Nutraceutical Preventative and Therapeutic Potential in Neuroblastoma: From Pregnancy to Early Childhood
Abstract
:1. Introduction
2. Neuroblastoma
2.1. NB Risk Factors and Pathogenesis
2.2. Diagnosis, Risk-Classification, and Current Therapies
3. Nutraceuticals and Their Role in Neuroblastoma
3.1. Curcumin
3.2. Resveratrol
3.3. Garlic Compounds
3.4. Vitamin A and Retinoids
3.5. Green Tea Polyphenols
3.6. Other Compounds
4. The Key Role of Dietary Supplements in Pregnancy: Multivitamins and Folic Acid
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, C.; Boterberg, T.; Lucas, J.; Panoff, J.; Valteau-Couanet, D.; Hero, B.; Bagatell, R.; Hill-Kayser, C.E. Neuroblastoma. Pediatr. Blood Cancer 2021, 68, e28473. [Google Scholar] [CrossRef] [PubMed]
- Newman, E.A.; Abdessalam, S.; Aldrink, J.H.; Austin, M.; Heaton, T.E.; Bruny, J.; Ehrlich, P.; Dasgupta, R.; Baertschiger, R.M.; Lautz, T.B.; et al. Update on Neuroblastoma. J. Pediatr. Surg. 2019, 54, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Gatta, G.; Ferrari, A.; Stiller, C.A.; Pastore, G.; Bisogno, G.; Trama, A.; Capocaccia, R. Embryonal Cancers in Europe. Eur. J. Cancer 2012, 48, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Lakhoo, K.; Sowerbutts, H. Neonatal Tumours. Pediatr. Surg. Int. 2010, 26, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, J.I.; Dyberg, C.; Wickström, M. Neuroblastoma- A Neural Crest Derived Embryonal Malignancy. Front. Mol. Neurosci. 2019, 12, 9. [Google Scholar] [CrossRef]
- Kholodenko, I.V.; Kalinovsky, D.V.; Doronin, I.I.; Deyev, S.M.; Kholodenko, R.V. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J. Immunol. Res. 2018, 2018, 7394268. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.L.; Schmidt, M.L.; Cohn, S.L.; Maris, J.M.; London, W.B.; Buxton, A.; Stram, D.; Castleberry, R.P.; Shimada, H.; Sandler, A.; et al. Outcome after Reduced Chemotherapy for Intermediate-Risk Neuroblastoma. N. Engl. J. Med. 2011, 12, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Zhai, K.; Brockmüller, A.; Kubatka, P.; Shakibaei, M.; Büsselberg, D. Curcumin’s Beneficial Effects on Neuroblastoma: Mechanisms, Challenges, and Potential Solutions. Biomolecules 2020, 10, 1469. [Google Scholar] [CrossRef]
- Colon, N.C.; Chung, D.H. Neuroblastoma. Adv. Pediatr. 2011, 58, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Heck, J.E.; Ritz, B.; Hung, R.J.; Hashibe, M.; Boffetta, P. The Epidemiology of Neuroblastoma: A Review. Paediatr. Perinat. Epidemiol. 2009, 23, 125–143. [Google Scholar] [CrossRef]
- Yan, P.; Qi, F.; Bian, L.; Xu, Y.; Zhou, J.; Hu, J.; Ren, L.; Li, M.; Tang, W. Comparison of Incidence and Outcomes of Neuroblastoma in Children, Adolescents, and Adults in the United States: A Surveillance, Epidemiology, and End Results (Seer) Program Population Study. Med. Sci. Monit. 2020, 26, e927218-1–e927218-13. [Google Scholar] [CrossRef] [PubMed]
- Nakagawara, A.; Li, Y.; Izumi, H.; Muramori, K.; Inada, H.; Nishi, M. Neuroblastoma. Jpn. J. Clin. Oncol. 2018, 48, 214–241. [Google Scholar] [CrossRef] [Green Version]
- Matthay, K.K.; Maris, J.M.; Schleiermacher, G.; Nakagawara, A.; Mackall, C.L.; Diller, L.; Weiss, W.A. Neuroblastoma. Nat. Rev. Dis. Prim. 2016, 2, 16078. [Google Scholar] [CrossRef] [PubMed]
- Mossè, Y.P.; Laudenslager, M.; Longo, L.; Cole, K.A.; Wood, A.; Attiyeh, E.F.; Laquaglia, M.J.; Sennett, R.; Lynch, J.E.; Perri, P.; et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008, 455, 930–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parodi, S.; Merlo, D.F.; Ranucci, A.; Miligi, L.; Benvenuti, A.; Rondelli, R.; Magnani, C.; Haupt, R. Risk of Neuroblastoma, Maternal Characteristics and Perinatal Exposures: The SETIL Study. Cancer Epidemiol. 2014, 38, 686–694. [Google Scholar] [CrossRef]
