The Impact of Diabetes Mellitus and Admission Hyperglycemia on Clinical Outcomes after Recanalization Therapies for Acute Ischemic Stroke: STAY ALIVE National Prospective Registry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Diagnosis
2.3. Treatment
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Results of the Overall Population
3.2. Results of Subgroup Treated with MT
3.3. Results of Subgroup Treated with IVT-Only
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luitse, M.J.; Biessels, G.J.; Rutten, G.E.; Kappelle, L.J. Diabetes, hyperglycaemia, and acute ischaemic stroke. Lancet Neurol. 2012, 11, 261–271. [Google Scholar] [CrossRef]
- Akhtar, N.; Kamran, S.; Singh, R.; Malik, R.A.; Deleu, D.; Bourke, P.J.; Joseph, S.; Santos, M.D.; Morgan, D.M.; Wadiwala, F.M. The Impact of Diabetes on Outcomes After Acute Ischemic Stroke: A Prospective Observational Study. J. Stroke Cerebrovasc. Dis. 2019, 28, 619–626. [Google Scholar] [CrossRef]
- Pechlivani, N.; Ajjan, R. Thrombosis and vascular inflammation in diabetes: Mechanisms and potential therapeutic targets. Front. Cardiovasc. Med. 2018, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.; Refaat, M.; Mohammedi, K.; Jayyousi, A.; Suwaidi, J.; Khalil, C.A. Macrovascular Complications in Patients with Diabetes and Prediabetes. BioMed Res. Int. 2017, 2017, 7839101. [Google Scholar] [CrossRef] [PubMed]
- Yashiro, S.; Kameda, H.; Chida, A.; Todate, Y.; Hasegawa, Y.; Nagasawa, K.; Uwano, I.; Sasaki, M.; Ogasawara, K.; Ishigaki, Y. Evaluation of Lenticulostriate Arteries Changes by 7 T Magnetic Resonance Angiography in Type 2 Diabetes. J. Atheroscler. Thromb. 2018, 25, 1067–1075. [Google Scholar] [CrossRef] [Green Version]
- Kagansky, N.; Levy, S.; Knobler, H. The role of hyperglycemia in acute stroke. Arch. Neurol. 2001, 58, 1209–1212. [Google Scholar] [CrossRef]
- Kruyt, N.D.; Biessels, G.J.; DeVries, J.H.; Roos, Y.B. Hyperglycemia in acute ischemic stroke: Pathophysiology and clinical management. Nat. Rev. Neurol. 2010, 6, 145–155. [Google Scholar] [CrossRef]
- Bruno, A.; Levine, S.R.; Frankel, M.R.; Brott, T.G.; Lin, Y.; Tilley, B.C.; Lyden, P.D.; Broderick, J.P.; Kwiatkowski, T.G.; Fineberg, S.E. NINDS rt-PA Stroke Study Group. Admission glucose level and clinical outcomes in the NINDS rt-PA Stroke Trial. Neurology 2002, 59, 669–674. [Google Scholar] [CrossRef]
- Molina, C.A.; Montaner, J.; Abilleira, S.; Arenillas, J.F.; Ribó, M.; Huertas, R.; Romero, F.; Alvarez-Sabin, J. Time course of tissue plasminogen activator induced recanalization in acute cardioembolic stroke: A casecontrol study. Stroke 2001, 32, 2821–2827. [Google Scholar] [CrossRef]
