CAMDLES: CFD-DEM Simulation of Microbial Communities in Spaceflight and Artificial Microgravity
Abstract
:1. Introduction
1.1. Microbial Communities in Space
1.2. Validating Clinostats for Accurate Artificial Microgravity Conditions
1.3. The Microgravity Fluid Environment
1.4. The Effect of Microgravity on Microbial Ecology
1.5. Agent-Based Models for Microbial Communities
2. Materials and Methods
2.1. Software Development
2.2. An Engineered Cross-Feeding Microbial Community
2.3. Simulation Domain
2.4. Mechanical Models
2.5. Chemical Models
2.6. Biological Models
3. Results
3.1. Microgravity
3.1.1. Colocalization or Starting Metabolites Could Initiate Growth after Inoculation
3.1.2. Early-Phase Growth Rates Increased with Time and Population Density
3.1.3. Growth Rate Was Limited by Diffusion Rate with Increasing Colony Size
3.1.4. Spatial Dependence Maintained Species Ratios and High Populations
3.2. Rotating Wall Vessel
3.2.1. Rotating Wall Vessel Increased the Metabolite Utilization Rate
3.2.2. Separated Colonies Grew Slowly in Both the RWV and Microgravity
3.2.3. Product Yield Affected Growth Differently in RWV versus Microgravity
3.3. In 1 g Gravity
3.3.1. Gravity Induced the Spatial Structure
3.3.2. Natural Convective Flow Was Negligible
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, N.K.; Wood, J.M.; Karouia, F.; Venkateswaran, K. Succession and Persistence of Microbial Communities and Antimicrobial Resistance Genes Associated with International Space Station Environmental Surfaces. Microbiome 2018, 6, 204. [Google Scholar] [CrossRef] [Green Version]
- Häder, D.-P.; Braun, M.; Hemmersbach, R. Bioregenerative Life Support Systems in Space Research. In Gravitational Biology I: Gravity Sensing and Graviorientation in Microorganisms and Plants; Braun, M., Böhmer, M., Häder, D.-P., Hemmersbach, R., Palme, K., Eds.; SpringerBriefs in Space Life Sciences; Springer International Publishing: Cham, Switzerland, 2018; pp. 113–122. ISBN 978-3-319-93894-3. [Google Scholar]
- McNulty, M.J.; Berliner, A.J.; Negulescu, P.G.; McKee, L.; Hart, O.; Yates, K.; Arkin, A.P.; Nandi, S.; McDonald, K.A. Evaluating the Cost of Pharmaceutical Purification for a Long-Duration Space Exploration Medical Foundry. Front. Microbiol. 2021, 12, 700863. [Google Scholar] [CrossRef]
- Zea, L.; McLean, R.J.C.; Rook, T.A.; Angle, G.; Carter, D.L.; Delegard, A.; Denvir, A.; Gerlach, R.; Gorti, S.; McIlwaine, D.; et al. Potential Biofilm Control Strategies for Extended Spaceflight Missions. Biofilm 2020, 2, 100026. [Google Scholar] [CrossRef]
- Mora, M.; Wink, L.; Kögler, I.; Mahnert, A.; Rettberg, P.; Schwendner, P.; Demets, R.; Cockell, C.; Alekhova, T.; Klingl, A.; et al. Space Station Conditions Are Selective but Do Not Alter Microbial Characteristics Relevant to Human Health. Nat. Commun. 2019, 10, 3990. [Google Scholar] [CrossRef] [Green Version]
- Podolich, O.; Kukharenko, O.; Haidak, A.; Zaets, I.; Zaika, L.; Storozhuk, O.; Palchikovska, L.; Orlovska, I.; Reva, O.; Borisova, T.; et al. Multimicrobial Kombucha Culture Tolerates Mars-like Conditions Simulated on Low Earth Orbit. Astrobiology 2019, 19, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Afshinnekoo, E.; Scott, R.T.; MacKay, M.J.; Pariset, E.; Cekanaviciute, E.; Barker, R.; Gilroy, S.; Hassane, D.; Smith, S.M.; Zwart, S.R.; et al. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell 2020, 183, 1162–1184. [Google Scholar] [CrossRef]
