determination of the Effects of ZnO NPs against S. aureus Enterotoxin A (sea) Gene by PCR
2.9. The Effects of ZnO NP on Bacterial Cell Morphology
2.10. Statistical Analysis
3. Results
3.1. PCR Detection of nuc Gene
3.2. Antimicrobial Activity of ZnO NPs
3.3. Minimum Inhibitory Concentration (MIC)
3.4. Growth Inhibitory Effects of ZnO NPs against S. aureus
3.5. The effects of ZnO NPs against S. aureus Enterotoxin A by ELISA
3.6. Antibacterial Activity of ZnO NPs against S. aureus Enterotoxin A (sea) Gene by PCR
3.7. Effects of ZnO NPs on S. aureus Morphology by SEM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, G.C.; Worthing, K.A.; Ward, M.P.; Norris, J.M. Commensal Staphylococci including methicillin-resistant Staphylococcus aureus from dogs and cats in remote New South Wales. Aust. Microb. Ecol. 2020, 79, 164–174. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, S.; Kumar, V.; Datta, S.; Dhanjal, D.S.; Sharma, P.; Singh, J. Pathogenesis and Antibiotic Resistance of Staphylococcus aureus. In Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery; Springer: Singapore, 2020; pp. 99–115. [Google Scholar]
- Pohanka, M. QCM immunosensor for the determination of Staphylococcus aureus antigen. Chem. Pap. 2020, 74, 451–458. [Google Scholar] [CrossRef]
- Zhang, X.; Khan, I.M.; Ji, H.; Wang, Z.; Tian, H.; Cao, W.; Mi, W. A label-free fluorescent aptasensor for detection of Staphylococcal enterotoxin A based on aptamer-functionalized silver nanoclusters. Polymers 2020, 12, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesme, J.; Simonet, P. The soil resistome: A critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ. Microbiol. 2015, 17, 913–930. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; Alagawany, M.; Farag, M.R.; Arif, M.; Emam, M.; Dhama, K.; Sayab, M. Nutritional and pharmaceutical applications of nanotechnology: Trends and advances. Inter. J. Pharmacol. 2017, 13, 340–350. [Google Scholar]
- Abd El-Hack, M.E.; Alaidaroos, B.A.; Farsi, R.M.; Abou-Kassem, D.E.; El-Saadony, M.T.; Saad, A.M.; Ashour, E.A. Impacts of supplementing broiler diets with biological curcumin. zinc nanoparticles and Bacillus licheniformis on growth, carcass traits, blood indices, meat quality and cecal microbial load. Animals 2021, 11, 1878. [Google Scholar] [CrossRef]
- Saeed, M.; Abd El-Hack, M.E.; Alagawany, M.; Arain, M.A.; Arif, M.; Mirza, M.A.; Dhama, K. Chicory (Cichorium intybus) herb: Chemical composition. pharmacology, nutritional and healthical applications. Inter. J. Pharmacol. 2017, 13, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Al-Gabri, N.A.; Saghir, S.A.; Al-Hashedi, S.A.; El-Far, A.H.; Khafaga, A.F.; Swelum, A.A.; Abd El-Hack, M.E.; Naiel, M.A.; El-Tarabily, K.A. Therapeutic potential of thymoquinone and its nanoformulations in pulmonary injury: A comprehensive review. Inter. J. Nanomed. 2021, 16, 5117. [Google Scholar] [CrossRef]
- Salem, H.M.; Salaeh, N.M.; Ragni, M.; Swelum, A.A.; Alqhtani, A.H.; Abd El-Hack, M.E.; Attia, M.M. Incidence of gastrointestinal parasites in pigeons with an assessment of the nematocidal activity of chitosan nanoparticles against Ascaridia columbae. Poult. Sci. 2022, 101, 101820. [Google Scholar] [CrossRef]
- Yehia, N.; AbdelSabour, M.A.; Erfan, A.M.; Ali, Z.M.; Soliman, R.A.; Samy, A.; Abd El-Hack, M.E.; Ahmed, K.A. Selenium nanoparticles enhance the efficacy of homologous vaccine against the highly pathogenic avian influenza H5N1 virus in chickens. Saudi J. Biol. Sci. 2022, 29, 2095–2111. [Google Scholar] [CrossRef]
- Mehana, E.S.E.; Khafaga, A.F.; Elblehi, S.S.; Abd El-Hack, M.E.; Naiel, M.A.; Bin-Jumah, M.; Allam, A.A. Biomonitoring of heavy metal pollution using acanthocephalans parasite in ecosystem: An updated overview. Animals 2020, 10, 811. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Saad, A.M.; Salem, H.M.; Ashry, N.M.; Ghanima, M.M.A.; El-Tarabily, K.A. Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: A comprehensive review. Poult. Sci. 2021, 101, 101584. [Google Scholar] [CrossRef]