- Molina, C.A.; Alexandrov, A.V.; Demchuk, A.M.; Saqqur, M.; Uchino, K.; Alvarez-Sabín, J. Improving the predictive accuracy of recanalization on stroke outcome in patients treated with tissue plasminogen activator. Stroke 2004, 35, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Zhang, S.; Yan, S.; Liebeskind, D.S.; Sun, J.; Ding, X.; Zhang, M.; Lou, M. Unfavorable neurological outcome in diabetic patients with acute ischemic stroke is associated with incomplete recanalization after intravenous thrombolysis. J. NeuroInterv. Surg. 2016, 8, 342–346. [Google Scholar] [CrossRef]
- Meurer, W.J.; Scott, P.A.; Caveney, A.F.; Majersik, J.J.; Frederiksen, S.M.; Sandretto, A.; Holden, A.B.; Silbergleit, R. Lack of association between hyperglycaemia at arrival and clinical outcomes in acute stroke patients treated with tissue plasminogen activator. Int. J. Stroke 2010, 5, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.T.; Jahan, R.; Saver, J.L. SWIFT Investigators. Impact of Glucose on Outcomes in Patients Treated with Mechanical Thrombectomy: A Post Hoc Analysis of the Solitaire Flow Restoration with the Intention for Thrombectomy Study. Stroke 2016, 47, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozdemir, O.; Giray, S.; Arlier, Z.; Baş, D.F.; Inanc, Y.; Colak, E. Predictors of a good outcome after endovascular stroke treatment with stent retrievers. Sci. World J. 2015, 15, 403726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osei, E.; den Hertog, H.M.; Berkhemer, O.A.; Fransen, P.S.S.; Roos, Y.B.W.E.M.; Beumer, D.; van Oostenbrugge, R.J.; Schonewille, W.J.; Boiten, J.; Zandbergen, A.A.M.; et al. MR CLEAN Investigators. Admission Glucose and Effect of Intra-Arterial Treatment in Patients with Acute Ischemic Stroke. Stroke 2017, 48, 1299–1305. [Google Scholar] [CrossRef]
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaidat, O.O.; Yoo, A.J.; Khatri, P.; Tomsick, T.A.; von Kummer, R.; Saver, J.L.; Marks, M.P.; Prabhakaran, S.; Kallmes, D.F.; Fitzsimmons, B.F.; et al. Recommendations on Angiographic Revascularization Grading Standards for Acute Ischemic Stroke: A Consensus Statement. Stroke 2013, 44, 2650–2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacke, W.; Kaste, M.; Fieschi, C.; von Kummer, R.; Davalos, A.; Meier, D.; Larrue, V.; Bluhmki, E.; Davis, S.; Donnan, G.; et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet 1998, 17, 1245–1251. [Google Scholar] [CrossRef]
- Desilles, J.P.; Meseguer, E.; Labreuche, J.; Lapergue, B.; Sirimarco, G.; Gonzalez-Valcarcel, J.; Lavallée, P.; Cabrejo, L.; Guidoux, C.; Klein, I.; et al. Diabetes mellitus, admission glucose, and outcomes after stroke thrombolysis: A registry and systematic review. Stroke 2013, 44, 1915–1923. [Google Scholar] [CrossRef]
