Prebiotic Chemistry Experiments Using Microfluidic Devices
Abstract
:1. Introduction
1.1. Components
- Accessories for introducing samples. Samples can be loaded in different ways: (i) manually, (ii) by integrated capillaries that transfer the fluid directly by vacuum, (iii) by capillaries connected via clamping or screwing; or (iv) by dispensing systems activated by short pressure pulses [34].
- Methods for pushing, mixing, and combining fluids. The dispositive needs components, either active or passive structures, arranged in such a manner that guide liquids through channels, channel networks, or chambers. Depending on the nature of the experiments, some adaptations can be made, including (but not limited to) microvalves installation (for blocking/unblocking channels), pumps (for promoting/increasing fluid flow), and micromixers [34]; micromixers can be active (requiring external activation) and passive mixers [35].
- Other components. All needed components can be added for processing or analyzing the samples. For example, samples can be sorted according to their size for filtration; in classic filtration, components transported on the flow are retained [34]. Filtration can also be accomplished in membranes [36] or by centrifugal forces in centrifugal platforms [37]. The inclusion of solid-phase chromatography extraction elements is also applied [38]. In microfluidic devices, sometimes it is necessary to measure and control the temperature [39].
1.2. Materials for Microfluidic Devices Construction
1.3. Basic Principles of Microfluidics
1.4. Types of Microfluidic Devices Configurations
2. Microfluidic Devices and Prebiotic Chemistry
2.1. Mineral Precipitation and Mineral Membranes on Hydrothermal Systems
Experiment Type | Device Description | Experimental | Findings | Reference |
---|---|---|---|---|
Mineral precipitation in hydrothermal systems | Parallel laminar flow, Y-shaped channel, external temperature control. | Ni(OH)2 mineral membranes form from NaOH and NiCl2 solutions, at different temperatures. | From T-10 to 40 °C, the effective diffusion coefficient is temperature independent. | [76] |
Mineral precipitation in hydrothermal systems | Parallel laminar flow, Y-shaped channel. | Membrane precipitation by alkaline inorganic phosphorous, acyl-phosphate solution, and acidic solution including cations (Fe2+, Fe3+, Ca2+, Mn2+, Co2+, Cu2+, Zn2+, or Ni2+). Precipitated membrane was incubated in a water bath for 1 h at 38 °C and analyzed. | Fe2+, other divalent cations and Fe3+ promote the formation of pyrophosphate from inorganic phosphorus and acyl-phosphate. | [75] |
Mineral precipitation in hydrothermal systems | Parallel laminar flow, Y-shaped channel, heated by a heating plate. | Membranes formed from alkaline (Na2S, Na6Si2O7, pH 11) and acidic (FeCl2, NiCl2, and NaHCO3, pH 6) solutionsH2 were introduced into the alkaline solution. | Fe(Ni)S mineral membrane and a pH gradient of 5 units formed. The reaction between H2 and CO2 at the mineral was not possible at atmospheric pressure. | [79] |
Mineral precipitation in hydrothermal systems | Parallel laminar flow, Y-shaped channel, heated by a plate. | Membranes formed by alkaline (pH 11, Na2S, K2HPO4, Na2MoO4, H2 at atmospheric pressure) and acidic (pH 6, FeCl2, NiCl2, and CO2 at atmospheric pressure) solutions. The reaction times were 0, 0.5,1, 2, 5, 12 and 24 h. | CO2 reduction was not achieved in the presence of the Fe(Ni)S membrane. High pressures of H2 are required to achieve CO2 reduction. | [78] |
Mineral precipitation in hydrothermal systems | Parallel laminar flow, Y-shaped channel, microfluidic pumps driven by pressure. | n alkaline (pH 12.3, Na2S, Na2Si3O7, degassed water, 1.5 bar of H2) and acidic (pH 3.9, FeCl2, NiCl2, 1.5 bar of CO2) solutions. | CO2 reduced to formate in a Fe(Ni)S mineral membrane promoted by a pH gradient. H2 oxidation, and movement of electrons across the mineral membrane to reduceCO2. | [80] |
Mineral precipitation in hydrothermal systems | Parallel laminar flow, Y-shaped channel. | Membranes from NaOH and MnCl2 solutions at different concentrations. A theoretical model of electron transport was made. | The waviness enhances the diffusion across the Mn(OH)2 membrane. | [77] |
Pores in rocks in hydrothermal systems | Parallel laminar flow, Y-shaped channel, platinum electrodes for electric potential measurement. | Na2S at pH 11.8 and a FeCl2 at pH 5.8 solutions. | A chemical gradient, 6 pH units of difference, at a micrometric scale. Precipitation reaction stabilizes the pH gradient and makes it larger. | [73] |
