Retinal Disease and Metabolism
1. Metabolism-Related Risk Factors and Regulators
2. Evaluation for Retinal Disease Treatment
3. Diagnosis and Biomarkers of Retinal Disease
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoang, Q.V.; Linsenmeier, R.A.; Chung, C.K.; Curcio, C.A. Photoreceptor inner segments in monkey and human retina: Mitochondrial density, optics, and regional variation. Vis. Neurosci. 2002, 19, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Ait-Ali, N.; Fridlich, R.; Millet-Puel, G.; Clerin, E.; Delalande, F.; Jaillard, C.; Blond, F.; Perrocheau, L.; Reichman, S.; Byrne, L.C.; et al. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell 2015, 161, 817–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punzo, C.; Kornacker, K.; Cepko, C.L. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat. Neurosci. 2009, 12, 44–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joyal, J.S.; Sun, Y.; Gantner, M.L.; Shao, Z.; Evans, L.P.; Saba, N.; Fredrick, T.; Burnim, S.; Kim, J.S.; Patel, G.; et al. Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1. Nat. Med. 2016, 22, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Fu, Z.; Kern, T.S.; Hellstrom, A.; Smith, L.E.H. Fatty acid oxidation and photoreceptor metabolic needs. J. Lipid Res. 2021, 62, 100035. [Google Scholar] [CrossRef] [Green Version]
- Tomita, Y.; Usui-Ouchi, A.; Nilsson, A.K.; Yang, J.; Ko, M.; Hellstrom, A.; Fu, Z. Metabolism in retinopathy of prematurity. Life 2021, 11, 1119. [Google Scholar] [CrossRef]
- Tomita, Y.; Cagnone, G.; Fu, Z.; Cakir, B.; Kotoda, Y.; Asakage, M.; Wakabayashi, Y.; Hellstrom, A.; Joyal, J.S.; Talukdar, S.; et al. Vitreous metabolomics profiling of proliferative diabetic retinopathy. Diabetologia 2021, 64, 70–82. [Google Scholar] [CrossRef]
- Nilsson, A.K.; Andersson, M.X.; Sjobom, U.; Hellgren, G.; Lundgren, P.; Pivodic, A.; Smith, L.E.H.; Hellstrom, A. Sphingolipidomics of serum in extremely preterm infants: Association between low sphingosine-1-phosphate levels and severe retinopathy of prematurity. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 158939. [Google Scholar] [CrossRef]
- Xu, M.; Jiang, Y.; Su, L.; Chen, X.; Shao, X.; Ea, V.; Shang, Z.; Zhang, X.; Barnstable, C.J.; Li, X.; et al. Novel regulators of retina neovascularization: A proteomics approach. J. Proteome Res. 2022, 21, 101–117. [Google Scholar] [CrossRef]
- Smith, L.E.; Wesolowski, E.; McLellan, A.; Kostyk, S.K.; D’Amato, R.; Sullivan, R.; D’Amore, P.A. Oxygen-induced retinopathy in the mouse. Investig. Ophthalmol. Vis. Sci. 1994, 35, 101–111. [Google Scholar]
- Fu, Z.; Lofqvist, C.A.; Liegl, R.; Wang, Z.; Sun, Y.; Gong, Y.; Liu, C.H.; Meng, S.S.; Burnim, S.B.; Arellano, I.; et al. Photoreceptor glucose metabolism determines normal retinal vascular growth. EMBO Mol. Med. 2018, 10, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Tsang, J.K.W.; Wolf, S.A.; Pompoes, I.M.; Joussen, A.M.; Lam, W.C.; Yang, D.; Lo, A.C.Y. Potential effects of nutraceuticals in retinopathy of prematurity. Life 2021, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Hartnett, M.E.; Lane, R.H. Effects of oxygen on the development and severity of retinopathy of prematurity. J. Am. Assoc. Pediatric Ophthalmol. Strabismus 2013, 17, 229–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, C.; Benos, A.; Grenell, A.; Rao, S.; Anand-Apte, B.; Sears, J.E. Hyperoxia inhibits proliferation of retinal endothelial cells in a myc-dependent manner. Life 2021, 11, 614. [Google Scholar] [CrossRef]
- Hu, M.L.; Quinn, J.; Xue, K. Interactions between apolipoprotein E metabolism and retinal inflammation in age-related macular degeneration. Life 2021, 11, 635. [Google Scholar] [CrossRef]
- Anderson, D.H.; Ozaki, S.; Nealon, M.; Neitz, J.; Mullins, R.F.; Hageman, G.S.; Johnson, L.V. Local cellular sources of apolipoprotein E in the human retina and retinal pigmented epithelium: Implications for the process of drusen formation. Am. J. Ophthalmol. 2001, 131, 767–781. [Google Scholar] [CrossRef]