- Lu, G.D.; Ren, Z.Q.; Zhang, J.X.; Zu, Q.Q.; Shi, H.B. Effects of Diabetes Mellitus and Admission Glucose in Patients Receiving Mechanical Thrombectomy: A Systematic Review and Meta-analysis. Neurocrit. Care 2018, 29, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Kawai, N.; Keep, R.F.; Betz, A.L.; Nagao, S. Hyperglycemia induces progressive changes in the cerebral microvasculature and blood-brain barrier transport during focal cerebral ischemia. Acta Neurochir. Suppl. 1998, 71, 219–221. [Google Scholar] [PubMed]
- Quast, M.J.; Wei, J.; Huang, N.C.; Brunder, D.G.; Sell, S.L.; Gonzalez, J.M.; Hillman, G.R.; Kent, T.A. Perfusion deficit parallels exacerbation of cerebral ischemia/reperfusion injury in hyperglycemic rats. J. Cereb. Blood Flow Metab. 1997, 17, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Kawai, N.; Keep, R.F.; Betz, A.L. Hyperglycemia and the vascular effects of cerebral ischemia. Stroke 1997, 28, 149–154. [Google Scholar] [CrossRef]
- Hafez, S.; Hoda, M.N.; Guo, X.; Johnson, M.H.; Fagan, S.C.; Ergul, A. Comparative analysis of different methods of ischemia/reperfusion in hyperglycemic stroke outcomes: Interaction with tPA. Transl. Stroke Res. 2015, 6, 171–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, X.; Liu, R.; Gao, F.; Ma, N.; Mo, D.; Liao, X.; Wang, C.; Sun, X.; Song, L.; Jia, B.; et al. Effect of Hyperglycemia at Presentation on Outcomes in Acute Large Artery Occlusion Patients Treated with Solitaire Stent Thrombectomy. Front. Neurol. 2019, 19, 10–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Liu, N.; Han, J.; Li, Y.; Spencer, P.; Vodovoz, S.J.; Ning, M.M.; Bix, G.; Katakam, P.V.G.; Dumont, A.S.; et al. Diabetes Mellitus/Poststroke Hyperglycemia: A Detrimental Factor for tPA Thrombolytic Stroke Therapy. Transl. Stroke Res. 2021, 12, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Rinkel, L.A.; Nguyen, T.T.M.; Guglielmi, V.; Groot, A.E.; Posthuma, L.; Roos, Y.B.W.E.M.; Majoie, C.B.L.M.; Lycklama À Nijeholt, G.J.; Emmer, B.J.; van der Worp, H.B.; et al. Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke in the Netherlands (MR CLEAN) Registry Investigators. High Admission Glucose Is Associated with Poor Outcome After Endovascular Treatment for Ischemic Stroke. Stroke 2020, 51, 3215–3223. [Google Scholar] [CrossRef] [PubMed]
- Csécsei, P.; Várnai, R.; Nagy, L.; Kéki, S.; Molnár, T.; Illés, Z.; Farkas, N.; Szapáry, L. L-arginine pathway metabolites can discriminate paroxysmal from permanent atrial fibrillation in acute ischemic stroke. Ideggyogy Szle. 2019, 72, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Bellolio, M.F.; Gilmore, R.M.; Ganti, L. Insulin for glycaemic control in acute ischaemic stroke. Cochrane Database Syst. Rev. 2014, 23, CD005346. [Google Scholar] [CrossRef] [PubMed]
Overall Population (n = 695) | DM Present (n = 182) | DM Absent (n = 513) | p-Value | |
---|---|---|---|---|
Age, years, median (IQR) | 69 (60–77) | 72 (64–78) | 67 (59–77) | <0.001 |