2.2. Prebiotic Chemistry Experiments with Droplet-Based Microfluidic Devices
Experiment Type | Device Description | Experimental | Findings | Reference |
---|---|---|---|---|
Cellular compartmentalization models | Double droplet generator, flow-focusing channel arrangement, microchamber, droplet size sorting (pressurized air), droplet spitter, and fuser. | Water and glycyl-glycine droplets created and incubated in the microchamber. | Osmotic exchange between water and glycyl-glycine droplets. Glycyl-glycine grows at expense of water droplets. | [92] |
Cellular compartmentalization models | Flow-focusing geometry. | DNA oligonucleotides labeled (fluorescein or cyanine) added to a flow of coacervates (poly(dialyl dimethylammon ium chloride)), ATP or carboxymethyl-dextran]. | Two populations of DNA oligonucleotides coexist near each other without genetic information exchange for up to 48 h. | [95] |
Reaction networks evolution | Four devices: (i) “T” junction, (ii) droplet fusion by electrocoalescence and incubation, (iii) droplet split, and (iv) droplet fusion by electrocoalescence and incubation. | Microdroplets with catalytic RNAs fragments and hairpin RNA reporters, incubated (48 °C/1 h) and split. Labeled with barcoded DNA and incubated (60°/1 h). RNA fraction of each droplet measured by next-generation DNA barcoded sequencing. | The final fraction of RNA species depends on the composition of the network. Networks with greater yield show fewer perturbations. | [93] |
Prebiotic synthesis | Two devices: (i) sparyer similar to ESSI a, connected MS b, (ii) cylindrical chamber, ceramic atomizer, heating tape. | Nebulization of a solution (adenosine, guanosine, uridine, cytidine, KH2PO4) with the two devices. | Produced microdroplets have negative ∆G, allowing ribonucleosides phosphorylation and polymerization under ambient conditions. | [96] |
2.3. Prebiotic Chemistry Experiments in Microfluidic Devices with Microchambers
Experiment Type | Device Description | Experimental | Findings | Reference |
---|---|---|---|---|
Simulation of Pores in rocks in hydrothermal systems | Thermal trap. A microchamber heated by an infrared laser. | Fluorescent-stained DNA heated in the capillary, under a temperature gradient. | DNA thermal diffusion coefficient was measured. DNA accumulates in the lower part of the chamber, near the heating spot (from nmol/L to µmol/L). | [100] |
Pores in rocks in hydrothermal systems | Thermal trap. Borosilicate capillary embedded in immersion oil and inserted between a silicon plate and a sapphire cover. An infrared laser as heat source. | PCR a solution and DNA oligonucleotide templates (random sequences) stained with fluorescent dye heated by a temperature difference of 27 K. | Temperature gradients trigger replication and accumulation of short DNA by thermophoresis and convection. | [105] |
Pores in rocks in hydrothermal systems | Thermal trap. Borosilicate capillary embedded in immersion oil, inserted between silicon plate and sapphire cover. Infrared laser as heat source. | Double-chain DNA segments capable of reversible union by hybridization heated. | Thermal gradient promotes DNA accumulation and polymerization | [106] |
Pores in rocks in hydrothermal systems | Thermal trap. Borosilicate capillary inserted between two metallic plates, temperature controlled heated on one side and cooling the other side. | DNA, Taq polymerase, fluorescent dye heated with temperature gradients (38 °C to 71 °C). DNA in PCR buffer (6 µm/s flow) heated with gradients (36–73 °C; 61–94 °C). | Temperature gradients promote replication of DNA oligonucleotides with a sequence length. Long-over short sequences are preferred. | [101] |
Pores in rocks in hydrothermal systems | Three inlets, two outlets, ten pairs of asymmetric inclined microchambers, allowing microvortice formation. | BTAC b and DMF c introduced (1 mL/h) in the central inlet. DMF/H2O is introduced (30 mL/h; 40 °C) at the side inlets. TPPS4 d, H2SO4, and H2O injected (30 mL/h) in the side inlets, and in central inlet, a C2mim+ e and HCl dissolution (1 mL/h). | Chiral microvortices created in the microchambers induce hydrodynamic selection of enantiomers in supramolecular systems composed of non-chiral molecules. | [109] |
Pores in rocks in hydrothermal systems | Thermal trap. Microchamber made of Teflon and placed between a sapphire plate (heated) and a silicon plate (cooled). | Microchamber filled with air and dissolution of DNA chains (labeled with a chromophore) on a salt buffer (EDTA and NaCl), a temperature gradient from 9 °C to 15 °C was applied. | Formation of a mini water cycle analog that induces fluctuations in salt concentrations in the air–water interface promoting periodic separation of DNA strands below their melting temperature. | [107] |