- Riddell, N.; Murphy, M.J.; Crewther, S.G. Electroretinography and gene expression measures implicate phototransduction and metabolic shifts in chick myopia and hyperopia models. Life 2021, 11, 501. [Google Scholar] [CrossRef]
- Pietras-Baczewska, A.; Nowomiejska, K.; Brzozowska, A.; Toro, M.D.; Zaluska, W.; Sztanke, M.; Sztanke, K.; Rejdak, R. Antioxidant status in the vitreous of eyes with rhegmatogenous retinal detachment with and without proliferative vitreoretinopathy, macular hole and epiretinal membrane. Life 2021, 11, 453. [Google Scholar] [CrossRef]
- Lee, D.; Tomita, Y.; Allen, W.; Tsubota, K.; Negishi, K.; Kurihara, T. PPARα modulation-based therapy in central nervous System diseases. Life 2021, 11, 1168. [Google Scholar] [CrossRef]
- Tomita, Y.; Ozawa, N.; Miwa, Y.; Ishida, A.; Ohta, M.; Tsubota, K.; Kurihara, T. Pemafibrate prevents retinal pathological neovascularization by increasing FGF21 level in a murine oxygen-induced retinopathy model. Int. J. Mol. Sci. 2019, 20, 5878. [Google Scholar] [CrossRef] [Green Version]
- Tomita, Y.; Lee, D.; Miwa, Y.; Jiang, X.; Ohta, M.; Tsubota, K.; Kurihara, T. Pemafibrate protects against retinal dysfunction in a murine model of diabetic retinopathy. Int. J. Mol. Sci. 2020, 21, 6243. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Tomita, Y.; Jeong, H.; Miwa, Y.; Tsubota, K.; Negishi, K.; Kurihara, T. Pemafibrate prevents retinal dysfunction in a mouse model of unilateral common carotid artery occlusion. Int. J. Mol. Sci. 2021, 22, 9408. [Google Scholar] [CrossRef] [PubMed]
- Slomiany, M.G.; Rosenzweig, S.A. IGF-1-induced VEGF and IGFBP-3 secretion correlates with increased HIF-1 alpha expression and activity in retinal pigment epithelial cell line D407. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2838–2847. [Google Scholar] [CrossRef] [PubMed]
- Puddu, A.; Sanguineti, R.; Maggi, D. Caveolin-1 down-regulation reduces VEGF-A secretion induced by IGF-1 in ARPE-19 cells. Life 2021, 12, 44. [Google Scholar] [CrossRef]
- Uemura, A.; Fruttiger, M.; D’Amore, P.A.; De Falco, S.; Joussen, A.M.; Sennlaub, F.; Brunck, L.R.; Johnson, K.T.; Lambrou, G.N.; Rittenhouse, K.D.; et al. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog. Retin. Eye Res. 2021, 84, 100954. [Google Scholar] [CrossRef]
- Ghanchi, F.; Bourne, R.; Downes, S.M.; Gale, R.; Rennie, C.; Tapply, I.; Sivaprasad, S. An update on long-acting therapies in chronic sight-threatening eye diseases of the posterior segment: AMD, DMO, RVO, uveitis and glaucoma. Eye 2022. [Google Scholar] [CrossRef]
- Stahl, A.; Lepore, D.; Fielder, A.; Fleck, B.; Reynolds, J.D.; Chiang, M.F.; Li, J.; Liew, M.; Maier, R.; Zhu, Q.; et al. Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW): An open-label randomised controlled trial. Lancet 2019, 394, 1551–1559. [Google Scholar] [CrossRef]
- Usui-Ouchi, A.; Tamaki, A.; Sakanishi, Y.; Tamaki, K.; Mashimo, K.; Sakuma, T.; Ebihara, N. Factors affecting a short-term response to anti-VEGF therapy in diabetic macular edema. Life 2021, 11, 83. [Google Scholar] [CrossRef]
- Tanwani, A.; Safdar, N.; Ali, A.; Karimaghaei, C.; Schmitz-Brown, M.; Rehmani, A.; Gupta, P.K. Impact of injection protocol selection by retina specialists on clinical outcomes in patients with diabetic macular edema. Life 2021, 12, 51. [Google Scholar] [CrossRef]
- Wicinski, M.; Seredyka-Burduk, M.; Liberski, S.; Marczak, D.; Pol, M.; Malinowski, B.; Pawlak-Osinska, K.; Kaluzny, B.J. Evaluation of blood coagulation parameters and ADMA, NO, IL-6, and IL-18 serum levels in patients with neovascular AMD before, during, and after the initial loading phase of intravitreal aflibercept. Life 2021, 11, 441. [Google Scholar] [CrossRef]
- Ang, J.L.; Ah-Moye, S.; Kim, L.N.; Nguyen, V.; Hunt, A.; Barthelmes, D.; Gillies, M.C.; Mehta, H. A systematic review of real-world evidence of the management of macular oedema secondary to branch retinal vein occlusion. Eye 2020, 34, 1770–1796. [Google Scholar] [CrossRef] [PubMed]