- Hammond, T.G.; Hammond, J.M. Optimized Suspension Culture: The Rotating-Wall Vessel. Am. J. Physiol.-Ren. Physiol. 2001, 281, F12–F25. [Google Scholar] [CrossRef]
- Klaus, D.M. Clinostats and Bioreactors. Gravit. Space Res. 2001, 14, 55–64. [Google Scholar]
- Santomartino, R.; Waajen, A.C.; de Wit, W.; Nicholson, N.; Parmitano, L.; Loudon, C.-M.; Moeller, R.; Rettberg, P.; Fuchs, F.M.; Van Houdt, R.; et al. No Effect of Microgravity and Simulated Mars Gravity on Final Bacterial Cell Concentrations on the International Space Station: Applications to Space Bioproduction. Front. Microbiol. 2020, 11, 579156. [Google Scholar] [CrossRef]
- Nauman, E.A.; Ott, C.M.; Sander, E.; Tucker, D.L.; Pierson, D.; Wilson, J.W.; Nickerson, C.A. Novel Quantitative Biosystem for Modeling Physiological Fluid Shear Stress on Cells. Appl. Environ. Microbiol. 2007, 73, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Horneck, G.; Klaus, D.M.; Mancinelli, R.L. Space Microbiology. Microbiol. Mol. Biol. Rev. 2010, 74, 121–156. [Google Scholar] [CrossRef] [Green Version]
- Zea, L.; Prasad, N.; Levy, S.E.; Stodieck, L.; Jones, A.; Shrestha, S.; Klaus, D. A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space. PLoS ONE 2016, 11, e0164359. [Google Scholar] [CrossRef]
- Huang, B.; Li, D.-G.; Huang, Y.; Liu, C.-T. Effects of Spaceflight and Simulated Microgravity on Microbial Growth and Secondary Metabolism. Mil. Med. Res. 2018, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Aunins, T.R.; Erickson, K.E.; Prasad, N.; Levy, S.E.; Jones, A.; Shrestha, S.; Mastracchio, R.; Stodieck, L.; Klaus, D.; Zea, L.; et al. Spaceflight Modifies Escherichia Coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response. Front. Microbiol. 2018, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Morrison, M.D.; Nicholson, W.L. Comparisons of Transcriptome Profiles from Bacillus Subtilis Cells Grown in Space versus High Aspect Ratio Vessel (HARV) Clinostats Reveal a Low Degree of Concordance. Astrobiology 2020, 20, 1498–1509. [Google Scholar] [CrossRef]
- Fajardo-Cavazos, P.; Nicholson, W.L. Mechanotransduction in Prokaryotes: A Possible Mechanism of Spaceflight Adaptation. Life 2021, 11, 33. [Google Scholar] [CrossRef]
- Herranz, R.; Anken, R.; Boonstra, J.; Braun, M.; Christianen, P.C.M.; de Geest, M.; Hauslage, J.; Hilbig, R.; Hill, R.J.A.; Lebert, M.; et al. Ground-Based Facilities for Simulation of Microgravity: Organism-Specific Recommendations for Their Use, and Recommended Terminology. Astrobiology 2013, 13, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Morrison, M.D.; Nicholson, W.L. Meta-Analysis of Data from Spaceflight Transcriptome Experiments Does Not Support the Idea of a Common Bacterial “Spaceflight Response. ” Sci. Rep. 2018, 8, 14403. [Google Scholar] [CrossRef]
- Harcombe, W. Novel Cooperation Experimentally Evolved Between Species. Evolution 2010, 64, 2166–2172. [Google Scholar] [CrossRef]
- Ilgrande, C.; Defoirdt, T.; Vlaeminck, S.E.; Boon, N.; Clauwaert, P. Media Optimization, Strain Compatibility, and Low-Shear Modeled Microgravity Exposure of Synthetic Microbial Communities for Urine Nitrification in Regenerative Life-Support Systems. Astrobiology 2019, 19, 1353–1362. [Google Scholar] [CrossRef]