Pores in rocks in hydrothermal systems | Thermal traps. Corrugated microchambers (PETG plastic, UV-curable resin, or Teflon) sandwiched between sapphire (heated) and silicon (cooled) plates. | Temperature gradients applied. Devices filled with gas and solutions of DNA, RNA, ribozymes, ribose aminooxazoline, cytidine nucleosides, and monoammonium phosphate or vesicles (oleic acid or 1,2-Dioleoyl-sn-glycero-3-phosphocholine and oligonucleotides). | DNA and RNA form hydrogels and ribozymes, increase catalytic activity at the gas–water interface. Nucleotide encapsulation in vesicles, ribose aminooxazoline crystallization, and cytidine nucleosides phosphorylation. | [104] |
Cellular compartmentalization | Arrangement of serial channels and microchambers. | Liposomes of phospholipids, cholesterol, and fluorescent dye doped with fructose trapped in the microchambers, exposed to a uranine/fructose and fluorescein-12-adenosine triphosphate solution (ATP analog) different flows and pH. | Fructose, uranine, and ATP analog accumulation in the liposomes, even against concentration gradient (between liposome and exterior). | [110] |
Pores in rocks in hydrothermal systems | Thermal traps. Triangular PTFE plastic sheets placed between sapphire (heated) and silicon (cooled) plates. | Different coacervates compositions (CM-Dex f or ATP, with pLys g or PDDA h in Na++bicine or tris buffer), temperature gradient, gas volume, and microchamber thickness. Some experiments included RNA. | The fusion, accumulation, and division of coacervates occurred at the gas–water interface. Two coacervate populations can be separated: in the gas–water coacervates of RNA, CM-Dex, and pLys; in the bulk, coacervates of RNA and pLys. | [102] |
Pores in rocks in hydrothermal systems | Thermal trap. Cut Teflon sheet placed between a silicon plate (covered with Teflon) and a sapphire plate. Thermal gradient by differential heating of plates. | Microchamber was filled with CO2 at different pressures and solutions Lysosensor Yellow/blue dye, RNA, MgCl2, and buffer Tris; and DNA nucleotides, Taq polymerase, complementary primers, MgCl2, Tris Buffer, KCl, and (NH4)2SO4. Temperature gradients (5 °C to 17 °C). | Dew cycle generation. In dewRNA or DNA, melting is favored, in the bulk solution. Emergence of larger DNA strands was observed. | [108] |
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitesides, G.M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.-T.; Shaegh, S.A.M.; Kashaninejad, N.; Phan, D.-T. Design, Fabrication and Characterization of Drug Delivery Systems Based on Lab-on-a-Chip Technology. Adv. Drug Deliv. Rev. 2013, 65, 1403–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsui, J.H.; Lee, W.; Pun, S.H.; Kim, J.; Kim, D.-H. Microfluidics-Assisted in Vitro Drug Screening and Carrier Production. Adv. Drug Deliv. Rev. 2013, 65, 1575–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamdallah, S.I.; Zoqlam, R.; Erfle, P.; Blyth, M.; Alkilany, A.M.; Dietzel, A.; Qi, S. Microfluidics for Pharmaceutical Nanoparticle Fabrication: The Truth and the Myth. Int. J. Pharm. 2020, 584, 119408. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M. Fabrication and Applications of Microfluidic Devices: A Review. Int. J. Mol. Sci. 2021, 22, 2011. [Google Scholar] [CrossRef]
- Beebe, D.; Mensing, G.; Walker, G. Physics and Applications of Microfluidics in Biology. Annu. Rev. Biomed. Eng. 2002, 4, 261–286. [Google Scholar] [CrossRef]
- Holmes, D.; Gawad, S. The Application of Microfluidics in Biology. In Microengineering in Biotechnology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 55–80. [Google Scholar]
- Jakeway, S.C.; de Mello, A.J.; Russell, E.L. Miniaturized Total Analysis Systems for Biological Analysis. Fresenius J. Anal. Chem. 2000, 366, 525–539. [Google Scholar] [CrossRef]
- Mu, X.; Zheng, W.; Sun, J.; Zhang, W.; Jiang, X. Microfluidics for Manipulating Cells. Small 2013, 9, 9–21. [Google Scholar] [CrossRef]
- Weibel, D.B.; Whitesides, G.M. Applications of Microfluidics in Chemical Biology. Curr. Opin. Chem. Biol. 2006, 10, 584–591. [Google Scholar] [CrossRef]
- Marre, S.; Roig, Y.; Aymonier, C. Supercritical Microfluidics: Opportunities in Flow-through Chemistry and Materials Science. J. Supercrit. Fluids 2012, 66, 251–264. [Google Scholar] [CrossRef]
