Analysis of Monomer Release from Different Composite Resins after Bleaching by HPLC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Specimens
2.2. Bleaching Application
2.3. Storing Specimens in Solvent
2.4. HPLC Monomer Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- (1)
- Monomer release increases over time from resin composites.
- (2)
- The application of bleaching agents is likely to increase monomer release.
- (3)
- To reduce the residual monomer release, the polymerization time and application protocol should be followed according to the manufacturer’s instructions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferracane, J.L. Current Trends in Dental Composites. In Critical Reviews in Oral Biology and Medicine; International and American Associations for Dental Research: Alexandria, VA, USA, 1995; pp. 302–318. [Google Scholar] [CrossRef] [Green Version]
- Örtengren, U.; Wellendorf, H.; Karlsson, S.; Ruyter, I.E. Water Sorption and Solubility of Dental Composites and Identification of Monomers Released in an Aqueous Environment. J. Oral Rehabil. 2001, 28, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Moharamzadeh, K.; Van Noort, R.; Brook, I.M.; Scutt, A.M. HPLC Analysis of Components Released from Dental Composites with Different Resin Compositions Using Different Extraction Media. J. Mater. Sci. Mater. Med. 2007, 18, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Łagocka, R.; Mazurek-Mochol, M.; Jakubowska, K.; Bendyk-Szeffer, M.; Chlubek, D.; Buczkowska-Radlińska, J. Analysis of Base Monomer Elution from 3 Flowable Bulk-Fill Composite Resins Using High Performance Liquid Chromatography (HPLC). Med. Sci. Monit. 2018, 24, 4679–4690. [Google Scholar] [CrossRef]
- FERRACANE, J.L. Elution of Leachable Components from Composites. J. Oral Rehabil. 1994, 21, 441–452. [Google Scholar] [CrossRef]
- Goldberg, M. In Vitro and in Vivo Studies on the Toxicity of Dental Resin Components: A Review. Clin. Oral Investig. 2008, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Geurtsen, W. Biocompatibility of Resin-Modified Filling Materials. Crit. Rev. Oral Biol. Med. 2000, 11, 333–355. [Google Scholar] [CrossRef]
- Coelho, A.J.M. Endocrine Disruptors and Dental Materials: Health Implications Associated with Their Use in Brazil. Cad. Saúde Pública/Ministério Saúde Fundação Oswaldo Cruz Esc. Nac. Saúde Pública 2002, 18, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Tarumi, H.; Imazato, S.; Ehara, A.; Kato, S.; Ebi, N.; Ebisu, S. Post-Irradiation Polymerization of Composites Containing Bis-GMA and TEGDMA. Dent. Mater. 1999, 15, 238–242. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; Nawrot, T.; Geebelen, B.; De Munck, J.; Snauwaert, J.; Yoshihara, K.; Scheers, H.; Godderis, L.; Hoet, P.; Van Meerbeek, B. How Much Do Resin-Based Dental Materials Release? A Meta-Analytical Approach. Dent. Mater. 2011, 27, 723–747. [Google Scholar] [CrossRef]
- Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in Dimethacrylate-Based Dental Composite Technology and Curing Efficiency. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef]
- Lempel, E.; Czibulya, Z.; Kunsági-Máté, S.; Szalma, J.; Sümegi, B.; Böddi, K. Quantification of Conversion Degree and Monomer Elution from Dental Composite Using HPLC and Micro-Raman Spectroscopy. Chromatographia 2014, 77, 1137–1144. [Google Scholar] [CrossRef]