- Heck, J.E.; Park, A.S.; Qiu, J.; Cockburn, M.; Ritz, B. An Exploratory Study of Ambient Air Toxics Exposure in Pregnancy and the Risk of Neuroblastoma in Offspring. Environ. Res. 2013, 127, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Müller-Schulte, E.; Kurlemann, G.; Harder, A. Tobacco, Alcohol and Illicit Drugs during Pregnancy and Risk of Neuroblastoma: Systematic Review. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F467–F473. [Google Scholar] [CrossRef]
- Serres, F.; Carney, S.L. Nicotine Regulates SH-SY5Y Neuroblastoma Cell Proliferation through the Release of Brain-Derived Neurotrophic Factor. Brain Res. 2006, 1101, 36–42. [Google Scholar] [CrossRef]
- Daniels, J.L.; Olshan, A.F.; Pollock, B.H.; Shah, N.R.; Stram, D.O. Breast-Feeding and Neuroblastoma, USA and Canada. Cancer Causes Control 2002, 13, 401–405. [Google Scholar] [CrossRef]
- Simões-Costa, M.; Bronner, M.E. Insights into Neural Crest Development and Evolution from Genomic Analysis. Genome Res. 2013, 23, 1069–1080. [Google Scholar] [CrossRef]
- Tsubota, S.; Kadomatsu, K. Origin and Initiation Mechanisms of Neuroblastoma. Cell Tissue Res. 2018, 372, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Marshall, G.M.; Carter, D.R.; Cheung, B.B.; Liu, T.; Mateos, M.K.; Meyerowitz, J.G.; Weiss, W.A. The Prenatal Origins of Cancer. Nat. Rev. Cancer 2014, 14, 277–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castel, V.; Grau, E.; Noguera, R.; Martínez, F. Molecular Biology of Neuroblastoma. Clin. Transl. Oncol. 2007, 9, 478–483. [Google Scholar] [CrossRef]
- Lee, J.W.; Son, M.H.; Cho, H.W.; Ma, Y.E.; Yoo, K.H.; Sung, K.W.; Koo, H.H. Clinical Significance of MYCN Amplification in Patients with High-Risk Neuroblastoma. Pediatr. Blood Cancer 2018, 65, e27257. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, A.; Farina, A.R.; Cappabianca, L.; Desantis, G.; Tessitore, A.; Vetuschi, A.; Sferra, R.; Rucci, N.; Argenti, B.; Screpanti, I.; et al. TrkA Alternative Splicing: A Regulated Tumor-Promoting Switch in Human Neuroblastoma. Cancer Cell 2004, 6, 347–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farina, A.R.; Cappabianca, L.; Ruggeri, P.; Gneo, L.; Pellegrini, C.; Fargnoli, M.C.; Mackay, A.R. The Oncogenic Neurotrophin Receptor Tropomyosin-Related Kinase Variant, TrkAIII. J. Exp. Clin. Cancer Res. 2018, 37, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaboin, J.; Wild, J.; Hamidi, H.; Khanna, C.; Kim, C.J.; Robey, R.; Bates, S.E.; Thiele, C.J. MS-27-275, an Inhibitor of Histone Deacetylase, Has Marked in vitro and in vivo Antitumor Activity against Pediatric Solid Tumors. Cancer Res. 2002, 62, 6108–6115. [Google Scholar] [PubMed]
- Trigg, R.M.; Turner, S.D. ALK in Neuroblastoma: Biological and Therapeutic Implications. Cancers 2018, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- Swift, C.C.; Eklund, M.J.; Kraveka, J.M.; Alazraki, A.L. Updates in Diagnosis, Management, and Treatment of Neuroblastoma. Radiographics 2018, 38, 566–580. [Google Scholar] [CrossRef] [Green Version]
- Cohn, S.L.; Pearson, A.D.J.; London, W.B.; Monclair, T.; Ambros, P.F.; Brodeur, G.M.; Faldum, A.; Hero, B.; Iehara, T.; Machin, D.; et al. The International Neuroblastoma Risk Group (INRG) Classification System: An INRG Task Force Report. J. Clin. Oncol. 2009, 27, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Pinto, N.R.; Applebaum, M.A.; Volchenboum, S.L.; Matthay, K.K.; London, W.B.; Ambros, P.F.; Nakagawara, A.; Berthold, F.; Schleiermacher, G.; Park, J.R.; et al. Advances in Risk Classification and Treatment Strategies for Neuroblastoma. J. Clin. Oncol. 2015, 33, 3008–3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, J. Autologous Stem-Cell Transplantation for High-Risk Neuroblastoma: Historical and Critical Review. Cancers. 2022, 14, 2572. [Google Scholar] [CrossRef] [PubMed]