- Kurniawan, Y.S.; Imawan, A.C.; Rao, S.R.; Ohto, K.; Iwasaki, W.; Miyazaki, M. Jumina Microfluidics Era in Chemistry Field: A Review. J. Indones. Chem. Soc. 2019, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Verpoorte, E. Microfluidic Chips for Clinical and Forensic Analysis. Electrophoresis 2002, 23, 677–712. [Google Scholar] [CrossRef]
- Horsman, K.M.; Bienvenue, J.M.; Blasier, K.R.; Landers, J.P. Forensic DNA Analysis on Microfluidic Devices: A Review. J. Forensic Sci. 2007, 52, 784–799. [Google Scholar] [CrossRef]
- Bruijns, B.; Van Asten, A.; Tiggelaar, R.; Gardeniers, H. Microfluidic Devices for Forensic DNA Analysis: A Review. Biosensors 2016, 6, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivet, C.; Lee, H.; Hirsch, A.; Hamilton, S.; Lu, H. Microfluidics for Medical Diagnostics and Biosensors. Chem. Eng. Sci. 2011, 66, 1490–1507. [Google Scholar] [CrossRef]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The Present and Future Role of Microfluidics in Biomedical Research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef]
- Van den Berg, A.; Segerink, L. Microfluidics for Medical Applications; Nanoscience & Nanotechnology Series; The Royal Society of Chemistry: London, UK, 2014; p. 303. ISBN 978-1-84973-637-4. [Google Scholar]
- Yamada, K.; Shibata, H.; Suzuki, K.; Citterio, D. Toward Practical Application of Paper-Based Microfluidics for Medical Diagnostics: State-of-the-Art and Challenges. Lab A Chip 2017, 17, 1206–1249. [Google Scholar] [CrossRef]
- Alhalaili, B.; Popescu, I.N.; Rusanescu, C.O.; Vidu, R. Microfluidic Devices and Microfluidics-Integrated Electrochemical and Optical (Bio) Sensors for Pollution Analysis: A Review. Sustainability 2022, 14, 12844. [Google Scholar] [CrossRef]
- Kudr, J.; Zitka, O.; Klimanek, M.; Vrba, R.; Adam, V. Microfluidic Electrochemical Devices for Pollution Analysis–A Review. Sens. Actuators B: Chem. 2017, 246, 578–590. [Google Scholar] [CrossRef]
- Poenar, D.P. Microfluidic and Micromachined/MEMS Devices for Separation, Discrimination and Detection of Airborne Particles for Pollution Monitoring. Micromachines 2019, 10, 483. [Google Scholar] [CrossRef]
- Dittrich, P.S.; Manz, A. Lab-on-a-Chip: Microfluidics in Drug Discovery. Nat. Rev. Drug Discov. 2006, 5, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Riahi, R.; Tamayol, A.; Shaegh, S.A.M.; Ghaemmaghami, A.M.; Dokmeci, M.R.; Khademhosseini, A. Microfluidics for Advanced Drug Delivery Systems. Curr. Opin. Chem. Eng. 2015, 7, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Warden, A.R.; Ding, X. Recent Advances in Microfluidics for Drug Screening. Biomicrofluidics 2019, 13, 061503. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, E.; Weaver, E.; Meziane, A.; Lamprou, D.A. Microfluidics Technology for the Design and Formulation of Nanomedicines. Nanomaterials 2021, 11, 3440. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Chen, H.; Yu, S.; Jiang, X.; Kong, J. Predicting Viruses Accurately by a Multiplex Microfluidic Loop-Mediated Isothermal Amplification Chip. Anal. Chem. 2011, 83, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, N.; Torii, M.; Uebayashi, Y.; Nasu, M. Rapid, Semiautomated Quantification of Bacterial Cells in Freshwater by Using a Microfluidic Device for on-Chip Staining and Counting. Appl. Environ. Microbiol. 2011, 77, 1536–1539. [Google Scholar] [CrossRef] [Green Version]
- Nilghaz, A.; Mousavi, S.M.; Li, M.; Tian, J.; Cao, R.; Wang, X. Paper-Based Microfluidics for Food Safety and Quality Analysis. Trends Food Sci. Technol. 2021, 118, 273–284. [Google Scholar] [CrossRef]
- Baret, J.-C. Surfactants in Droplet-Based Microfluidics. Lab A Chip 2012, 12, 422–433. [Google Scholar] [CrossRef]
- Chován, T.; Guttman, A. Microfabricated Devices in Biotechnology and Biochemical Processing. Trends Biotechnol. 2002, 20, 116–122. [Google Scholar] [CrossRef]
- Vaccari, L.; Birada, G.; Grenci, G.; Pacor, S.; Businaro, L. Synchrotron Radiation Infrared Microspectroscopy of Single Living Cells in Microfluidic Devices: Advantages, Disadvantages and Future Perspectives. J. Phys. Conf. Ser. 2012, 359, 012007. [Google Scholar] [CrossRef]
- Bragheri, F.; Martínez Vázquez, R.; Osellame, R. Chapter 12.3—Microfluidics. In Three-Dimensional Microfabrication Using Two-Photon Polymerization, 2nd ed.; Baldacchini, T., Ed.; Micro and Nano Technologies; William Andrew Publishing: Oxford, UK, 2020; pp. 493–526. ISBN 978-0-12-817827-0. [Google Scholar]
- Neumann, C.; Rapp, B.E. Fluidic Platforms and Components of Lab-on-a-Chip Devices. In Lab-on-a-Chip Devices and Micro-Total Analysis Systems; Springer: Berlin/Heidelberg, Germany, 2015; pp. 83–139. [Google Scholar]