Gender, female, % (n) | 45.0 (313) | 46.7 (85) | 44.4 (228) | 0.599 |
Hypertension, % (n) | 79.2 (548) | 92.7 (166) | 74.5 (382) | <0.001 |
Hyperlipidemia, % (n) | 62.1 (394) | 69.1 (114) | 59.7 (280) | 0.032 |
Atrial fibrillation, % (n) | 17.5 (119) | 23.0 (40) | 15.6 (79) | 0.027 |
Coronary artery disease, % (n) | 23.9 (157) | 41.0 (68) | 18.2 (89) | <0.001 |
Previous stroke/TIA, % (n) | 22.0 (148) | 29.2 (49) | 19.6 (99) | 0.009 |
Antiplatelet therapy on admission, % (n) | 37.4 (250) | 55.4 (97) | 31.0 (153) | <0.001 |
Anticoagulant therapy on admission, % (n) | 11.1 (74) | 15.8 (27) | 9.5 (47) | 0.025 |
BMI, kg/m2, median (IQR) | 26.3 (23.3–31.1) | 28.1 (25.5–33.2) | 25.8 (23.0–29.5) | <0.001 |
NIHSS score on admission, median (IQR) | 7 (5–11) | 7 (5–11) | 7 (4–11) | 0.964 |
NIHSS score 24 h, median (IQR) | 4 (1–8) | 4 (2–8) | 4 (1–8) | 0.762 |
NIHSS score 72 h, median (IQR) | 3 (1–7) | 3 (1–7) | 3 (1–7) | 0.236 |
ASPECTS, median (IQR) | 10 (9–10) | 10 (9–10) | 10 (9–10) | 0.372 |
mCTA score, median (IQR) | 5 (4–5) | 5 (4–5) | 5 (4–5) | 0.112 |
Blood glucose, mmol/L, median (IQR) | 6.6 (5.8–8.3) | 8.7 (6.8–11.5) | 6.4 (5.6–7.4) | <0.001 |
Blood glucose ≥ 7.8 mmol/L, % (n) | 30.4 (201) | 60.6 (103) | 20.0 (98) | <0.001 |
Leucocyte, G/L, median (IQR) | 8.2 (6.7–10.2) | 8.3 (6.9–10.6) | 8.2 (6.6–10.0) | 0.279 |
C-reactive protein, mg/L, median (IQR) | 3.2 (1.4–7.0) | 3.2 (1.6–7.9) | 3.2 (1.4–6.3) | 0.721 |
Creatinine level, mg/dL, median (IQR) | 83 (70–101) | 91 (74–113) | 81 (68–97) | <0.001 |
Onset-to-door time, min, median (IQR) | 85 (58–128) | 89 (59–144) | 83 (58–122) | 0.075 |
Door-to-needle time, min, median (IQR) | 52 (36–71) | 52 (36–74) | 52 (36–70) | 0.965 |
MT performed, % (n) | 18.7 (130) | 18.1 (33) | 18.9 (97) | 0.817 |
IVT performed, % (n) | 88.9 (618) | 89.6 (163) | 88.7 (455) | 0.749 |
sICH, % (n) | 3.6 (25) | 7.8 (14) | 2.2 (11) | <0.001 |
90-day mRS ≤ 2, % (n) | 62.1 (422) | 48.9 (87) | 66.7 (335) | <0.001 |
90-day mRS > 2, % (n) | 37.9 (258) | 51.1 (91) | 33.3 (167) | <0.001 |
90-day mortality, % (n) | 14.3 (97) | 21.9 (39) | 11.6 (58) | <0.001 |
Stroke etiology (TOAST classification) | ||||
Large-artery atherosclerosis, % (n) | 25.6 (178) | 24.2 (44) | 26.1 (134) | 0.606 |
Cardioembolic, % (n) | 23.5 (163) | 26.9 (49) | 22.2 (114) | 0.198 |
Small-vessel occlusion, % (n) | 14.8 (103) | 22.5 (41) | 12.1 (62) | <0.001 |
Other determined etiology, % (n) | 1.6 (11) | 0.5 (1) | 1.9 (10) | 0.194 |
Unknown etiology, % (n) | 34.5 (240) | 25.8 (47) | 37.6 (193) | 0.004 |
Diabetes Mellitus | Admission Hyperglycemia | |||||||
---|---|---|---|---|---|---|---|---|
Non-Adjusted OR (95% CI) | p-Value | Adjusted * OR (95% CI) | p-Value | Non-Adjusted OR (95% CI) | p-Value | Adjusted * OR (95% CI) | p-Value | |