- Heinly, B.E.; Grant, C.N. Cell Adhesion Molecules in Neuroblastoma: Complex Roles, Therapeutic Potential. Front. Oncol. 2022, 12, 782186. [Google Scholar] [CrossRef] [PubMed]
- Treis, D.; Umapathy, G.; Fransson, S.; Guan, J.; Mendoza-García, P.; Siaw, J.T.; Wessman, S.; Gordon Murkes, L.; Stenman, J.; Djos, A.; et al. Sustained Response to Entrectinib in an Infant with a Germline ALKAL2 Variant and Refractory Metastatic Neuroblastoma with Chromosomal 2p Gain and Anaplastic Lymphoma Kinase and Tropomyiosin Receptor Kinase Activation. JCO Precis. Oncol. 2022, 6, e2100271. [Google Scholar] [CrossRef] [PubMed]
- Kalra, E.K. Nutraceutical—Definition and Introduction. AAPS Pharm. Sci. 2003, 5, 27–28. [Google Scholar] [CrossRef] [Green Version]
- Maiuolo, J.; Gliozzi, M.; Carresi, C.; Musolino, V.; Oppedisano, F.; Scarano, F.; Nucera, S.; Scicchitano, M.; Bosco, F.; Macri, R.; et al. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021, 13, 3834. [Google Scholar] [CrossRef]
- Liontas, A.; Yeger, H. Curcumin and Resveratrol Induce Apoptosis and Nuclear Translocation and Activation of p53 in Human Neuroblastoma. Anticancer Res. 2004, 24, 987–998. [Google Scholar]
- Picone, P.; Nuzzo, D.; Caruana, L.; Messina, E.; Scafidi, V.; Di Carlo, M. Curcumin Induces Apoptosis in Human Neuroblastoma Cells via Inhibition of AKT and Foxo3a Nuclear Translocation. Free Radic. Res. 2014, 48, 1397–1408. [Google Scholar] [CrossRef]
- Bavisotto, C.C.; Gammazza, A.M.; Lo Cascio, F.; Mocciaro, E.; Vitale, A.M.; Vergilio, G.; Pace, A.; Cappello, F.; Campanella, C.; Piccionello, A.P. Curcumin Affects HSP60 Folding Activity and Levels in Neuroblastoma Cells. Int. J. Mol. Sci. 2020, 21, 661. [Google Scholar] [CrossRef] [Green Version]
- Farina, A.R.; Cappabianca, L.; Ruggeri, P.; Di Ianni, N.; Ragone, M.; Merolle, S.; Sano, K.; Stracke, M.L.; Horowitz, J.M.; Gulino, A.; et al. Constitutive Autotaxin Transcription by Nmyc-Amplified and Non-Amplified Neuroblastoma Cells Is Regulated by a Novel AP-1 and SP-Mediated Mechanism and Abrogated by Curcumin. FEBS Lett. 2012, 586, 3681–3691. [Google Scholar] [CrossRef] [Green Version]
- Namkaew, J.; Jaroonwitchawan, T.; Rujanapun, N.; Saelee, J.; Noisa, P. Combined Effects of Curcumin and Doxorubicin on Cell Death and Cell Migration of SH-SY5Y Human Neuroblastoma Cells. Vitr. Cell. Dev. Biol.-Anim. 2018, 54, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tseng, S.H.; Lai, H.S.; Chen, W.J. Resveratrol-Induced Cellular Apoptosis and Cell Cycle Arrest in Neuroblastoma Cells and Antitumor Effects on Neuroblastoma in Mice. Surgery 2004, 136, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Van Ginkel, P.R.; Sareen, D.; Subramanian, L.; Walker, Q.; Darjatmoko, S.R.; Lindstrom, M.J.; Kulkarni, A.; Albert, D.M.; Polans, A.S. Resveratrol Inhibits Tumor Growth of Human Neuroblastoma and Mediates Apoptosis by Directly Targeting Mitochondria. Clin. Cancer Res. 2007, 13, 5162–5169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizarro, J.G.; Verdaguer, E.; Ancrenaz, V.; Junyent, F.; Sureda, F.; Pallàs, M.; Folch, J.; Camins, A. Resveratrol Inhibits Proliferation and Promotes Apoptosis of Neuroblastoma Cells: Role of Sirtuin 1. Neurochem. Res. 2011, 36, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Farina, A.R.; Cappabianca, L.; Gneo, L.; Ruggeri, P.; Mackay, A.R. TrkAIII Signals Endoplasmic Reticulum Stress to the Mitochondria in Neuroblastoma Cells, Resulting in Glycolytic Metabolic Adaptation. Oncotarget 2018, 9, 8368–8390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, C.R.; Gruhlke, M.C.H.; Slusarenko, A.J.; Bachmann, A.S. Allicin, a Potent New Ornithine Decarboxylase Inhibitor in Neuroblastoma Cells. J. Nat. Prod. 2020, 83, 2518–2527. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, Y.; Dalla Via, L.; Macone, A.; Canettieri, G.; Greco, A.; Toninello, A.; Agostinelli, E. Aged Garlic Extract and Its Constituent, S-allyl-L-cysteine, Induce the Apoptosis of Neuroblastoma Cancer Cells Due to Mitochondrial Membrane Depolarization. Exp. Ther. Med. 2020, 19, 1511–1521. [Google Scholar] [CrossRef] [Green Version]