- Lee, C.-Y.; Chang, C.-L.; Wang, Y.-N.; Fu, L.-M. Microfluidic Mixing: A Review. Int. J. Mol. Sci. 2011, 12, 3263–3287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jong, J.; Lammertink, R.G.; Wessling, M. Membranes and Microfluidics: A Review. Lab A Chip 2006, 6, 1125–1139. [Google Scholar] [CrossRef] [PubMed]
- Strohmeier, O.; Emperle, A.; Roth, G.; Mark, D.; Zengerle, R.; von Stetten, F. Centrifugal Gas-Phase Transition Magnetophoresis (GTM)–a Generic Method for Automation of Magnetic Bead Based Assays on the Centrifugal Microfluidic Platform and Application to DNA Purification. Lab A Chip 2013, 13, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Huh, Y.S.; Choi, J.H.; Park, T.J.; Hong, Y.K.; Hong, W.H.; Lee, S.Y. Microfluidic Cell Disruption System Employing a Magnetically Actuated Diaphragm. Electrophoresis 2007, 28, 4748–4757. [Google Scholar] [CrossRef]
- Kutter, J.P.; Mogensen, K.B.; Klank, H.; Geschke, O. Chapter 4— Microfluidics–Components. In Microsyst. Eng. Lab-A-Chip Devices; Geschke, O., Klank, H., Telleman, P., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003; pp. 39–77. ISBN 9783527601653. [Google Scholar]
- Nielsen, J.B.; Hanson, R.L.; Almughamsi, H.M.; Pang, C.; Fish, T.R.; Woolley, A.T. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal. Chem. 2019, 92, 150–168. [Google Scholar] [CrossRef]
- Campbell, S.B.; Wu, Q.; Yazbeck, J.; Liu, C.; Okhovatian, S.; Radisic, M. Beyond Polydimethylsiloxane: Alternative Materials for Fabrication of Organ-on-a-Chip Devices and Microphysiological Systems. ACS Biomater. Sci. Eng. 2021, 7, 2880–2899. [Google Scholar] [CrossRef]
- Nguyen, N.-T.; Wereley, S.T.; Shaegh, S.A.M. Fundamentals and Applications of Microfluidics, 3rd ed.; Artech House: Boston, MA, USA, 2019; ISBN 978-1-63081-365-9. [Google Scholar]
- Newman, J. Physics of the Life Sciences; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; ISBN 978-0-387-77258-5. [Google Scholar]
- Mott, R.L. Mecánica de Fluidos Aplicada, 4th ed.; Prentice Hall Hispanoamericana: Edo. Mex, Mexico, 1996; ISBN 978-968-880-542-8. [Google Scholar]
- Wang, Q.; Steinbock, O. Materials Synthesis and Catalysis in Microfluidic Devices: Prebiotic Chemistry in Mineral Membranes. ChemCatChem 2020, 12, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Corliss, J.B.; Dymond, J.; Gordon, L.I.; Edmond, J.M.; von Herzen, R.P.; Ballard, R.D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; et al. Submarine Thermal Springs on the Galápagos Rift. Science 1979, 203, 1073–1083. [Google Scholar] [CrossRef]
- Baross, J.A.; Hoffman, S.E. Submarine Hydrothermal Vents and Associated Gradient Environments as Sites for the Origin and Evolution of Life. Orig. Life Evol Biosph. 1985, 15, 327–345. [Google Scholar] [CrossRef]
- RUSSELL, M.J.; HALL, A.J. The Emergence of Life from Iron Monosulphide Bubbles at a Submarine Hydrothermal Redox and PH Front. J. Geol. Soc. 1997, 154, 377–402. [Google Scholar] [CrossRef]
- Corliss, J.B.; Baross, J.; Hoffman, S. An Hypothesis Concerning the Relationships between Submarine Hot Springs and the Origin of Life on Earth. Oceanol. Acta Spec. Issue 1981, 59–69. [Google Scholar]
- Russell, M.J.; Daniel, R.M.; Hall, A.J. On the Emergence of Life via Catalytic Iron-Sulphide Membranes. Terra Nova 1993, 5, 343–347. [Google Scholar] [CrossRef]
- Wächtershäuser, G. Before Enzymes and Templates: Theory of Surface Metabolism. Microbiol. Rev. 1988, 52, 452–484. [Google Scholar] [CrossRef]
- Wächtershäuser, G. Pyrite Formation, the First Energy Source for Life: A Hypothesis. Syst. Appl. Microbiol. 1988, 10, 207–210. [Google Scholar] [CrossRef]
- Omran, A.; Pasek, M. A Constructive Way to Think about Different Hydrothermal Environments for the Origins of Life. Life 2020, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Barge, L.M.; Flores, E.; Baum, M.M.; VanderVelde, D.G.; Russell, M.J. Redox and PH Gradients Drive Amino Acid Synthesis in Iron Oxyhydroxide Mineral Systems. Proc. Natl. Acad. Sci. USA 2019, 116, 4828–4833. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, J.H.E.; Russell, M.J. The Origin of Life: The Submarine Alkaline Vent Theory at 30. Interface Focus 2019, 9, 20190104. [Google Scholar] [CrossRef]
- Colín-García, M.; Villafañe-Barajas, S.; Camprubí, A.; Ortega-Gutiérrez, F.; Colás, V.; Negrón-Mendoza, A. Prebiotic Chemistry in Hydrothermal Vent Systems; Routledge Handbooks Online: London, UK, 2018; ISBN 978-1-138-06512-3. [Google Scholar]