- Jin, S.E.; Jin, H.E. Antimicrobial activity of zinc oxide nano/microparticles and their combinations against pathogenic microorganisms for biomedical applications: From physicochemical characteristics to pharmacological aspects. Nanomaterials 2021, 11, 263. [Google Scholar] [CrossRef] [PubMed]
- Premanathan, M.; Karthikeyan, K.; Jeyasubramanian, K.; Manivannan, G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Aladaileh, S.H.; Khafaga, A.F.; Abd El-Hack, M.E.; Al-Gabri, N.A.; Abukhalil, M.H.; Alfwuaires, M.A.; Abdelnour, S. Spirulina platensis ameliorates the sub chronic toxicities of lead in rabbits via anti-oxidative, anti-inflammatory, and immune stimulatory properties. Sci. Total Environ. 2020, 701, 134879. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Ji, Y. PCR-based Approaches for the Detection of Clinical Methicillin-resistant Staphylococcus aureus. Open Microbiol. J. 2016, 10 (Suppl. 1), 45–56. [Google Scholar] [CrossRef] [Green Version]
- Arora, D.R. Text Book of Microbiology. In Cultural Characteristics of Staphylococcus spp. (202–2013), Aeromonas, Plesiomonas, 2nd ed.; Satish Kumar Jain for CBS Publishers: New Delhi, India, 2003; pp. 381–388. [Google Scholar]
- Quinn, P.J.; Markey, B.K.; Carter, M.E.; Donnelly, W.J.; Leonard, F.C.; Maguire, D. Veterinary Microbiology and Microbial Disease, 2nd ed.; Blackwell Science: Hoboken, NJ, USA, 2002. [Google Scholar]
- Valihrach, L.; Demnerova, K.; Karpiskova, R.; Melenova, I. The expression of selected genes encoding enterotoxins in Staphylococcus aureus strains. Czech. J. Food Sci. 2009, 27, 56–65. [Google Scholar] [CrossRef]
- Cho, J.I.; Jung, H.J.; Kim, Y.J.; Park, S.H.; Ha, S.D.; Kim, K.S. Detection of methicillin resistance in Staphylococcus aureus isolates using two-step triplex PCR and conventional methods. J. Microbiol. Biotechnol. 2007, 17, 673–676. [Google Scholar]
- Brakstad, O.G.; Aasbekk, K.S.; Maeland, J.A. Detection Staphylococcus aureus by polymerase chain reaction amplification of nuc gene for enterotoxins. J. Clin. Microbiol. 1992, 30, 1654–1660. [Google Scholar] [CrossRef] [Green Version]
- Khafaga, A.F.; Abd El-Hack, M.E.; Taha, A.E.; Elnesr, S.S.; Alagawany, M. The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry: A review. Environ. Sci. Pollut. Res. 2019, 26, 4588–4604. [Google Scholar] [CrossRef] [PubMed]
- Kantachote, D.; Charernjiratrakul, W. Selection of lactic acid bacteria from fermented plant beverages to use as inoculants for improving the quality of the finished product. Pakistan J. Biol. Sci. 2008, 11, 2545–2552. [Google Scholar] [CrossRef] [PubMed]
- Delbes, C.; Alomar, J.; Chougui, N.; Martin, J.-F.; Montel, M.C.H. Staphylococcus aureus growth and enterotoxin production during manufacture of cooked semihard cheese from cows’ milk. J. Food Protec. 2006, 69, 2161–2167. [Google Scholar] [CrossRef]
- Charlier, C.; Even, S.; Gautier, M.; LeLoir, Y. Acidification is not involved in the early inhibition of Staphylococcus aureus growth by Lactococcus lactis in milk. Inter. Dairy J. 2008, 18, 197–203. [Google Scholar] [CrossRef]
- Tayel, A.A.; El-Tras, W.F.; Moussa, S.; El-Baz, A.F.; Mahrous, H.; Salem, M.F.; Brimer, L. Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J. Food Saf. 2011, 31, 211–218. [Google Scholar] [CrossRef]
- Kadaikunnan, S.; Rejiniemon, T.; Khaled, J.; Alharbi, N.; Mothana, R. In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Ann. Clin. Microbiol. Antimicrob. 2015, 9, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Tayel, A.A.; Moussa, S.; Opwis, K.; Knittel, D.; Schollmeyer, E.; Nickisch-Hartfiel, A. Inhibition of microbial pathogens by fungal chitosan. Int. J. Biol. Macromol. 2010, 47, 10–14. [Google Scholar] [CrossRef]
- Food and Drug Administration “FDA” Evaluation and definition of potentially hazardous foods. In Analysis of Microbial Hazards Related to Time/Temperature Control of Food for Safety; Department of Health and Human Services; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–19.