- Brungs, S.; Hauslage, J.; Hemmersbach, R. Validation of Random Positioning Versus Clinorotation Using a Macrophage Model System. Microgravity Sci. Technol. 2019, 31, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Varley, M.C.; Markaki, A.E.; Brooks, R.A. Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors. Tissue Eng. Part A 2017, 23, 522–534. [Google Scholar] [CrossRef] [Green Version]
- Phelan, M.A.; Gianforcaro, A.L.; Gerstenhaber, J.A.; Lelkes, P.I. An Air Bubble-Isolating Rotating Wall Vessel Bioreactor for Improved Spheroid/Organoid Formation. Tissue Eng. Part C Methods 2019, 25, 479–488. [Google Scholar] [CrossRef]
- Ju, Z.-H.; Liu, T.-Q.; Ma, X.-H.; Cui, Z.-F. Numerical Simulation of Microcarrier Motion in a Rotating Wall Vessel Bioreactor. Biomed. Environ. Sci. 2006, 19, 163–168. [Google Scholar]
- Lynch, S.V.; Mukundakrishnan, K.; Benoit, M.R.; Ayyaswamy, P.S.; Matin, A. Escherichia Coli Biofilms Formed under Low-Shear Modeled Microgravity in a Ground-Based System. Appl. Environ. Microbiol. 2006, 72, 7701–7710. [Google Scholar] [CrossRef] [Green Version]
- Chao, T.-C.; Das, D.B. Numerical Simulation of Coupled Cell Motion and Nutrient Transport in NASA’s Rotating Bioreactor. Chem. Eng. J. 2015, 259, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Harcombe, W.R.; Riehl, W.J.; Dukovski, I.; Granger, B.R.; Betts, A.; Lang, A.H.; Bonilla, G.; Kar, A.; Leiby, N.; Mehta, P.; et al. Metabolic Resource Allocation in Individual Microbes Determines Ecosystem Interactions and Spatial Dynamics. Cell Rep. 2014, 7, 1104–1115. [Google Scholar] [CrossRef] [Green Version]
- Hammarlund, S.P.; Chacón, J.M.; Harcombe, W.R. A Shared Limiting Resource Leads to Competitive Exclusion in a Cross-Feeding System. Environ. Microbiol. 2019, 21, 759–771. [Google Scholar] [CrossRef]
- Hammarlund, S.P.; Gedeon, T.; Carlson, R.P.; Harcombe, W.R. Limitation by a Shared Mutualist Promotes Coexistence of Multiple Competing Partners. Nat. Commun. 2021, 12, 619. [Google Scholar] [CrossRef]
- Li, B.; Taniguchi, D.; Gedara, J.P.; Gogulancea, V.; Gonzalez-Cabaleiro, R.; Chen, J.; McGough, A.S.; Ofiteru, I.D.; Curtis, T.P.; Zuliani, P. NUFEB: A Massively Parallel Simulator for Individual-Based Modelling of Microbial Communities. PLoS Comput. Biol. 2019, 15, e1007125. [Google Scholar] [CrossRef] [Green Version]
- Kloss, C.; Goniva, C.; Hager, A.; Amberger, S.; Pirker, S. Models, Algorithms and Validation for Opensource DEM and CFD–DEM. Prog. Comput. Fluid Dyn. Int. J. 2012, 12, 140–152. Available online: https://www.cfdem.com/cfdemrcoupling-open-source-cfd-dem-framework (accessed on 15 April 2022). [CrossRef]
- Goniva, C.; Kloss, C.; Deen, N.G.; Kuipers, J.A.M.; Pirker, S. Influence of Rolling Friction on Single Spout Fluidized Bed Simulation. Particuology 2012, 10, 582–591. Available online: https://www.cfdem.com/liggghtsr-open-source-discrete-element-method-particle-simulation-code (accessed on 15 April 2022). [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. Available online: https://www.lammps.org/ (accessed on 15 April 2022). [CrossRef] [Green Version]
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques. Comput. Phys. 1998, 12, 620–631. Available online: https://openfoam.org/ (accessed on 15 April 2022). [CrossRef]
- Fantin, D. CFD-DEM Coupling for Systems of Fluid and Non-Spherical Particles. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 9 November 2018. [Google Scholar]