- Little, S.A.; Stolzenbach, K.D.; Von Herzen, R.P. Measurements of Plume Flow from a Hydrothermal Vent Field. J. Geophys. Res. Solid Earth 1987, 92, 2587–2596. [Google Scholar] [CrossRef]
- Feely, R.A.; Lewison, M.; Massoth, G.J.; Robert-Baldo, G.; Lavelle, J.W.; Byrne, R.H.; Von Damm, K.L.; Curl Jr., H. C. Composition and Dissolution of Black Smoker Particulates from Active Vents on the Juan de Fuca Ridge. J. Geophys. Res. Solid Earth 1987, 92, 11347–11363. [Google Scholar] [CrossRef]
- Kelley, D.S.; Karson, J.A.; Früh-Green, G.L.; Yoerger, D.R.; Shank, T.M.; Butterfield, D.A.; Hayes, J.M.; Schrenk, M.O.; Olson, E.J.; Proskurowski, G.; et al. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field. Science 2005, 307, 1428–1434. [Google Scholar] [CrossRef]
- Kelley, D.S.; Karson, J.A.; Blackman, D.K.; Früh-Green, G.L.; Butterfield, D.A.; Lilley, M.D.; Olson, E.J.; Schrenk, M.O.; Roe, K.K.; Lebon, G.T.; et al. An Off-Axis Hydrothermal Vent Field near the Mid-Atlantic Ridge at 30° N. Nature 2001, 412, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Altair, T.; Borges, L.G.F.; Galante, D.; Varela, H. Experimental Approaches for Testing the Hypothesis of the Emergence of Life at Submarine Alkaline Vents. Life 2021, 11, 777. [Google Scholar] [CrossRef]
- Martin, W.; Russell, M.J. On the Origin of Biochemistry at an Alkaline Hydrothermal Vent. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1887–1926. [Google Scholar] [CrossRef] [PubMed]
- Villafañe-Barajas, S.A.; Colín-García, M. Submarine Hydrothermal Vent Systems: The Relevance of Dynamic Systems in Chemical Evolution and Prebiotic Chemistry Experiments. Int. J. Astrobiol. 2021, 20, 427–434. [Google Scholar] [CrossRef]
- Barge, L.M.; Doloboff, I.J.; Russell, M.J.; VanderVelde, D.; White, L.M.; Stucky, G.D.; Baum, M.M.; Zeytounian, J.; Kidd, R.; Kanik, I. Pyrophosphate Synthesis in Iron Mineral Films and Membranes Simulating Prebiotic Submarine Hydrothermal Precipitates. Geochim. Cosmochim. Acta 2014, 128, 1–12. [Google Scholar] [CrossRef]
- Burcar, B.T.; Barge, L.M.; Trail, D.; Watson, E.B.; Russell, M.J.; McGown, L.B. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems. Astrobiology 2015, 15, 509–522. [Google Scholar] [CrossRef]
- Herschy, B.; Whicher, A.; Camprubi, E.; Watson, C.; Dartnell, L.; Ward, J.; Evans, J.R.G.; Lane, N. An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents. J. Mol. Evol. 2014, 79, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Mielke, R.E.; Russell, M.J.; Wilson, P.R.; McGlynn, S.E.; Coleman, M.; Kidd, R.; Kanik, I. Design, Fabrication, and Test of a Hydrothermal Reactor for Origin-of-Life Experiments. Astrobiology 2010, 10, 799–810. [Google Scholar] [CrossRef]
- Mattia Bizzarri, B.; Botta, L.; Pérez-Valverde, M.I.; Saladino, R.; Di Mauro, E.; García-Ruiz, J.M. Silica Metal Oxide Vesicles Catalyze Comprehensive Prebiotic Chemistry. Chem.-A Eur. J. 2018, 24, 8126–8132. [Google Scholar] [CrossRef]
- Barge, L.M.; Abedian, Y.; Doloboff, I.J.; Nuñez, J.E.; Russell, M.J.; Kidd, R.D.; Kanik, I. Chemical Gardens as Flow-through Reactors Simulating Natural Hydrothermal Systems. JoVE J. Vis. Exp. 2015, 105, e53015. [Google Scholar] [CrossRef] [Green Version]
- Borrego-Sánchez, A.; Gutiérrez-Ariza, C.; Sainz-Díaz, C.I.; Cartwright, J.H.E. The Effect of the Presence of Amino Acids on the Precipitation of Inorganic Chemical-Garden Membranes: Biomineralization at the Origin of Life. Langmuir 2022, 38, 10538–10547. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, J.H.E.; García-Ruiz, J.M.; Novella, M.L.; Otálora, F. Formation of Chemical Gardens. J. Colloid Interface Sci. 2002, 256, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Batista, B.C.; Steinbock, O. Growing Inorganic Membranes in Microfluidic Devices: Chemical Gardens Reduced to Linear Walls. J. Phys. Chem. C 2015, 119, 27045–27052. [Google Scholar] [CrossRef]
- Möller, F.M.; Kriegel, F.; Kieß, M.; Sojo, V.; Braun, D. Steep PH Gradients and Directed Colloid Transport in a Microfluidic Alkaline Hydrothermal Pore. Angew. Chem. Int. Ed. 2017, 56, 2340–2344. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bentley, M.R.; Steinbock, O. Self-Organization of Layered Inorganic Membranes in Microfluidic Devices. J. Phys. Chem. C 2017, 121, 14120–14127. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Barge, L.M.; Steinbock, O. Microfluidic Production of Pyrophosphate Catalyzed by Mineral Membranes with Steep PH Gradients. Chem.–A Eur. J. 2019, 25, 4732–4739. [Google Scholar] [CrossRef]
- Wang, Q.; Steinbock, O. Chemical Garden Membranes in Temperature-Controlled Microfluidic Devices. Langmuir 2021, 37, 2485–2493. [Google Scholar] [CrossRef]