- Chen, D.; Song, Q.; Xu, Z.; Zhang, D. Characterization of enterotoxin A-producing Staphylococcus aureus. Infect. Drug Resist. 2018, 11, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Rall, V.; Vieira, F.; Rall, R.; Vieitis, R.; Fernandes, A.; Candeias, J.; Cardoso, K.; Araujo, J. PCR detection of Staphylococcal enterotoxin genes in Staphylococcus aureus strains isolated from raw and pasteurized milk. Vet. Microbiol. 2008, 132, 408–413. [Google Scholar] [CrossRef]
- Marrie, T.J.; Costerton, J.W. Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. J. Clin. Microbiol. 1984, 19, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Feldman, D.; Ganon, J.; Haffman, R.; Simpson, J. The Solution for Data Analysis and Presentation Graphics, 2nd ed.; Abacus Lancripts, Inc.: Berkeley, CA, USA, 2003. [Google Scholar]
- Abd El-Hack, M.E.; Shafi, M.E.; Alghamdi, W.Y.; Abdelnour, S.A.; Shehata, A.M.; Ragni, M. Black soldier fly (Hermetia illucens) meal as a promising feed ingredient for poultry: A comprehensive review. Agriculture 2020, 10, 339. [Google Scholar] [CrossRef]
- Gunalan, S.; Sivaraj, R.; Rajendran, V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci. Mater. Inter. 2012, 22, 693–700. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Firouzabadi, F.B. Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens. Int. J. Dairy Technol. 2013, 66, 291–295. [Google Scholar] [CrossRef]
- Abd EL-Tawab, A.A.; Abo El-Roos, N.A.S.; El-Gendy, A.A.M. Effect of Zinc Oxide Nanoparticles on Staphylococcus aureus isolated from cows’ mastitic milk. BVMJ 2018, 35, 30–41. [Google Scholar]
- Saafan, E.; Amin, R.; Eleiwa, N.; El-Shater, M. Antibacterial Effect of Zinc Oxide Nanoparticles in Fresh Meat. Benha Vet. Med. J. 2019, 37, 50–53. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Amin, R.A.; Eleiwa, N.Z.; Rezk, H.G. Antibacterial Action of Zinc Oxide Nanoparticles against Staphylococcus aureus in Broiler Breast Fillet. Benha Vet. Med. J. 2017, 33, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Nisar, P.; Ali, N.; Rahman, L.; Ali, M.; Shinwari, Z.K. Antimicrobial activities of biologically synthesized metal nanoparticles: An insight into the mechanism of action. JBIC J. Biol. Inorgan Chem. 2019, 24, 929–941. [Google Scholar] [CrossRef]
- Li, W.; Geng, X.; Liu, D.; Li, Z. Near-infrared light-enhanced protease-conjugated gold nanorods as a photothermal antimicrobial agent for elimination of exotoxin and biofilms. Inter. J. Nanomed. 2019, 14, 8047–8058. [Google Scholar] [CrossRef] [Green Version]
- Findlay, F.; Pohl, J.; Svoboda, P.; Shakamuri, P.; McLean, K.; Inglis, N.F.; Proudfoot, L.; Barlow, P.G. Carbon nanoparticles inhibit the antimicrobial activities of the human cathelicidin LL-37 through structural alteration. J. Immunol. 2017, 199, 2483–2490. [Google Scholar] [CrossRef] [Green Version]
- Salama, D.M.; Osman, S.A.; Abd El-Aziz, M.E.; Abd Elwahed, M.S.A.; Shaaban, E.A. Effect of zinc oxide nanoparticles on the growth. genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatal. Agric. Biotechnol. 2019, 18, 101083. [Google Scholar] [CrossRef]