90-day favorable outcome (mRS 0–2) | 0.48 (0.34–0.68) | <0.001 | 0.50 (0.32–0.76) | 0.001 | 0.43 (0.30–0.60) | <0.001 | 0.48 (0.32–0.72) | <0.001 |
90-day poor outcome (mRS > 2) | 2.10 (1.48–2.97) | <0.001 | 2.02 (1.31–3.11) | 0.001 | 2.35 (1.67–3.31) | <0.001 | 2.09 (1.39–3.14) | <0.001 |
90-day mortality | 2.15 (1.37–3.36) | 0.001 | 2.45 (1.35–4.47) | 0.003 | 2.63 (1.68–4.14) | <0.001 | 2.42 (1.37–4.28) | 0.002 |
sICH | 3.80 (1.69–8.52) | 0.019 | 4.32 (1.54–12.09) | 0.005 | 4.50 (1.88–10.80) | 0.001 | 4.61 (1.58–13.39) | 0.005 |
Total Population (n = 130) | DM Present (n = 33) | DM Absent (n = 97) | p-Value | |
---|---|---|---|---|
Age, years, mean (SD) | 68 (13) | 71 (10) | 67 (13) | 0.193 |
Gender, female, % (n) | 53.1 (69) | 63.6 (21) | 49.5 (48) | 0.159 |
Hypertension, % (n) | 81.3 (104) | 96.8 (30) | 76.3 (74) | 0.011 |
Hyperlipidemia, % (n) | 59.2 (77) | 63.6 (21) | 57.7 (56) | 0.713 |
Atrial fibrillation, % (n) | 41.5 (51) | 54.8 (17) | 37.0 (34) | 0.080 |
Coronary artery disease, % (n) | 38.1 (40) | 60.9 (14) | 31.7 (26) | 0.011 |
Previous stroke/TIA, % (n) | 20.9 (24) | 36.0 (9) | 16.7 (15) | 0.035 |
Antiplatelet therapy on admission, % (n) | 30.6 (37) | 41.4 (12) | 27.2 (25) | 0.148 |
Anticoagulant therapy on admission, % (n) | 28.1 (34) | 33.3 (10) | 26.4 (24) | 0.462 |
BMI, kg/m2, median (IQR) | 26.1 (23.7–31.5) | 26.0 (23.9–30.1) | 31.1 (23.0–35.1) | 0.289 |
NIHSS score on admission, mean (SD) | 14 (7) | 14 (8) | 13 (7) | 0.773 |
NIHSS score 24 h, mean (SD) | 9 (8) | 8 (9) | 9 (8) | 0.262 |
NIHSS score 72 h, mean (SD) | 8 (7) | 9 (8) | 7 (7) | 0.656 |
ASPECTS, median (IQR) | 9 (8–10) | 9 (8–10) | 9 (8–10) | 0.593 |
mCTA score, median (IQR) | 4 (3–5) | 4 (3–5) | 4 (3–5) | 0.568 |
Blood glucose, mmol/L, median (IQR) | 7.0 (6.1–8.3) | 7.9 (6.9–11.9) | 6.6 (6.1–7.8) | 0.001 |
Blood glucose ≥ 7.8 mmol/L, % (n) | 33.3 (38) | 59.3 (16) | 25.3 (22) | 0.001 |
Leucocyte, G/L, median (IQR) | 9.1 (7.6–11.4) | 9.3 (7.5–10.8) | 9.0 (7.7–11.9) | 0.692 |
C-reactive protein, mg/L (IQR) | 3.6 (1.4–7.6) | 3.5 (1.4–7.2) | 4.2 (2.4–11.5) | 0.402 |
Creatinine, mg/dL, median (IQR) | 85 (72–107) | 96 (73–119) | 83 (72–100) | 0.055 |
Occlusion location, % (n) | ||||
ICA intracranial | 20 (26) | 15.2 (5) | 21.6 (21) | 0.420 |
MCA M1 | 46.9 (61) | 48.5 (16) | 46.4 (45) | 0.835 |
MCA M2 | 22.3 (29) | 27.3 (9) | 20.6 (20) | 0.428 |
Other | 10.8 (14) | 9.1 (3) | 11.3 (11) | 0.719 |
IVT prior MT, % (n) | 40.8 (53) | 21.2 (7) | 47.4 (46) | 0.008 |
Onset-to-door time, min, median (IQR) | 79 (54–111) | 84 (66–116) | 75 (52–106) | 0.201 |
Onset-to-GP time, min, median (IQR) | 230 (182–300) | 270 (213–310) | 217 (175–292) | 0.122 |
GP-to-revascularization time, min, median (IQR) | 35 (20–60) | 37 (22–62) | 35 (19–57) | 0.365 |
Onset-to-revascularization time, min, median (IQR) | 273 (217–355) | 305 (252–369) | 257 (215–336) | 0.192 |