- Sarrett, D.C. Clinical Challenges and the Relevance of Materials Testing for Posterior Composite Restorations. Dent. Mater. 2005, 21, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Alshali, R.Z.; Silikas, N.; Satterthwaite, J.D. Degree of Conversion of Bulk-Fill Compared to Conventional Resin-Composites at Two Time Intervals. Dent. Mater. 2013, 29, e213–e217. [Google Scholar] [CrossRef]
- Mitra, S.B.; Wu, D.; Holmes, B.N. An Application of Nanotechnology in Advanced Dental Materials. J. Am. Dent. Assoc. 2003, 134, 1382–1390. [Google Scholar] [CrossRef] [Green Version]
- Tredwin, C.J.; Naik, S.; Lewis, N.J.; Scully Cbe, C. Hydrogen Peroxide Tooth-Whitening (Bleaching) Products: Review of Adverse Effects and Safety Issues. Br. Dent. J. 2006, 200, 371–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durner, J.; Obermaier, J.; Ilie, N. Investigation of Different Bleaching Conditions on the Amount of Elutable Substances from Nano-Hybrid Composites. Dent. Mater. 2014, 30, 192–199. [Google Scholar] [CrossRef]
- Omrani, L.R.; Farjadfar, S.; Pedram, P.; Sadray, S.; Hashemi Kamangar, S.S.; Chiniforoush, N. Effect of Laser-Assisted and Conventional in-Office Bleaching on Monomer Release from Microhybrid and Nanohybrid Composite. Laser Ther. 2017, 26, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshali, R.Z.; Salim, N.A.; Sung, R.; Satterthwaite, J.D.; Silikas, N. Analysis of Long-Term Monomer Elution from Bulk-Fill and Conventional Resin-Composites Using High Performance Liquid Chromatography. Dent. Mater. 2015, 31, 1587–1598. [Google Scholar] [CrossRef] [PubMed]
- Gul, P.; Karatas, O.; Alp, H.H.; Cam, I.B.; Ozakar-Ilday, N. Monomer Release from Nanohybrid Composites after Bleaching. J. Oral Sci. 2019, 61, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Polydorou, O.; Beiter, J.; König, A.; Hellwig, E.; Kümmerer, K. Effect of Bleaching on the Elution of Monomers from Modern Dental Composite Materials. Dent. Mater. 2009, 25, 254–260. [Google Scholar] [CrossRef]
- Putzeys, E.; De Nys, S.; Cokic, S.M.; Duca, R.C.; Vanoirbeek, J.; Godderis, L.; Van Meerbeek, B.; Van Landuyt, K.L. Long-Term Elution of Monomers from Resin-Based Dental Composites. Dent. Mater. 2019, 35, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Manojlovic, D.; Radisic, M.; Vasiljevic, T.; Zivkovic, S.; Lausevic, M.; Miletic, V. Monomer Elution from Nanohybrid and Ormocer-Based Composites Cured with Different Light Sources. Dent. Mater. 2011, 27, 371–378. [Google Scholar] [CrossRef]
- Cebe, M.A.; Cebe, F.; Cengiz, M.F.; Cetin, A.R.; Arpag, O.F.; Ozturk, B. Elution of Monomer from Different Bulk Fill Dental Composite Resins. Dent. Mater. 2015, 31, e141–e149. [Google Scholar] [CrossRef]
- Rothmund, L.; Reichl, F.X.; Hickel, R.; Styllou, P.; Styllou, M.; Kehe, K.; Yang, Y.; Högg, C. Effect of Layer Thickness on the Elution of Bulk-Fill Composite Components. Dent. Mater. 2017, 33, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Pelka, M.; Distler, W.; Petschelt, A. Elution Parameters and HPLC-Detection of Single Components from Resin Composite. Clin. Oral Investig. 1999, 3, 194–200. [Google Scholar] [CrossRef]