- Sakanishi, Y.; Morita, S.; Mashimo, K.; Tamaki, K.; Ebihara, N. Subfoveal choroidal thickness and treatment outcomes of intravitreal aflibercept for branch retinal vein occlusion. Life 2021, 11, 572. [Google Scholar] [CrossRef] [PubMed]
- Sonntag, S.R.; Seifert, E.; Hamann, M.; Lewke, B.; Theisen-Kunde, D.; Grisanti, S.; Brinkmann, R.; Miura, Y. Fluorescence lifetime changes induced by laser irradiation: A preclinical study towards the evaluation of retinal metabolic states. Life 2021, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, T.; Liu, S.; Uchida, T.; Onoue, S.; Nakagawa, S.; Ishii, M.; Kanamitsu, K. Photoelectric dye, NK-5962, as a potential drug for preventing retinal neurons from apoptosis: Pharmacokinetic studies based on review of the evidence. Life 2021, 11, 591. [Google Scholar] [CrossRef]
- Palma, F.; Camacho, P. The role of optical coherence tomography angiography to detect early microvascular changes in diabetic retinopathy: A systematic review. J. Diabetes Metab. Disord. 2021, 20, 1957–1974. [Google Scholar] [CrossRef]
- Wysocka-Mincewicz, M.; Golebiewska, J.; Olechowski, A.; Szalecki, M. Diabetic retinopathy in children with type 1 diabetes-occurrence and screening using optical coherence tomography. Life 2021, 11, 590. [Google Scholar] [CrossRef]
- Ozawa, N.; Mori, K.; Katada, Y.; Tsubota, K.; Kurihara, T. Efficacy of the newly invented eyelid clamper in ultra-widefield fundus imaging. Life 2020, 10, 323. [Google Scholar] [CrossRef]
- Uchida, A.; Sasaki, M.; Motomura, K.; Yuki, K.; Kurihara, T.; Tomita, Y.; Ozawa, Y.; Yamagishi, K.; Kawasaki, R.; Hanyuda, A.; et al. Relationship between nerve fiber layer defect and the presence of epiretinal membrane in a Japanese population: The JPHC-NEXT Eye study. Sci. Rep. 2020, 10, 779. [Google Scholar] [CrossRef]
- Shimizu, H.; Asaoka, R.; Omoto, T.; Fujino, Y.; Mitaki, S.; Onoda, K.; Nagai, A.; Yamaguchi, S.; Tanito, M. Prevalence of epiretinal membrane among subjects in a health examination program in Japan. Life 2021, 11, 93. [Google Scholar] [CrossRef]
- Milam, A.H.; De Castro, E.B.; Smith, J.E.; Tang, W.X.; John, S.K.; Gorin, M.B.; Stone, E.M.; Aguirre, G.D.; Jacobson, S.G. Concentric retinitis pigmentosa: Clinicopathologic correlations. Exp. Eye Res. 2001, 73, 493–508. [Google Scholar] [CrossRef] [Green Version]
- Nakahara, M.; Oishi, A.; Miyata, M.; Ikeda, H.O.; Hasegawa, T.; Numa, S.; Otsuka, Y.; Oishi, M.; Matsuda, F.; Tsujikawa, A. Clinical characteristics, differential diagnosis and genetic analysis of concentric retinitis pigmentosa. Life 2021, 11, 260. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, T.; Yashiro, M.; Yamasaki, O.; Tanaka, T.; Manki, A. Bilateral optic disc swelling as a plausible common ocular sign of autoinflammatory diseases: Report of three patients with Blau syndrome or cryopyrin-associated periodic syndrome. Life 2021, 11, 1433. [Google Scholar] [CrossRef] [PubMed]
- Low, S.W.Y.; Vaidya, T.; Gadde, S.G.K.; Mochi, T.B.; Kumar, D.; Kassem, I.S.; Costakos, D.M.; Ahmad, B.; Sethu, S.; Ghosh, A.; et al. Decorin concentrations in aqueous humor of patients with diabetic retinopathy. Life 2021, 11, 1421. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, Y.; Takai, Y.; Kaidzu, S.; Tanito, M. Association between systemic antioxidant capacity and retinal vessel diameters in patients with primary-open angle glaucoma. Life 2020, 10, 364. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Z.; Usui-Ouchi, A.; Allen, W.; Tomita, Y. Retinal Disease and Metabolism. Life 2022, 12, 183. https://doi.org/10.3390/life12020183
Fu Z, Usui-Ouchi A, Allen W, Tomita Y. Retinal Disease and Metabolism. Life. 2022; 12(2):183. https://doi.org/10.3390/life12020183
Chicago/Turabian StyleFu, Zhongjie, Ayumi Usui-Ouchi, William Allen, and Yohei Tomita. 2022. "Retinal Disease and Metabolism" Life 12, no. 2: 183. https://doi.org/10.3390/life12020183
APA StyleFu, Z., Usui-Ouchi, A., Allen, W., & Tomita, Y. (2022). Retinal Disease and Metabolism. Life, 12(2), 183. https://doi.org/10.3390/life12020183