- Ding, Y.; Batista, B.; Steinbock, O.; Cartwright, J.H.E.; Cardoso, S.S.S. Wavy Membranes and the Growth Rate of a Planar Chemical Garden: Enhanced Diffusion and Bioenergetics. Proc. Natl. Acad. Sci. USA 2016, 113, 9182–9186. [Google Scholar] [CrossRef] [Green Version]
- Sojo, V.; Ohno, A.; McGlynn, S.E.; Yamada, Y.M.A.; Nakamura, R. Microfluidic Reactors for Carbon Fixation under Ambient-Pressure Alkaline-Hydrothermal-Vent Conditions. Life 2019, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Vasiliadou, R.; Dimov, N.; Szita, N.; Jordan, S.F.; Lane, N. Possible Mechanisms of CO2 Reduction by H2 via Prebiotic Vectorial Electrochemistry. Interface Focus 2019, 9, 20190073. [Google Scholar] [CrossRef] [Green Version]
- Hudson, R.; de Graaf, R.; Rodin, M.S.; Ohno, A.; Lane, N.; McGlynn, S.E.; Yamada, Y.M.A.; Nakamura, R.; Barge, L.M.; Braun, D.; et al. CO2 Reduction Driven by a PH Gradient. Proc. Natl. Acad. Sci. USA 2020, 117, 22873–22879. [Google Scholar] [CrossRef] [PubMed]
- Ganti, T. The Principles of Life; OUP Oxford: Oxford, UK, 2003; ISBN 978-0-19-850726-0. [Google Scholar]
- Patel, B.H.; Percivalle, C.; Ritson, D.J.; Duffy, C.D.; Sutherland, J.D. Common Origins of RNA, Protein and Lipid Precursors in a Cyanosulfidic Protometabolism. Nat. Chem 2015, 7, 301–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohorille, A.; Deamer, D. Self-Assembly and Function of Primitive Cell Membranes. Res. Microbiol. 2009, 160, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Szostak, J.W. An Optimal Degree of Physical and Chemical Heterogeneity for the Origin of Life? Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2894–2901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, I.A.; Walde, P. From Self-Assembled Vesicles to Protocells. Cold Spring Harb Perspect Biol. 2010, 2, a002170. [Google Scholar] [CrossRef]
- Lopez, A.; Fiore, M. Investigating Prebiotic Protocells for a Comprehensive Understanding of the Origins of Life: A Prebiotic Systems Chemistry Perspective. Life 2019, 9, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, P.; Wang, L. Passive and Active Droplet Generation with Microfluidics: A Review. Lab A Chip 2017, 17, 34–75. [Google Scholar] [CrossRef] [PubMed]
- Teh, S.-Y.; Lin, R.; Hung, L.-H.; Lee, A.P. Droplet Microfluidics. Lab Chip 2008, 8, 198–220. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Wubshet, N.; Liu, A.P. Encapsulation of Complex Solutions Using Droplet Microfluidics towards the Synthesis of Artificial Cells. J. Micromech. Microeng. 2019, 29, 083001. [Google Scholar] [CrossRef]
- Zeng, S.; Liu, X.; Xie, H.; Lin, B. Basic Technologies for Droplet Microfluidics. In Microfluidics: Technologies and Applications; Lin, B., Ed.; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2011; pp. 69–90. ISBN 978-3-642-23050-9. [Google Scholar]
- Jia, T.Z.; Caudan, M.; Mamajanov, I. Origin of Species before Origin of Life: The Role of Speciation in Chemical Evolution. Life 2021, 11, 154. [Google Scholar] [CrossRef]
- Doran, D.; Rodriguez-Garcia, M.; Turk-MacLeod, R.; Cooper, G.J.T.; Cronin, L. A Recursive Microfluidic Platform to Explore the Emergence of Chemical Evolution. Beilstein. J. Org. Chem. 2017, 13, 1702–1709. [Google Scholar] [CrossRef] [PubMed]
- Ameta, S.; Arsène, S.; Foulon, S.; Saudemont, B.; Clifton, B.E.; Griffiths, A.D.; Nghe, P. Darwinian Properties and Their Trade-Offs in Autocatalytic RNA Reaction Networks. Nat. Commun. 2021, 12, 842. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.-N. Complex Coacervates as Artificial Membraneless Organelles and Protocells. Biomicrofluidics 2020, 14, 051301. [Google Scholar] [CrossRef] [PubMed]
- van Swaay, D.; Tang, T.-Y.D.; Mann, S.; de Mello, A. Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water. Angew Chem. Int. Ed. Engl. 2015, 54, 8398–8401. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Zhang, H.; Wang, W.; Liu, Q.; Yu, K.; Kan, G.; Liu, L.; Jiang, J. Aqueous-Microdroplet-Driven Abiotic Synthesis of Ribonucleotides. J. Phys. Chem. Lett. 2022, 13, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Carugo, D.; Bottaro, E.; Owen, J.; Stride, E.; Nastruzzi, C. Liposome Production by Microfluidics: Potential and Limiting Factors. Sci. Rep. 2016, 6, 25876. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Chen, X. A Review on Microdroplet Generation in Microfluidics. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 247. [Google Scholar] [CrossRef]