- Bahannan, S.A. Effects of Different Bleaching Agent Concentrations on Surface Roughness and Microhardness of Esthetic Restorative Materials. Saudi J. Dent. Res. 2015, 6, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Issa, Y.; Watts, D.C.; Brunton, P.A.; Waters, C.M.; Duxbury, A.J. Resin Composite Monomers Alter MTT and LDH Activity of Human Gingival Fibroblasts in Vitro. Dent. Mater. 2004, 20, 12–20. [Google Scholar] [CrossRef]
- Lefeuvre, M.; Amjaad, W.; Goldberg, M.; Stanislawski, L. TEGDMA Induces Mitochondrial Damage and Oxidative Stress in Human Gingival Fibroblasts. Biomaterials 2005, 26, 5130–5137. [Google Scholar] [CrossRef] [PubMed]
- Volk, J.; Engelmann, J.; Leyhausen, G.; Geurtsen, W. Effects of Three Resin Monomers on the Cellular Glutathione Concentration of Cultured Human Gingival Fibroblasts. Dent. Mater. 2006, 22, 499–505. [Google Scholar] [CrossRef]
- Chao, H.H.; Zhang, X.F.; Chen, B.; Pan, B.; Zhang, L.J.; Li, L.; Sun, X.F.; Shi, Q.H.; Shen, W. Bisphenol A Exposure Modifies Methylation of Imprinted Genes in Mouse Oocytes via the Estrogen Receptor Signaling Pathway. Histochem. Cell Biol. 2012, 137, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, J.; Volk, J.; Leyhausen, G.; Geurtsen, W. ROS Formation and Glutathione Levels in Human Oral Fibroblasts Exposed to TEGDMA and Camphorquinone. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2005, 75, 272–276. [Google Scholar] [CrossRef]
- Reichl, F.X.; Seiss, M.; Marquardt, W.; Kleinsasser, N.; Schweikl, H.; Kehe, K.; Hickel, R. Toxicity Potentiation by H2O2 with Components of Dental Restorative Materials on Human Oral Cells. Arch. Toxicol. 2008, 82, 21–28. [Google Scholar] [CrossRef]
- Kita, K.; Jin, Y.H.; Sun, Z.; Chen, S.P.; Sumiya, Y.; Hongo, T.; Suzuki, N. Increase in the Levels of Chaperone Proteins by Exposure to β-Estradiol, Bisphenol A and 4-Methoxyphenol in Human Cells Transfected with Estrogen Receptor α CDNA. Toxicol. Vitr. 2009, 23, 728–735. [Google Scholar] [CrossRef]
- Cataldi, A.; Zara, S.; Rapino, M.; Patruno, A.; Di Giacomo, V. Human Gingival Fibroblasts Stress Response to HEMA: A Role for Protein Kinase C α. J. Biomed. Mater. Res.-Part A 2013, 101A, 378–384. [Google Scholar] [CrossRef]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Effect of Chemical Structure on Degree of Conversion in Light-Cured Dimethacrylate-Based Dental Resins. Biomaterials 2002, 23, 1819–1829. [Google Scholar] [CrossRef]
- Putzeys, E.; Cokic, S.M.; Chong, H.; Smet, M.; Vanoirbeek, J.; Godderis, L.; Van Meerbeek, B.; Van Landuyt, K.L.; Duca, R.C. Simultaneous Analysis of Bisphenol A Based Compounds and Other Monomers Leaching from Resin-Based Dental Materials by UHPLC–MS/MS. J. Sep. Sci. 2017, 40, 1063–1075. [Google Scholar] [CrossRef]
- Lempel, E.; Czibulya, Z.; Kovács, B.; Szalma, J.; Tóth, Á.; Kunsági-Máté, S.; Varga, Z.; Böddi, K. Degree of Conversion and BisGMA, TEGDMA, UDMA Elution from Flowable Bulk Fill Composites. Int. J. Mol. Sci. 2016, 17, 732. [Google Scholar] [CrossRef] [Green Version]
- Barszczewska-Rybarek, I.M. A Guide through the Dental Dimethacrylate Polymer Network Structural Characterization and Interpretation of Physico-Mechanical Properties. Materials 2019, 12, 4057. [Google Scholar] [CrossRef] [Green Version]