- Filomeni, G.; Aquilano, K.; Rotilio, G.; Ciriolo, M.R. Reactive Oxygen Species-Dependent c-Jun NH2-Terminal Kinase/c-Jun Signaling Cascade Mediates Neuroblastoma Cell Death Induced by Diallyl Disulfide. Cancer Res. 2003, 63, 5940–5949. [Google Scholar]
- Aquilano, K.; Vigilanza, P.; Filomeni, G.; Rotilio, G.; Ciriolo, M.R. Tau Dephosphorylation and Microfilaments Disruption Are Upstream Events of the Anti-Proliferative Effects of DADS in SH-SY5Y Cells. J. Cell. Mol. Med. 2010, 14, 564–577. [Google Scholar] [CrossRef] [Green Version]
- Pagliei, B.; Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Garlic-Derived Diallyl Disulfide Modulates Peroxisome Proliferator Activated Receptor Gamma Co-Activator 1 Alpha in Neuroblastoma Cells. Biochem. Pharmacol. 2013, 85, 335–344. [Google Scholar] [CrossRef]
- Preis, P.N.; Saya, H.; Nadasdi, L.; Hochhaus, G.; Levin, V.; Sadee, W. Neuronal Cell Differentiation of Human Neuroblastoma Cells by Retinoic Acid plus Herbimycin A. Cancer Res. 1988, 48, 6530–6534. [Google Scholar]
- Ponthan, F.; Borgström, P.; Hassan, M.; Wassberg, E.; Redfern, C.P.F.; Kogner, P. The Vitamin A Analogues: 13-Cis Retinoic Acid, 9-Cis Retinoic Acid, and Ro 13-6307 Inhibit Neuroblastoma Tumour Growth in Vivo. Med. Pediatr. Oncol. 2001, 36, 127–131. [Google Scholar] [CrossRef]
- Han, G.; Chang, B.; Connor, M.J.; Sidell, N. Enhanced Potency of 9-Cis versus All-Trans-Retinoic Acid to Induce the Differentiation of Human Neuroblastoma Cells. Differentiation 1995, 59, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Banik, N.L.; Ray, S.K. Mechanism of Apoptosis with the Involvement of Calpain and Caspase Cascades in Human Malignant Neuroblastoma SH-SY5Y Cells Exposed to Flavonoids. Int. J. Cancer 2006, 119, 2575–2585. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, N.; Hartomo, T.B.; Van Huyen Pham, T.; Lee, M.J.; Yamamoto, T.; Morikawa, S.; Hasegawa, D.; Takeda, H.; Kawasaki, K.; Kosaka, Y.; et al. Epigallocatechin Gallate Inhibits Sphere Formation of Neuroblastoma BE(2)-C Cells. Environ. Health Prev. Med. 2012, 17, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farabegoli, F.; Govoni, M.; Spisni, E.; Papi, A. Epigallocatechin-3-Gallate and 6-OH-11-O-Hydroxyphenanthrene Limit BE(2)-C Neuroblastoma Cell Growth and Neurosphere Formation in Vitro. Nutrients 2018, 10, 1141. [Google Scholar] [CrossRef] [Green Version]
- Navarra, M.; Ferlazzo, N.; Cirmi, S.; Trapasso, E.; Bramanti, P.; Lombardo, G.E.; Minciullo, P.L.; Calapai, G.; Gangemi, S. Effects of Bergamot Essential Oil and Its Extractive Fractions on SH-SY5Y Human Neuroblastoma Cell Growth. J. Pharm. Pharmacol. 2015, 67, 1042–1053. [Google Scholar] [CrossRef]
- Maugeri, A.; Lombardo, G.E.; Musumeci, L.; Russo, C.; Gangemi, S.; Calapai, G.; Cirmi, S.; Navarra, M. Bergamottin and 5-Geranyloxy-7-Methoxycoumarin Cooperate in the Cytotoxic Effect of Citrus bergamia (Bergamot) Essential Oil in Human Neuroblastoma SH-SY5Y Cell Line. Toxins 2021, 13, 275. [Google Scholar] [CrossRef]
- Jang, M.H.; Shin, M.C.; Kang, I.S.; Baik, H.H.; Cho, Y.H.; Chu, J.P.; Kim, E.H.; Kim, C.J. Caffeine Induces Apoptosis in Human Neuroblastoma Cell Line SK-N-MC. J. Korean Med. Sci. 2002, 17, 674–678. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.S.; Yuk, D.Y.; Oh, J.H.; Jung, H.Y.; Han, S.B.; Moon, D.C.; Hong, J.T. Berberine Inhibits Human Neuroblastoma Cell Growth through Induction of p53-Dependent Apoptosis. Anticancer Res. 2008, 28, 3777–3784. [Google Scholar]