- Ghosh, M.; Jana, A.; Sinha, S.; Jothiramajayam, M.; Nag, A.; Chakraborty, A.; Mukherjee, A.; Mukherjee, A. Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat. Res. 2016, 807, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Saghalli, M.; Bidoki, S.K.; Jamali, A.; Bagheri, H.; Ghaemi, E.A. Sub-minimum inhibitory concentrations of Zinc Oxide Nanoparticles Reduce the Expression of the Staphylococcus aureus Alpha-Hemolysin. Indian J. Pharm. Sci. 2016, 78, 763–768. [Google Scholar] [CrossRef] [Green Version]
- Moghassem-Hamidi, R.; Hosseinzadeh, S.; Shekarforoush, S.S.; Poormontaseri, M.; Derakhshandeh, A. Association between the enterotoxin production and presence of coa. nuc genes among Staphylococcus aureus isolated from various sources, in Shiraz. Iranian J. Vet. Res. 2015, 16, 381–384. [Google Scholar]
- Manzoor, U.; Siddique, S.; Ahmed, R.; Noreen, Z.; Bokhari, H.; Ahmad, I. Antibacterial, Structural and Optical Characterization of Mechano-Chemically Prepared ZnO Nanoparticles. PLoS ONE 2016, 11, e0154704. [Google Scholar] [CrossRef]
- Rauf, M.A.; Owais, M.; Rajpoot, R.; Ahmad, F.; Khan, N.; Zubair, S. Biomimetically synthesized ZnO nanoparticles attain potent antibacterial activity against less susceptible S. aureus skin infection in experimental animals. RSC Adv. 2017, 7, 36361–36373. [Google Scholar] [CrossRef] [Green Version]
- Rauf, M.A.; Oves, M.; Rehman, F.U.; Khan, A.R.; Husain, N. Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomed. Pharmacother. 2019, 116, 108983. [Google Scholar] [CrossRef]
- Mohd Yusof, H.; Abdul Rahman, N.; Mohamad, R.; Hasanah Zaidan, U.; Samsudin, A.A. Antibacterial Potential of Biosynthesized Zinc Oxide Nanoparticles against Poultry-Associated Foodborne Pathogens: An In Vitro Study. Animals 2021, 11, 2093. [Google Scholar] [CrossRef]
Target Gene | Oligonucleotide Sequence (5′→3′) | Product Size (bp) | References |
---|---|---|---|
nuc (F) | 5′ GCGATTGATGGTGATACGGTT 3′ | 270 | Brakstad et al. [23] |
nuc (R) | 5′ AGCCAAGCCTTGACGAACTAAAGC 3′ |
Target Gene | Oligonucleotide Sequence (5′→3′) | Product Size (bp) | References |
---|---|---|---|
sea (F) | 5′ TTGGAAACGGTTAAAACGAA 3′ | 120 | Rall et al. [33] |
sea (R) | 5′ GAACCTTCCCATCAAAAACA 3′ |
S. aureus | Different Sizes of ZnO NPs (nm) | Diameter of the Inhibition Zone (mm) in Different Concentrations of ZnO NPs | |||
---|---|---|---|---|---|
20 | 10 | 5 | 2.5 | ||
105 CFU/mL | Control | 0 | 0 | 0 | 0 |
50 | 18 | 12 | 8 | 0 | |
20 | 26 | 22 | 16 | 6 | |
107 CFU/mL | Control | 0 | 0 | 0 | 0 |
50 | 16 | 6 | 5 | 0 | |
20 | 22 | 16 | 8 | 0 |
S. aureus | Different Sizes of ZnO NPs (nm) | MIC (mM) |
---|---|---|
105 CFU/mL | Control | 0 |
50 | 5 | |
20 | 2.5 | |
107 CFU/mL | Control | 0 |
50 | 5 | |
20 | 5 |
S. aureus | ZnO NPs Conc. (mM) ZnO NPs Size (nm) | 5 | 10 | ||
---|---|---|---|---|---|
Count | R% * | Count | R% | ||
