Spike-Wave Seizures, NREM Sleep and Micro-Arousals in WAG/Rij Rats with Genetic Predisposition to Absence Epilepsy: Developmental Aspects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. EEG Recording
2.3. Vigilance States and SWDs in Video-EEG Recordings
2.4. Automatic Identification of Sleep/Waking States and SWDs in EEG
2.5. Identification of Micro-Arousals in EEG
2.6. Statistical Analysis
3. Results
3.1. Age-Related Dynamics of SWDs
3.2. Slow-Wave Sleep
3.3. Micro-Arousals
3.4. Relationship between SWDs, NREM Sleep and Micro-Arousals
4. Discussion
4.1. Automatic Analysis of Three-Channel EEG Data
4.2. Spike-Wave Epilepsy in WAG/Rij Rats: Epi-Phenotypes and Characteristics of NREM Sleep
4.3. Spike-Wave Epilepsy and Micro-Arousals during NREM Sleep
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panayiotopoulos, C.P. Typical absence seizures and their treatment. Arch. Dis. Child. 1999, 81, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Dreifuss, F.E.; Penry, J.K. The effect of sleep on spike-wave discharges in absence seizures. Neurology 1973, 23, 1335–1345. [Google Scholar] [CrossRef] [PubMed]
- Beenhakker, M.P.; Huguenard, J.R. Neurons that Fire Together Also Conspire Together: Is Normal Sleep Circuitry Hijacked to Generate Epilepsy? Neuron 2009, 62, 612–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozák, G.; Földi, T.; Berényi, A. Spike-and-Wave Discharges Are Not Pathological Sleep Spindles, Network-Level Aspects of Age-Dependent Absence Seizure Development in Rats. eNeuro 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Leresche, N.; Lambert, R.C.; Errington, A.C.; Crunelli, V. From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: Is the hypothesis still valid? Pflug. Arch. 2012, 463, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Meeren, H.K.; Veening, J.G.; Möderscheim, T.A.; Coenen, A.M.; van Luijtelaar, G. Thalamic lesions in a genetic rat model of absence epilepsy: Dissociation between spike-wave discharges and sleep spindles. Exp. Neurol. 2009, 217, 25–37. [Google Scholar] [CrossRef]
- Sitnikova, E.; Hramov, A.E.; Grubov, V.; Koronovsky, A.A. Rhythmic activity in EEG and sleep in rats with absence epilepsy. Brain Res. Bull. 2016, 120, 106–116. [Google Scholar] [CrossRef]
- Halász, P.; Szűcs, A. Sleep and Epilepsy Link by Plasticity. Front. Neurol. 2020, 11, 911. [Google Scholar] [CrossRef]
- Smyk, M.K.; van Luijtelaar, G. Circadian Rhythms and Epilepsy: A Suitable Case for Absence Epilepsy. Front. Neurol. 2020, 11, 245. [Google Scholar] [CrossRef]
- Halász, P.; Kelemen, A.; Szűcs, A. The role of NREM sleep micro-arousals in absence epilepsy and in nocturnal frontal lobe epilepsy. Epilepsy Res. 2013, 107, 9–19. [Google Scholar] [CrossRef]
- Maganti, R.; Sheth, R.D.; Hermann, B.P.; Weber, S.; Gidal, B.E.; Fine, J. Sleep Architecture in Children with Idiopathic Generalized Epilepsy. Epilepsia 2005, 46, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Dinopoulos, A.; Tsirouda, M.A.; Bonakis, A.; Pons, R.; Pavlopoulou, I.D.; Tsoumakas, K. Sleep architecture and epileptic characteristics of drug naïve patients in childhood absence epilepsy spectrum. A prospective study. Seizure 2018, 59, 99–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, S.V.; Glauser, T.A. Effects of epilepsy treatments on sleep architecture and daytime sleepiness: An evidence-based review of objective sleep metrics. Epilepsia 2013, 55, 26–37. [Google Scholar] [CrossRef]