- Kim, D.W.; Ahan, S.H.; Kim, T.Y. Enhancement of Arsenic Trioxide (As(2)O(3))- Mediated Apoptosis Using Berberine in Human Neuroblastoma SH-SY5Y Cells. J. Korean Neurosurg. Soc. 2007, 42, 392–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naveen, C.R.; Gaikwad, S.; Agrawal-Rajput, R. Berberine Induces Neuronal Differentiation through Inhibition of Cancer Stemness and Epithelial-Mesenchymal Transition in Neuroblastoma Cells. Phytomedicine 2016, 23, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Keats, E.C.; Haider, B.A.; Tam, E.; Bhutta, Z.A. Multiple-Micronutrient Supplementation for Women during Pregnancy. Cochrane Database Syst. Rev. 2019, 3, CD004905. [Google Scholar] [CrossRef] [PubMed]
- Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M.C. Curcumin and Health. Molecules 2016, 21, 264. [Google Scholar] [CrossRef] [PubMed]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The Essential Medicinal Chemistry of Curcumin. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a Component of Golden Spice: From Bedside to Bench and Back. Biotechnol. Adv. 2014, 32, 1053–1064. [Google Scholar] [CrossRef]
- Kuttan, R.; Bhanumathy, P.; Nirmala, K.; George, M.C. Potential Anticancer Activity of Turmeric (Curclima longa). Cancers Lett. 1985, 29, 197–202. [Google Scholar] [CrossRef]
- Srimal, R.C.; Dhawan, B.N. Pharmacology of Diferuloyl Methane (Curcumin), a Non-Steroidal Anti-Inflammatory Agent. J. Pharm. Pharmacol. 1973, 25, 447–452. [Google Scholar] [CrossRef]
- Satoskar, R.R.; Shah, S.J.; Shenoy, S.G. Evaluation of Anti-Inflammatory Property of Curcumin (Diferuloyl Methane) in Patients with Postoperative Inflammation. Int. J. Clin. Pharmacol. Ther. Toxicol. 1986, 24, 651–654. [Google Scholar]
- Sharma, O.P. Antioxidant Activity of Curcumin and Related Compounds. Biochem. Pharmacol. 1976, 25, 1811–1812. [Google Scholar] [CrossRef]
- Negi, P.S.; Jayaprakasha, G.K.; Rao, L.J.M.; Sakariah, K.K. Antibacterial Activity of Turmeric Oil: A Byproduct from Curcumin Manufacture. J. Agric. Food Chem. 1999, 47, 4297–4300. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple Biological Activities of Curcumin: A Short Review. Life Sci. 2006, 78, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wang, N.; He, H.; Tang, X. Pharmaceutical Strategies of Improving Oral Systemic Bioavailability of Curcumin for Clinical Application. J. Control. Release 2019, 316, 359–380. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant Foods and Herbal Sources of Resveratrol. J. Agric. Food Chem. 2002, 50, 3337–3340. [Google Scholar] [CrossRef]
- Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health Benefits of Resveratrol Administration. Acta Biochim. Pol. 2019, 66, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, B.; Liu, J. Resveratrol: A Review of Plant Sources, Synthesis, Stability, Modification and Food Application. J. Sci. Food Agric. 2020, 100, 1392–1404. [Google Scholar] [CrossRef]
- Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol Content and Antioxidant Properties of Underutilized Fruits. J. Food Sci. Technol. 2015, 52, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Gülçin, I. Antioxidant Properties of Resveratrol: A Structure-Activity Insight. Innov. Food Sci. Emerg. Technol. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Baek, S.H.; Ko, J.H.; Lee, H.; Jung, J.; Kong, M.; Lee, J.W.; Lee, J.; Chinnathambi, A.; Zayed, M.; Alharbi, S.A.; et al. Resveratrol Inhibits STAT3 Signaling Pathway through the Induction of SOCS-1: Role in Apoptosis Induction and Radiosensitization in Head and Neck Tumor Cells. Phytomedicine 2016, 23, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Kwah, M.X.Y.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.L.; Wang, L.; Ong, P.S.; et al. Resveratrol for Cancer Therapy: Challenges and Future Perspectives. Cancer Lett. 2021, 515, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Soto, B.L.; Hank, J.A.; Van De Voort, T.J.; Subramanian, L.; Polans, A.S.; Rakhmilevich, A.L.; Yang, R.K.; Seo, S.; Kim, K.; Reisfeld, R.A.; et al. The Anti-Tumor Effect of Resveratrol Alone or in Combination with Immunotherapy in a Neuroblastoma Model. Cancer Immunol. Immunother. 2011, 60, 731–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Liu, X.; Ruan, J.; Zhuang, X.; Zhang, X.; Li, Z. Phytochemicals of Garlic: Promising Candidates for Cancer Therapy. Biomed. Pharmacother. 2020, 123, 109730. [Google Scholar] [CrossRef]