105 CFU/mL | Control | 9.93 × 104 ± 0.81 × 104 | 0 | 9.83 × 104 ± 0.92 × 104 | 0 |
50 | 1.89 × 104 ± 0.25 × 104 | 80.97 | 1.31 × 104 ± 0.14 × 104 | 86.67 | |
20 | 1.02 × 104 ± 0.09 × 104 | 89.72 | 9.97 × 102 ± 0.86 × 102 | 98.99 | |
107 CFU/mL | Control | 9.87 × 106 ± 0.95 × 106 | 0 | 9.86 × 106 ± 0.79 × 106 | 0 |
50 | 3.70 × 106± 0.44 × 106 | 62.51 | 2.97 × 106 ± 0.36 × 106 | 69.88 | |
20 | 2.56 × 106 ± 0.27 × 106 | 74.06 | 1.19 × 106 ± 0.18 × 106 | 87.93 |
ZnO NPs Conc.(mM) ZnO NPs Size (nm) | 5 | 10 | ||
---|---|---|---|---|
S. aureus 105 CFU/mL | S. aureus 107 CFU/mL | S. aureus 105 CFU/mL | S. aureus 107 CFU/mL | |
50 | +0.49 | +0.37 | +0.58 | +0.43 |
20 | +0.65 | +0.51 | +0.76 | +0.62 |
S. aureus | ZnO NPs Conc.(mM) ZnO NPs Size(nm) | 5 | 10 | ||
---|---|---|---|---|---|
SEA Concentration | R% * | SEA Concentration | R% | ||
105 CFU/mL | Control | 3.83 ± 0.42 | 0 | 3.37 ± 0.29 | 0 |
50 | 0.93 ± 0.18 | 75.71 | 0 | 100 | |
20 | 0 | 100 | 0 | 100 | |
107 CFU/mL | Control | 9.72 ± 0.80 | 0 | 9.05 ± 0.73 | 0 |
50 | 4.01 ± 0.56 | 58.74 | 1.67 ± 0.24 | 81.56 | |
20 | 0.54 ± 0.07 | 94.44 | 0 | 100 |
ZnO NPs Conc.(mM) ZnO NPs Size(nm) | 5 | 10 | ||
---|---|---|---|---|
S. aureus 105 CFU/mL | S. aureus 107 CFU/mL | S. aureus 105 CFU/mL | S. aureus 107 CFU/mL | |
50 | +0.56 | +0.43 | +0.69 | +0.50 |
20 | +0.74 | +0.60 | +0.81 | +0.71 |
S. aureus | ZnO NPs Conc.(mM) ZnO NPs Size (nm) | 5 | 10 |
---|---|---|---|
105 CFU/mL | Control | +0.61 | +0.66 |
50 | +0.74 | +0.80 | |
20 | +0.82 | +0.89 | |
107 CFU/mL | Control | +0.54 | +0.57 |
50 | +0.69 | +0.76 | |
20 | +0.78 | +0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Masry, R.M.; Talat, D.; Hassoubah, S.A.; Zabermawi, N.M.; Eleiwa, N.Z.; Sherif, R.M.; Abourehab, M.A.S.; Abdel-Sattar, R.M.; Gamal, M.; Ibrahim, M.S.; et al. Evaluation of the Antimicrobial Activity of ZnO Nanoparticles against Enterotoxigenic Staphylococcus aureus. Life 2022, 12, 1662. https://doi.org/10.3390/life12101662
El-Masry RM, Talat D, Hassoubah SA, Zabermawi NM, Eleiwa NZ, Sherif RM, Abourehab MAS, Abdel-Sattar RM, Gamal M, Ibrahim MS, et al. Evaluation of the Antimicrobial Activity of ZnO Nanoparticles against Enterotoxigenic Staphylococcus aureus. Life. 2022; 12(10):1662. https://doi.org/10.3390/life12101662
Chicago/Turabian StyleEl-Masry, Reham M., Dalia Talat, Shahira A. Hassoubah, Nidal M. Zabermawi, Nesreen Z. Eleiwa, Rasha M. Sherif, Mohammed A. S. Abourehab, Randa M. Abdel-Sattar, Mohammed Gamal, Madiha S. Ibrahim, and et al. 2022. "Evaluation of the Antimicrobial Activity of ZnO Nanoparticles against Enterotoxigenic Staphylococcus aureus" Life 12, no. 10: 1662. https://doi.org/10.3390/life12101662
APA StyleEl-Masry, R. M., Talat, D., Hassoubah, S. A., Zabermawi, N. M., Eleiwa, N. Z., Sherif, R. M., Abourehab, M. A. S., Abdel-Sattar, R. M., Gamal, M., Ibrahim, M. S., & Elbestawy, A. (2022). Evaluation of the Antimicrobial Activity of ZnO Nanoparticles against Enterotoxigenic Staphylococcus aureus. Life, 12(10), 1662. https://doi.org/10.3390/life12101662