- Barszczewska-Rybarek, I.M.; Chrószcz, M.W.; Chladek, G. Novel Urethane-Dimethacrylate Monomers and Compositions for Use as Matrices in Dental Restorative Materials. Int. J. Mol. Sci. 2020, 21, 2644. [Google Scholar] [CrossRef]
- Polydorou, O.; Trittler, R.; Hellwig, E.; Kümmerer, K. Elution of Monomers from Two Conventional Dental Composite Materials. Dent. Mater. 2007, 23, 1535–1541. [Google Scholar] [CrossRef]
- Ilie, N.; Obermaier, J.; Durner, J. Effect of Modulated Irradiation Time on the Degree of Conversion and the Amount of Elutable Substances from Nano-Hybrid Resin-Based Composites. Clin. Oral Investig. 2014, 18, 97–106. [Google Scholar] [CrossRef]
- Putzeys, E.; Vercruyssen, C.; Duca, R.C.; Saha, P.S.; Godderis, L.; Vanoirbeek, J.; Peumans, M.; Van Meerbeek, B.; Van Landuyt, K.L. Monomer Release from Direct and Indirect Adhesive Restorations: A Comparative in Vitro Study. Dent. Mater. 2020, 36, 1275–1281. [Google Scholar] [CrossRef]
- Sideridou, I.D.; Achilias, D.S. Elution Study of Unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from Light-Cured Dental Resins and Resin Composites Using HPLC. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2005, 74, 617–626. [Google Scholar] [CrossRef]
Materiel | Type | Content | Producer |
---|---|---|---|
Filtek™ Bulk Fill Posterior | BF | AUDMA, UDMA, 12-dodecane-DMA 20 nm silica fillers, 4–11 nm zirconia fillers, YbF3 (100 nm) 58,% volume, 76,5% weight | 3M ESPE |
Tetric N-Ceram | NH | 19–20% Bis-GMA, UDMA Barium glass, YbF3 (0.04–3 mm), 55–57% volume, 80% weight | Ivoclar Vivadent |
Estelite Σ Quick | SN | Bis-GMA, TEGDMA silica-zirconia filler, composite filler 71% volume, 82% weight | Tokuyama Dental |
Opalescence Boost | OT | 40% H2O2 | Ultradent |
Opalscence PF | HT | 16% CH4N2O·H2O2 | Ultradent |
Monomers | Name | Chemical Formula | Molecular Weight | CAS Number |
---|---|---|---|---|
Bis-GMA | Bisphenol A glycidyl methacrylate | C29H36O8 | 513.00 | 1565-94-2 |
TEGDMA | Triethylene glycol dimethacrylate | C14H22O6 | 286.32 | 109-16-0 |
UDMA | Urethane dimethacrylate | C23H38N2O8 | 470.56 | 41137-60-4 |
BPA | Bisphenol A | C15H16O2 | 228.29 | 80-05-7 |
HEMA | 2-hydroxyethyl methacrylate | C6H10O3 | 130.14 | 868-77-9 |
n | Mean ± SD | ||
---|---|---|---|
Composite | BF | 450 | 5.36 ± 0.24 A |
NH | 450 | 18.94 ± 1.29 B | |
SN | 450 | 36.04 ± 1.99 C | |
Day | D1 | 450 | 13.72 ± 1.0 A |
D7 | 450 | 20.72 ± 1.45 B | |
D28 | 450 | 25.9 ± 1.86 C | |
Monomer | TEGDMA | 270 | 0.31 ± 0.02 A |
HEMA | 270 | 5.41 ± 0.48 B | |
BPA | 270 | 38.83 ± 2.95 C | |
UDMA | 270 | 27.14 ± 1.86 D | |
BISGMA | 270 | 28.87 ± 1.53 D | |
Bleaching | C | 450 | 18.55 ± 1.4 A |
HT | 450 | 20.66 ± 1.53 B | |
OT | 450 | 21.13 ± 1.55 B |
D1 | D7 | D28 | ||
---|---|---|---|---|
BF | C | a 0.16 ± 0.03 A | d 0.21 ± 0.09 A | g 0.72 ± 0.21 B |
HB | b 0.24 ± 0.02 C | e 0.57 ± 0.28 D | g 0.82 ± 0.27 D | |
OB | c 0.26 ± 0.02 E | f 0.65 ± 0.11 F | g 0.87 ± 0.26 F | |
NH | C | a 0.07 ± 0.0 A | d 0.14 ± 0.02 B | f 0.38 ± 0.06 C |
HB | b 0.09 ± 0.01 D | e 0.28 ± 0.05 E | fg 0.44 ± 0.04 F | |
OB | c 0.11 ± 0.02 G | e 0.24 ± 0.05 H | g 0.47 ± 0.06 I | |
SN | C | a 0.05 ± 0.0 A | c 0.12 ± 0.01 B | e 0.18 ± 0.03 B |
HB | ab 0.08 ± 0.04 C | d 0.14 ± 0.01 C | f 0.28 ± 0.05 D | |
OB | b 0.13 ± 0.01 E | d 0.16 ± 0.01 E | e 0.21 ± 0.02 F |
D1 | D7 | D28 | ||