- Schmitt, B.; Martin, F.; Critelli, H.; Molinari, L.; Jenni, O.G. Effects of valproic acid on sleep in children with epilepsy. Epilepsia 2009, 50, 1860–1867. [Google Scholar] [CrossRef]
- Wolf, P.; Inoue, Y.; Röder-Wanner, U.-U.; Tsai, J.-J. Psychiatric Complications of Absence Therapy and Their Relation to Alteration of Sleep. Epilepsia 1984, 25 (Suppl. S1), S56–S59. [Google Scholar] [CrossRef] [PubMed]
- Coenen, A.M.L.; Van Luijtelaar, E.L.J.M. Genetic Animal Models for Absence Epilepsy: A Review of the WAG/Rij Strain of Rats. Behav. Genet. 2003, 33, 635–655. [Google Scholar] [CrossRef]
- Russo, E.; Citraro, R.; Constanti, A.; Leo, A.; Lüttjohann, A.; van Luijtelaar, G.; De Sarro, G. Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neurosci. Biobehav. Rev. 2016, 71, 388–408. [Google Scholar] [CrossRef] [Green Version]
- Depaulis, A.; Charpier, S. Pathophysiology of absence epilepsy: Insights from genetic models. Neurosci. Lett. 2018, 667, 53–65. [Google Scholar] [CrossRef]
- Crunelli, V.; Lorincz, M.L.; McCafferty, C.; Lambert, R.C.; Leresche, N.; Di Giovanni, G.; David, F. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain 2020, 143, 2341–2368. [Google Scholar] [CrossRef]
- Van Luijtelaar, G.; van Oijen, G. Establishing drug effects on electrocorticographic activity in a genetic absence epilepsy model: Advances and pitfalls. Front. Pharmacol. 2020, 11, 395. [Google Scholar] [CrossRef]
- Halász, P.; Terzano, M.; Parrino, L. Spike-wave discharge and the microstructure of sleep-wake continuum in idiopathic generalised epilepsy. Neurophysiol. Clin. Neurophysiol. 2002, 32, 38–53. [Google Scholar] [CrossRef]
- Coenen, A.; Drinkenburg, W.; Peeters, B.; Vossen, J.; van Luijtelaar, E. Absence epilepsy and the level of vigilance in rats of the WAG/Rij strain. Neurosci. Biobehav. Rev. 1991, 15, 259–263. [Google Scholar] [CrossRef]
- Halász, P. Are Absence Epilepsy and Nocturnal Frontal Lobe Epilepsy System Epilepsies of the Sleep/Wake System? Behav. Neurol. 2015, 2015, 231676. [Google Scholar] [CrossRef] [Green Version]
- Terzano, M.G.; Mancia, D.; Salati, M.R.; Costani, G.; Decembrino, A.; Parrino, L. The Cyclic Alternating Pattern as a Physiologic Component of Normal NREM Sleep. Sleep 1985, 8, 137–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gigli, G.L.; Calia, E.; Marciani, M.G.; Mazza, S.; Mennuni, G.; Diomedi, M.; Terzano, M.G.; Janz, D. Sleep Microstructure and EEG Epileptiform Activity in Patients with Juvenile Myoclonic Epilepsy. Epilepsia 1992, 33, 799–804. [Google Scholar] [CrossRef]
- Terzano, M.G.; Parrino, L.; Anelli, S.; Halasz, P.; Portera-Sánchez, A. Modulation of Generalized Spike-and-Wave Discharges During Sleep by Cyclic Alternating Pattern. Epilepsia 1989, 30, 772–781. [Google Scholar] [CrossRef]
- Lecci, S.; Fernandez, L.M.; Weber, F.D.; Cardis, R.; Chatton, J.Y.; Born, J.; Lüthi, A. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci. Adv. 2017, 3, e1602026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coenen, A.; Van Luijtelaar, E. The WAG/Rij rat model for absence epilepsy: Age and sex factors. Epilepsy Res. 1987, 1, 297–301. [Google Scholar] [CrossRef]