- Stüeken, E.E.; Anderson, R.E.; Bowman, J.S.; Brazelton, W.J.; Colangelo-Lillis, J.; Goldman, A.D.; Som, S.M.; Baross, J.A. Did Life Originate from a Global Chemical Reactor? Geobiology 2013, 11, 101–126. [Google Scholar] [CrossRef]
- Braun, D.; Libchaber, A. Trapping of DNA by Thermophoretic Depletion and Convection. Phys. Rev. Lett. 2002, 89, 188103. [Google Scholar] [CrossRef] [Green Version]
- Kreysing, M.; Keil, L.; Lanzmich, S.; Braun, D. Heat Flux across an Open Pore Enables the Continuous Replication and Selection of Oligonucleotides towards Increasing Length. Nat. Chem 2015, 7, 203–208. [Google Scholar] [CrossRef]
- Ianeselli, A.; Tetiker, D.; Stein, J.; Kühnlein, A.; Mast, C.B.; Braun, D.; Dora Tang, T.-Y. Non-Equilibrium Conditions inside Rock Pores Drive Fission, Maintenance and Selection of Coacervate Protocells. Nat. Chem. 2022, 14, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Agerschou, E.D.; Mast, C.B.; Braun, D. Emergence of Life from Trapped Nucleotides? Non-Equilibrium Behavior of Oligonucleotides in Thermal Gradients. Synlett 2017, 28, 56–63. [Google Scholar] [CrossRef]
- Morasch, M.; Liu, J.; Dirscherl, C.F.; Ianeselli, A.; Kühnlein, A.; Le Vay, K.; Schwintek, P.; Islam, S.; Corpinot, M.K.; Scheu, B.; et al. Heated Gas Bubbles Enrich, Crystallize, Dry, Phosphorylate and Encapsulate Prebiotic Molecules. Nat. Chem. 2019, 11, 779–788. [Google Scholar] [CrossRef]
- Mast, C.B.; Braun, D. Thermal Trap for DNA Replication. Phys. Rev. Lett. 2010, 104, 188102. [Google Scholar] [CrossRef] [PubMed]
- Mast, C.B.; Schink, S.; Gerland, U.; Braun, D. Escalation of Polymerization in a Thermal Gradient. Proc. Natl. Acad. Sci. USA 2013, 110, 8030–8035. [Google Scholar] [CrossRef] [Green Version]
- Ianeselli, A.; Mast, C.B.; Braun, D. Periodic Melting of Oligonucleotides by Oscillating Salt Concentrations Triggered by Microscale Water Cycles Inside Heated Rock Pores. Angew. Chem. Int. Ed. 2019, 58, 13155–13160. [Google Scholar] [CrossRef]
- Ianeselli, A.; Atienza, M.; Kudella, P.W.; Gerland, U.; Mast, C.B.; Braun, D. Water Cycles in a Hadean CO2 Atmosphere Drive the Evolution of Long DNA. Nat. Phys. 2022, 18, 579–585. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.; Yan, F.; Liu, C.; Sang, Y.; Tian, F.; Feng, Q.; Duan, P.; Zhang, L.; Shi, X.; et al. Control over the Emerging Chirality in Supramolecular Gels and Solutions by Chiral Microvortices in Milliseconds. Nat. Commun. 2018, 9, 2599. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, H.; Osaki, T.; Takeuchi, S.; Toyota, T. Hydrodynamic Accumulation of Small Molecules and Ions into Cell-Sized Liposomes against a Concentration Gradient. Commun. Chem. 2020, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Abu-Dawas, S.; Alawami, H.; Zourob, M.; Ramadan, Q. Design and Fabrication of Low-Cost Microfluidic Chips and Microfluidic Routing System for Reconfigurable Multi-(Organ-on-a-Chip) Assembly. Micromachines 2021, 12, 1542. [Google Scholar] [CrossRef]
- Agustini, D.; Bergamini, M.F.; Marcolino-Junior, L.H. Low Cost Microfluidic Device Based on Cotton Threads for Electroanalytical Application. Lab. Chip. 2016, 16, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Annabestani, M.; Esmaeili-Dokht, P.; Fardmanesh, M. A Novel, Low Cost, and Accessible Method for Rapid Fabrication of the Modifiable Microfluidic Devices. Sci. Rep. 2020, 10, 16513. [Google Scholar] [CrossRef]
- Nguyen, H.-T.; Thach, H.; Roy, E.; Huynh, K.; Perrault, C.M.-T. Low-Cost, Accessible Fabrication Methods for Microfluidics Research in Low-Resource Settings. Micromachines 2018, 9, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, S.K.; Bhat, S.; Mahato, K.K. Design and Fabrication of Low-Cost Microfluidic Channel for Biomedical Application. Sci. Rep. 2020, 10, 9215. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lerin-Morales, K.M.; Olguín, L.F.; Mateo-Martí, E.; Colín-García, M. Prebiotic Chemistry Experiments Using Microfluidic Devices. Life 2022, 12, 1665. https://doi.org/10.3390/life12101665
Lerin-Morales KM, Olguín LF, Mateo-Martí E, Colín-García M. Prebiotic Chemistry Experiments Using Microfluidic Devices. Life. 2022; 12(10):1665. https://doi.org/10.3390/life12101665
Chicago/Turabian StyleLerin-Morales, Karen Melissa, Luis F. Olguín, Eva Mateo-Martí, and María Colín-García. 2022. "Prebiotic Chemistry Experiments Using Microfluidic Devices" Life 12, no. 10: 1665. https://doi.org/10.3390/life12101665
APA StyleLerin-Morales, K. M., Olguín, L. F., Mateo-Martí, E., & Colín-García, M. (2022). Prebiotic Chemistry Experiments Using Microfluidic Devices. Life, 12(10), 1665. https://doi.org/10.3390/life12101665