Aspiration catheter, % (n) | 86.2 (112) | 84.8 (28) | 86.6 (84) | 0.802 |
Combined MT, % (n) | 13.8 (18) | 15.2 (5) | 13.4 (13) | 0.802 |
mTICI ≥ 2b, % (n) | 87.6 (113) | 81.8 (27) | 89.6 (86) | 0.243 |
Intraprocedural complications, % (n) | 9.7 (11) | 10.3 (3) | 9.5 (8) | 0.898 |
sICH, % (n) | 9.2 (12) | 18.2 (6) | 6.2 (6) | 0.040 |
90-day mRS ≤ 2, % (n) | 38.4 (50) | 24.2 (8) | 43.3 (42) | 0.046 |
90-day mRS > 2, % (n) | 61.5 (80) | 75.8 (25) | 56.7 (55) | 0.046 |
90-day mortality, % (n) | 26.1 (34) | 39.3 (13) | 21.6 (21) | 0.037 |
Diabetes Mellitus | Admission Hyperglycemia | |||||||
---|---|---|---|---|---|---|---|---|
Non-Adjusted OR (95% CI) | p-Value | Adjusted * OR (95% CI) | p-Value | Non-Adjusted OR (95% CI) | p-Value | Adjusted * OR (95% CI) | p-Value | |
90-day favorable outcome (mRS 0–2) | 0.40 (0.16–0.99) | 0.050 | 0.62 (0.18–2.15) | 0.449 | 0.13 (0.05–0.38) | <0.001 | 0.14 (0.04–0.51) | 0.003 |
90-day poor outcome (mRS > 2) | 2.51 (1.01–6.27) | 0.050 | 2.32 (0.54–10.00) | 0.259 | 7.72 (2.66–22.40) | <0.001 | 6.99 (1.98–24.72) | 0.003 |
90-day mortality | 2.52 (1.04–6.07) | 0.040 | 3.72 (1.04–13.34) | 0.044 | 3.39 (1.39–8.26) | 0.007 | 3.76 (1.11–12.76) | 0.034 |
sICH | 3.37 (1.01–11.31) | 0.049 | 12.45 (1.73–89.60) | 0.012 | 4.07 (1.11–14.89) | 0.034 | 7.36 (1.26–44.18) | 0.029 |
Successful recanalization | 0.52 (0.17–1.57) | 0.249 | 0.39 (0.09–1.67) | 0.205 | 0.61 (0.19–1.90) | 0.392 | 0.42 (0.09–1.97) | 0.274 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalmar, P.J.; Tarkanyi, G.; Karadi, Z.N.; Szapary, L.; Bosnyak, E. The Impact of Diabetes Mellitus and Admission Hyperglycemia on Clinical Outcomes after Recanalization Therapies for Acute Ischemic Stroke: STAY ALIVE National Prospective Registry. Life 2022, 12, 632. https://doi.org/10.3390/life12050632
Kalmar PJ, Tarkanyi G, Karadi ZN, Szapary L, Bosnyak E. The Impact of Diabetes Mellitus and Admission Hyperglycemia on Clinical Outcomes after Recanalization Therapies for Acute Ischemic Stroke: STAY ALIVE National Prospective Registry. Life. 2022; 12(5):632. https://doi.org/10.3390/life12050632
Chicago/Turabian StyleKalmar, Peter Janos, Gabor Tarkanyi, Zsofia Nozomi Karadi, Laszlo Szapary, and Edit Bosnyak. 2022. "The Impact of Diabetes Mellitus and Admission Hyperglycemia on Clinical Outcomes after Recanalization Therapies for Acute Ischemic Stroke: STAY ALIVE National Prospective Registry" Life 12, no. 5: 632. https://doi.org/10.3390/life12050632
APA StyleKalmar, P. J., Tarkanyi, G., Karadi, Z. N., Szapary, L., & Bosnyak, E. (2022). The Impact of Diabetes Mellitus and Admission Hyperglycemia on Clinical Outcomes after Recanalization Therapies for Acute Ischemic Stroke: STAY ALIVE National Prospective Registry. Life, 12(5), 632. https://doi.org/10.3390/life12050632