- Sitnikova, E.; Hramov, A.E.; Grubov, V.V.; Koronovsky, A.A. Age-Dependent Increase of Absence Seizures and Intrinsic Frequency Dynamics of Sleep Spindles in Rats. Neurosci. J. 2014, 2014, 370764. [Google Scholar] [CrossRef]
- Lazarini-Lopes, W.; Campos-Rodriguez, C.; Palmer, D.; N’Gouemo, P.; Garcia-Cairasco, N.; Forcelli, P.A. Absence epilepsy in male and female WAG/Rij rats: A longitudinal EEG analysis of seizure expression. Epilepsy Res. 2021, 176, 106693. [Google Scholar] [CrossRef]
- Sitnikova, E. Sleep Disturbances in Rats with Genetic Pre-disposition to Spike-Wave Epilepsy (WAG/Rij). Front. Neurol. 2021, 12, 766566. [Google Scholar] [CrossRef] [PubMed]
- Sitnikova, E.; Rutskova, E.M.; Tsvetaeva, D.; Raevsky, V.V. Spike-wave seizures, slow-wave sleep EEG and morphology of substantia nigra pars compacta in WAG/Rij rats with genetic predisposition to absence epilepsy. Brain Res. Bull. 2021, 174, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Smyk, M.K.; Sysoev, I.V.; Sysoeva, M.V.; van Luijtelaar, G.; Drinkenburg, W.H. Can absence seizures be predicted by vigilance states?: Advanced analysis of sleep-wake states and spike-wave discharges’ occurrence in rats. Epilepsy Behav. 2019, 96, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Runnova, A.; Zhuravlev, M.; Kiselev, A.; Ukolov, R.; Smirnov, K.; Karavaev, A.; Sitnikova, E. Automatic wavelet-based assessment of behavioral sleep using multichannel electrocorticography in rats. Sleep Breath. 2021, 25, 2251–2258. [Google Scholar] [CrossRef] [PubMed]
- Abramovich, F.; Bailey, T.C.; Sapatinas, T. Wavelet analysis and its statistical applications. J. R. Stat. Soc. 2000, 49, 1–29. [Google Scholar] [CrossRef]
- Halász, P.; Terzano, M.; Parrino, L.; Bódizs, R. The nature of arousal in sleep. J. Sleep Res. 2004, 13, 1–23. [Google Scholar] [CrossRef]
- ASDA. EEG arousals: Scoring rules and examples: A preliminary report from the Sleep Disorders Atlas Task Force of the American Sleep Disorders Association. Sleep 1992, 15, 173–184. [Google Scholar] [CrossRef]
- Bonakis, A.; Koutroumanidis, M. Epileptic discharges and phasic sleep phenomena in patients with juvenile myoclonic epilepsy. Epilepsia 2009, 50, 2434–2445. [Google Scholar] [CrossRef]
- Van Luijtelaar, G.; Bikbaev, A. Midfrequency cortico-thalamic oscillations and the sleep cycle: Genetic, time of day and age effects. Epilepsy Res. 2007, 73, 259–265. [Google Scholar] [CrossRef]
- Sitnikova, E.; Hramov, A.E.; Grubov, V.; Koronovsky, A.A. Time-frequency characteristics and dynamics of sleep spindles in WAG/Rij rats with absence epilepsy. Brain Res. 2014, 1543, 290–299. [Google Scholar] [CrossRef]
- Bazilio, D.S.; Bonagamba, L.G.H.; Moraes, D.J.A.; Machado, B.H. Cardiovascular and respiratory profiles during the sleep–wake cycle of rats previously submitted to chronic intermittent hypoxia. Exp. Physiol. 2019, 104, 1408–1419. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, N. Propagations of spontaneous brain activity in awake rats. NeuroImage 2019, 202, 116176. [Google Scholar] [CrossRef] [PubMed]
- Wallant, D.C.; Maquet, P.; Phillips, C. Sleep Spindles as an Electrographic Element: Description and Automatic Detection Methods. Neural Plast. 2016, 2016, 6783812. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, P.M.; Xiao, Z.; Robinson, E.; Jami, A.S.; Zhang, J.; Zhou, H.; Henin, S.E.; Liu, A.; Osorio, R.S.; Wang, J.; et al. A deep learning approach for real-time detection of sleep spindles. J. Neural. Eng. 2019, 16, 036004. [Google Scholar] [CrossRef] [PubMed]