---|---|---|---|---|
BF | C | a 0.02 ± 0 A | c 0.05 ± 0.01 B | e 1.34 ± 4.12 C |
HT | a 0.03 ± 0 D | c 0.03 ± 0 D | f 1.91 ± 5.72 E | |
OT | b 0.04 ± 0.15 F | d 0.14 ± 0.15 G | g 2.01 ± 6.24 G | |
NH | C | a 0.19 ± 0.04 A | c 0.34 ± 0.08 B | e 0.66 ± 0.13 C |
HT | ab 0.22 ± 0.05 D | d 0.57 ± 0.12 E | ef 0.78 ± 0.24 F | |
OT | b 0.24 ± 0.03 G | d 0.49 ± 0.04 H | f 0.88 ± 0.17 I | |
SN | C | a 8.49 ± 0.25 A | c 15.44 ± 1.54 B | e 18.80 ± 1.15 B |
HT | b 9.15 ± 0.43 C | d 17.71 ± 1.69 D | f 23.33 ± 4.33 D | |
OT | b 9.47 ± 0.45 E | d 17.60 ± 1.57 F | ef 20.77 ± 3.34 F |
D1 | D7 | D28 | ||
---|---|---|---|---|
BF | C | a 7.85 ± 1.03 A | b 11.28 ± 1 B | c 19.57 ± 25.12 B |
HT | a 8.5 ± 0.74 C | b 11.96 ± 0.89 D | d 25.00 ± 30.85 E | |
OT | a 8.73 ± 0.67 F | b 12.23 ± 0.9 G | d 25.24 ± 31.64 H | |
NH | C | a 1.12 ± 0.08 A | c 1.45 ± 0.18 A | e 3.23 ± 0.54 B |
HT | b 1.28 ± 0.1 C | d 1.86 ± 0.27 D | f 3.16 ± 0.50 E | |
OT | b 1.40 ± 0.19 F | d 1.60 ± 0.3 F | e 3.79 ± 0.55 G | |
SN | C | a 68.96 ± 3.11 A | c 84.57 ± 6.39 B | f 133.01 ± 17.74 C |
HT | b 76.69 ± 3.07 D | d 97.34 ± 10.57 E | f 136.82 ± 20.14 F | |
OT | b 76.01 ± 1.88 G | e 115.83 ± 9.96 H | f 136.06 ± 10.72 H |
D1 | D7 | D28 | ||
---|---|---|---|---|
BF | C | a 5.08 ± 0.48 A | b 10.42 ± 1.21 B | c 10.71 ± 2.57 B |
HT | a 5.38 ± 0.65 C | b 11.61 ± 1.67 D | cd 12.40 ± 2.61 D | |
OT | a 5.52 ± 0.84 E | b 10.92 ± 1.34 F | d 12.9 ± 3.43 F | |
NH | C | a 42.02 ± 3.03 A | c 68.73 ± 9.4 B | d 79.06 ± 7.06 B |
HT | b 51.60 ± 5.19 C | c 79.68 ± 15.29 D | d 82.79 ± 10.85 D | |
OT | b 52.30 ± 3.87 E | c 76.60 ± 11.42 F | d 77.69 ± 8.01 F | |
SN | C | a 1.67 ± 0.09 A | d 3.89 ± 0.34 B | f 5 ± 0.66 B |
HT | b 2.06 ± 0.08 C | e 4.45 ± 0.53 D | fg 5.71 ± 1.03 D | |
OT | c 2.21 ± 0.08 E | de 4.21 ± 0.24 F | g 5.91 ± 0.58 G |
D1 | D7 | D28 | ||
---|---|---|---|---|
BF | C | a 4.18 ± 0.66 A | b 5.28 ± 0.73 B | c 4.32 ± 0.18 A |
HT | a 4.37 ± 0.51 C | b 5.57 ± 0.82 D | d 5.13 ± 0.37 D | |
OT | a 4.7 ± 0.66 E | b 5.37 ± 0.79 EF | d 5.56 ± 0.6 F | |
NH | C | a 14.90 ± 1.4 A | d 23.37 ± 2.27 B | f 26.09 ± 3.64 B |
HT | b 17.18 ± 1.92 C | de 26.1 ± 2.55 D | f 26.69 ± 4.05 D | |
OT | c 19.68 ± 1.99 E | e 28.78 ± 4.94 F | g 33.09 ± 7.28 F | |
SN | C | a 30.91 ± 1.35 A | c 54.88 ± 3.5 B | e 73.74 ± 7.90 C |
HT | a 35.88 ± 2.61 D | cd 58.00 ± 4.18 a E | e 85.70 ± 14.05 F | |
OT | b 37.71 ± 1.38 G | d 61.24 ± 5.37 H | e 80.97 ± 14.65 I |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirel, M.G.; Gönder, H.Y.; Tunçdemir, M.T. Analysis of Monomer Release from Different Composite Resins after Bleaching by HPLC. Life 2022, 12, 1713. https://doi.org/10.3390/life12111713
Demirel MG, Gönder HY, Tunçdemir MT. Analysis of Monomer Release from Different Composite Resins after Bleaching by HPLC. Life. 2022; 12(11):1713. https://doi.org/10.3390/life12111713
Chicago/Turabian StyleDemirel, Mehmet Gökberkkaan, Hakan Yasin Gönder, and Makbule Tuğba Tunçdemir. 2022. "Analysis of Monomer Release from Different Composite Resins after Bleaching by HPLC" Life 12, no. 11: 1713. https://doi.org/10.3390/life12111713
APA StyleDemirel, M. G., Gönder, H. Y., & Tunçdemir, M. T. (2022). Analysis of Monomer Release from Different Composite Resins after Bleaching by HPLC. Life, 12(11), 1713. https://doi.org/10.3390/life12111713