- Petrovska, B.; Cekovska, S. Extracts from the History and Medical Properties of Garlic. Pharmacogn. Rev. 2010, 4, 106–110. [Google Scholar] [CrossRef]
- Chen, J.; Huang, G. Antioxidant Activities of Garlic Polysaccharide and Its Phosphorylated Derivative. Int. J. Biol. Macromol. 2019, 125, 432–435. [Google Scholar] [CrossRef]
- Jonkers, D.; Van Den Broek, E.; Van Dooren, I.; Thijs, C.; Dorant, E.; Hageman, G.; Stobberingh, E. Antibacterial Effect of Garlic and Omeprazole on Helicobacter Pylori. J. Antimicrob. Chemother. 1999, 43, 837–839. [Google Scholar] [CrossRef] [Green Version]
- Ried, K.; Frank, O.R.; Stocks, N.P.; Fakler, P.; Sullivan, T. Effect of Garlic on Blood Pressure: A Systematic Review and Meta-Analysis. BMC Cardiovasc. Disord. 2008, 8, 13. [Google Scholar] [CrossRef]
- Patiño-Morales, C.C.; Jaime-Cruz, R.; Sánchez-Gómez, C.; Corona, J.C.; Hernández-Cruz, E.Y.; Kalinova-Jelezova, I.; Pedraza-Chaverri, J.; Maldonado, P.D.; Silva-Islas, C.A.; Salazar-García, M. Antitumor Effects of Natural Compounds Derived from Allium sativum on Neuroblastoma: An Overview. Antioxidants 2022, 11, 48. [Google Scholar] [CrossRef]
- Majewski, M. Allium sativum: Facts and Myths Regarding Human Health. Rocz. Państwowego Zakładu Hig. 2014, 65, 1–8. [Google Scholar]
- Iciek, M.; Kwiecień, I.; Włodek, L. Biological Properties of Garlic and Garlic-Derived Organosulfur Compounds. Environ. Mol. Mutagen. 2009, 50, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.Y.; Geng, X.J.; Zhai, W.L.; Zhang, X.W.; Wei, Y.; Hou, G.J. Effect of Combined Treatment with Cyclophosphamidum and Allicin on Neuroblastoma-Bearing Mice. Asian Pac. J. Trop. Med. 2015, 8, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Garry, P.J. Vitamin A. Clin. Lab. Med. 1981, 1, 699–711. [Google Scholar] [CrossRef]
- Siddikuzzaman; Guruvayoorappan, C.; Berlin Grace, V.M. All Trans Retinoic Acid and Cancer. Immunopharmacol. Immunotoxicol. 2011, 33, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Koprivica, M.; Bjelanovic, J. The Importance of Vitamin A in the Nutrition. Med. Cas. 2021, 55, 99–103. [Google Scholar] [CrossRef]
- Carazo, A.; Macáková, K.; Matoušová, K.; Krčmová, L.K.; Protti, M.; Mladěnka, P. Vitamin a Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients 2021, 13, 1703. [Google Scholar] [CrossRef] [PubMed]
- Chelstowska, S.; Widjaja-Adhi, M.A.K.; Silvaroli, J.A.; Golczak, M. Molecular Basis for Vitamin A Uptake and Storage in Vertebrates. Nutrients 2016, 8, 676. [Google Scholar] [CrossRef] [Green Version]
- Lynch, S.; Pfeiffer, C.M.; Georgieff, M.K.; Brittenham, G.; Fairweather-Tait, S.; Hurrell, R.F.; McArdle, H.J.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)-Iron Review. J. Nutr. 2018, 148, 1001S–1067S. [Google Scholar] [CrossRef] [Green Version]
- McLaren, D.S.; Kraemer, K. Vitamin A in Health. World Rev. Nutr. Diet. 2012, 103, 33–51. [Google Scholar] [CrossRef]
- Duester, G. Retinoic Acid Synthesis and Signaling during Early Organogenesis. Cell 2008, 134, 921–931. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.P.; Matthay, K.K.; Villablanca, J.G.; Maurer, B.J. Retinoid Therapy of High-Risk Neuroblastoma. Cancer Lett. 2003, 197, 185–192. [Google Scholar] [CrossRef]
- Reynolds, C.P. Differentiating Agents in Pediatric Malignancies: Retinoids in Neuroblastoma. Curr. Oncol. Rep. 2000, 2, 511–518. [Google Scholar] [CrossRef]