- Sitnikova, E.; Hramov, A.E.; Koronovsky, A.A.; van Luijtelaar, G. Sleep spindles and spike–wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis. J. Neurosci. Methods 2009, 180, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Nazimov, A.; Pavlov, A.; Nazimova, A.; Grubov, V.; Koronovskii, A.; Sitnikova, E.; Hramov, A. Serial identification of EEG patterns using adaptive wavelet-based analysis. Eur. Phys. J. Spéc. Top. 2013, 222, 2713–2722. [Google Scholar] [CrossRef]
- Sitnikova, E.; Grubov, V.; Hramov, A.E. Slow-wave activity preceding the onset of 10–15-Hz sleep spindles and 5–9-Hz oscillations in electroencephalograms in rats with and without absence seizures. J. Sleep Res. 2020, 29, e12927. [Google Scholar] [CrossRef]
- Vanluijtelaar, E.; Coenen, A. An EEG averaging technique for automated sleep-wake stage identification in the rat. Physiol. Behav. 1984, 33, 837–841. [Google Scholar] [CrossRef]
- Chapotot, F.; Becq, G. Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules. Int. J. Adapt. Control. Signal Process. 2010, 24, 409–423. [Google Scholar] [CrossRef]
- Sugi, T.; Kawana, F.; Nakamura, M. Automatic EEG arousal detection for sleep apnea syndrome. Biomed. Signal Process. Control 2009, 4, 329–337. [Google Scholar] [CrossRef]
- Ferguson, S.A.; Maier, K.L. A review of seasonal/circannual effects of laboratory rodent behavior. Physiol. Behav. 2013, 119, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Scammell, T.E.; Arrigoni, E.; Lipton, J.O. Neural Circuitry of Wakefulness and Sleep. Neuron 2017, 93, 747–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lüttjohann, A.; Pape, H.-C. Regional specificity of cortico-thalamic coupling strength and directionality during waxing and waning of spike and wave discharges. Sci. Rep. 2019, 9, 2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suntsova, N.; Kumar, S.; Guzman-Marin, R.; Alam, M.N.; Szymusiak, R.; McGinty, D. A role for the preoptic sleep-promoting system in absence epilepsy. Neurobiol. Dis. 2009, 36, 126–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuravlev, M.; Runnova, A.; Smirnov, K.; Sitnikova, E. Spike-Wave Seizures, NREM Sleep and Micro-Arousals in WAG/Rij Rats with Genetic Predisposition to Absence Epilepsy: Developmental Aspects. Life 2022, 12, 576. https://doi.org/10.3390/life12040576
Zhuravlev M, Runnova A, Smirnov K, Sitnikova E. Spike-Wave Seizures, NREM Sleep and Micro-Arousals in WAG/Rij Rats with Genetic Predisposition to Absence Epilepsy: Developmental Aspects. Life. 2022; 12(4):576. https://doi.org/10.3390/life12040576
Chicago/Turabian StyleZhuravlev, Maxim, Anastasiya Runnova, Kirill Smirnov, and Evgenia Sitnikova. 2022. "Spike-Wave Seizures, NREM Sleep and Micro-Arousals in WAG/Rij Rats with Genetic Predisposition to Absence Epilepsy: Developmental Aspects" Life 12, no. 4: 576. https://doi.org/10.3390/life12040576
APA StyleZhuravlev, M., Runnova, A., Smirnov, K., & Sitnikova, E. (2022). Spike-Wave Seizures, NREM Sleep and Micro-Arousals in WAG/Rij Rats with Genetic Predisposition to Absence Epilepsy: Developmental Aspects. Life, 12(4), 576. https://doi.org/10.3390/life12040576