- Alvarez, S.; Germain, P.; Alvarez, R.; Rodríguez-Barrios, F.; Gronemeyer, H.; de Lera, A.R. Structure, Function and Modulation of Retinoic Acid Receptor Beta, a Tumor Suppressor. Int. J. Biochem. Cell Biol. 2007, 39, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Bayeva, N.; Coll, E.; Piskareva, O. Differentiating Neuroblastoma: A Systematic Review of the Retinoic Acid, Its Derivatives, and Synergistic Interactions. J. Pers. Med. 2021, 11, 211. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.M.; Banik, N.L.; Ray, S.K. Survivin Knockdown Increased Anti-Cancer Effects of (−)-Epigallocatechin-3-Gallate in Human Malignant Neuroblastoma SK-N- BE2 and SH-SY5Y Cells. Exp. Cell Res. 2012, 23, 237. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer Prevention by Tea: Animal Studies, Molecular Mechanisms and Human Relevance. Nat. Rev. Cancer 2009, 9, 429–439. [Google Scholar] [CrossRef]
- Calvani, M.; Subbiani, A.; Bruno, G.; Favre, C.; Gil, G. Beta-Blockers and Berberine: A Possible Dual Approach to Contrast Neuroblastoma Growth and Progression. Oxidative Med. Cell. Longev. 2020, 2020, 7534693. [Google Scholar] [CrossRef]
- National Institutes of Health (NIH). Multivitamin/Mineral Supplements—Health Professional Fact Sheet. Available online: https://ods.od.nih.gov/factsheets/MVMS-HealthProfessional/ (accessed on 22 August 2022).
- Yakoob, M.Y.; Khan, Y.P.; Bhutta, Z.A. Maternal Mineral and Vitamin Supplementation in Pregnancy. Expert Rev. Obstet. Gynecol. 2010, 5, 241–256. [Google Scholar] [CrossRef]
- Rios, P.; Bailey, H.D.; Orsi, L.; Lacour, B.; Valteau-Couanet, D.; Levy, D.; Corradini, N.; Leverger, G.; Defachelles, A.S.; Gambart, M.; et al. Risk of Neuroblastoma, Birth-Related Characteristics, Congenital Malformations and Perinatal Exposures: A Pooled Analysis of the ESCALE and ESTELLE French Studies (SFCE). Int. J. Cancer 2016, 139, 1936–1948. [Google Scholar] [CrossRef]
- Milne, E.; Greenop, K.R.; Bower, C.; Miller, M.; Van Bockxmeer, F.M.; Scott, R.J.; De Klerk, N.H.; Ashton, L.J.; Gottardo, N.G.; Armstrong, B.K. Maternal Use of Folic Acid and Other Supplements and Risk of Childhood Brain Tumors. Cancer Epidemiol. Biomarkers Prev. 2012, 21, 1933–1941. [Google Scholar] [CrossRef] [Green Version]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; De Onis, M.; Ezzati, M.; Grantham-Mcgregor, S.; Katz, J.; Martorell, R.; et al. Maternal and Child Undernutrition and Overweight in Low-Income and Middle-Income Countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Crider, K.S.; Bailey, L.B.; Berry, R.J. Folic Acid Food Fortification-Its History, Effect, Concerns, and Future Directions. Nutrients 2011, 3, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Ferrazzi, E.; Tiso, G.; Di Martino, D. Folic Acid versus 5- Methyl Tetrahydrofolate Supplementation in Pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 253, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.H. Causes of Vitamin B12 and Folate Deficiency. Food Nutr Bull. 2008, 29 (Suppl. S1), S20–S37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentin, M.; Coste Mazeau, P.; Zerah, M.; Ceccaldi, P.F.; Benachi, A.; Luton, D. Acid Folic and Pregnancy: A Mandatory Supplementation. Ann. Endocrinol. 2018, 79, 91–94. [Google Scholar] [CrossRef]
- Iyer, R.; Tomar, S.K. Folate: A Functional Food Constituent. J. Food Sci. 2009, 74, R114–R122. [Google Scholar] [CrossRef] [PubMed]
- French, A.E.; Grant, R.; Weitzman, S.; Ray, J.G.; Vermeulen, M.J.; Sung, L.; Greenberg, M.; Koren, G. Folic Acid Food Fortification is Associated with a Decline in Neuroblastoma. Clin. Pharmacol. Ther. 2003, 74, 288–294. [Google Scholar] [CrossRef]
- Goh, Y.I.; Bollano, E.; Einarson, T.R.; Koren, G. Prenatal Multivitamin Supplementation and Rates of Pediatric Cancers: A Meta-analysis. Clin. Pharmacol. Ther. 2007, 81, 685–691. [Google Scholar] [CrossRef]
Bioactive Compound | Main Source(s) | Molecular Mechanism/Target(s) | Reference |
---|---|---|---|
Curcumin | Turmeric | Inhibition of cell growth and apoptosis induction by p53 upregulation | [37] |
Apoptosis induction by PTEN upregulation | [38] | ||
Apoptosis induction by HSP60 downregulation | [39] | ||
Inhibition of tumor progression and migration by Atx downregulation | [40] | ||
Inhibition of tumor cell migration | [8] | ||
Inhibition of cell migration and invasion by MMP-2 downregulation and TIMP1 activation | [41] | ||
Resveratrol | Grape skin and seeds, wine, peanuts, tea and berries | Apoptosis induction by caspase 3 activation, cell cycle arrest at S-phase by cyclin E upregulation and p21 downregulation | [42] |
Apoptosis induction | [43] | ||
Apoptosis induction and inhibition of cell proliferation by p53 activation | [44] | ||
Inhibition of oncogenic signals through prevention of ROS production and TrkAIII activation | [45] | ||
Allicin | Garlic | Apoptosis induction and cell proliferation inhibition by ODC1 downregulation | [46] |
S-allylcysteine (SAC) | Apoptosis induction and cell growth inhibition through mitochondrial permeability induction | [47] | |
Diallyl disulfide (DADS) | Apoptosis induction and cell proliferation inhibition | [48] | |
Cytoskeletal damage, G2/M cell cycle arrest and apoptosis induction | [49] | ||
Anti-apoptotic effect by PGC1α activation | [50] | ||
All-trans retinoic acid (ATRA) | Vitamin A metabolite– Animal products, vegetables and fruits | Differentiation activity | [51] |
9-cis-retinoic acid (9-cis-RA) | Reduction of tumor growth in vivo | [52] | |
Differentiation effect in amplified NMYC cell lines | [53] | ||
Epigallocatechin-3-gallate (EGCG) | Green tea | Apoptosis induction through caspase and calpain activation | [54] |
Inhibition of tumor relapse and resistance to chemotherapy | [55] | ||
Enhanced efficacy in combination with 6-OH-11-O-hydroxyphenanthrene | [56] | ||
Bergamot essential oil: BEO, BEO-TF, BEO-TFi | Bergamot (Citrus) | Apoptosis induction by p53 phosphorylation, increased of Bax and decrease of Bcl-2, reduced phosphorylation of p38 | [57] |
Bergamottin, 5-Geranyloxy-7-methoxycoumarin | Increase apoptosis and ROS levels, increase of BAX, p53, CASP9 and CASP3, decrease of Bcl-2 and Bcl-XL | [58] | |
Caffeine | Coffee, tea | Apoptotic induction by increasing caspase-3 activity | [59] |
Berberine (BRB) | Medicinal plants | Enhanced apoptosis p53-mediated | [60] |
Apoptosis induction in combination with As2O3 | [61] | ||
Promoting differentiation through increased expression of MAP2, β-III tubulin, NCAM and downregulation of stemness marker as CD133, beta-catenin, notch2, MYCN, and SOX2 | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sbaffone, M.; Ruggieri, M.; Sebastiano, M.; Mackay, A.R.; Zelli, V.; Farina, A.R.; Cappabianca, L.A. Nutraceutical Preventative and Therapeutic Potential in Neuroblastoma: From Pregnancy to Early Childhood. Life 2022, 12, 1762. https://doi.org/10.3390/life12111762
Sbaffone M, Ruggieri M, Sebastiano M, Mackay AR, Zelli V, Farina AR, Cappabianca LA. Nutraceutical Preventative and Therapeutic Potential in Neuroblastoma: From Pregnancy to Early Childhood. Life. 2022; 12(11):1762. https://doi.org/10.3390/life12111762
Chicago/Turabian StyleSbaffone, Maddalena, Marianna Ruggieri, Michela Sebastiano, Andrew Reay Mackay, Veronica Zelli, Antonietta Rosella Farina, and Lucia Annamaria Cappabianca. 2022. "Nutraceutical Preventative and Therapeutic Potential in Neuroblastoma: From Pregnancy to Early Childhood" Life 12, no. 11: 1762. https://doi.org/10.3390/life12111762
APA StyleSbaffone, M., Ruggieri, M., Sebastiano, M., Mackay, A. R., Zelli, V., Farina, A. R., & Cappabianca, L. A. (2022). Nutraceutical Preventative and Therapeutic Potential in Neuroblastoma: From Pregnancy to Early Childhood. Life, 12(11), 1762. https://doi.org/10.3390/life12111762