- Sun, R.; Xiao, H. SediFoam: A General-Purpose, Open-Source CFD–DEM Solver for Particle-Laden Flow with Emphasis on Sediment Transport. Comput. Geosci. 2016, 89, 207–219. Available online: https://github.com/xiaoh/sediFoam (accessed on 15 April 2022). [CrossRef] [Green Version]
- Singhal, A.; Cloete, S.; Radl, S.; Quinta-Ferreira, R.; Amini, S. Heat Transfer to a Gas from Densely Packed Beds of Monodisperse Spherical Particles. Chem. Eng. J. 2017, 314, 27–37. Available online: https://www.cfdem.com/parscale-intra-particle-transport-phenomena-simulation-code (accessed on 15 April 2022). [CrossRef]
- Dukovski, I.; Bajić, D.; Chacón, J.M.; Quintin, M.; Vila, J.C.C.; Sulheim, S.; Pacheco, A.R.; Bernstein, D.B.; Riehl, W.J.; Korolev, K.S.; et al. A Metabolic Modeling Platform for the Computation of Microbial Ecosystems in Time and Space (COMETS). Nat. Protoc. 2021, 16, 5030–5082. Available online: https://www.runcomets.org/ (accessed on 15 April 2022). [CrossRef]
- Douglas, S.M.; Chubiz, L.M.; Harcombe, W.R.; Marx, C.J. Identification of the Potentiating Mutations and Synergistic Epistasis That Enabled the Evolution of Inter-Species Cooperation. PLoS ONE 2017, 12, e0174345. [Google Scholar] [CrossRef]
- Adamowicz, E.M.; Flynn, J.; Hunter, R.C.; Harcombe, W.R. Cross-Feeding Modulates Antibiotic Tolerance in Bacterial Communities. ISME J. 2018, 12, 2723–2735. [Google Scholar] [CrossRef] [Green Version]
- Harcombe, W.R.; Chacón, J.M.; Adamowicz, E.M.; Chubiz, L.M.; Marx, C.J. Evolution of Bidirectional Costly Mutualism from Byproduct Consumption. Proc. Natl. Acad. Sci. USA 2018, 115, 12000–12004. [Google Scholar] [CrossRef] [Green Version]
- Fazzino, L.; Anisman, J.; Chacón, J.M.; Heineman, R.H.; Harcombe, W.R. Lytic Bacteriophage Have Diverse Indirect Effects in a Synthetic Cross-Feeding Community. ISME J. 2020, 14, 123–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purcell, E.M. Life at Low Reynolds Number. Am. J. Phys. 1977, 45, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Acemel, R.D.; Govantes, F.; Cuetos, A. Computer Simulation Study of Early Bacterial Biofilm Development. Sci. Rep. 2018, 8, 5340. [Google Scholar] [CrossRef] [PubMed]
- Tuson, H.H.; Auer, G.K.; Renner, L.D.; Hasebe, M.; Tropini, C.; Salick, M.; Crone, W.C.; Gopinathan, A.; Huang, K.C.; Weibel, D.B. Measuring the Stiffness of Bacterial Cells from Growth Rates in Hydrogels of Tunable Elasticity. Mol. Microbiol. 2012, 84, 874–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deen, N.G.; Peters, E.A.J.F.; Padding, J.T.; Kuipers, J.A.M. Review of Direct Numerical Simulation of Fluid–Particle Mass, Momentum and Heat Transfer in Dense Gas–Solid Flows. Chem. Eng. Sci. 2014, 116, 710–724. [Google Scholar] [CrossRef]
- Merchuk, J.C.; Asenjo, J.A. The Monod Equation and Mass Transfer. Biotechnol. Bioeng. 1995, 45, 91–94. [Google Scholar] [CrossRef]
- Monod, J. The Growth of Bacterial Cultures. Annu. Rev. Microbiol. 1949, 3, 371–394. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y. Overview of Some Theoretical Approaches for Derivation of the Monod Equation. Appl. Microbiol. Biotechnol. 2007, 73, 1241–1250. [Google Scholar] [CrossRef]
- Stewart, P.S. Diffusion in Biofilms. J. Bacteriol. 2003, 185, 1485–1491. [Google Scholar] [CrossRef] [Green Version]
- Angeles-Martinez, L.; Hatzimanikatis, V. The Influence of the Crowding Assumptions in Biofilm Simulations. PLoS Comput. Biol. 2021, 17, e1009158. [Google Scholar] [CrossRef]
- Klaus, D.; Simske, S.; Todd, P.; Stodieck, L. Investigation of Space Flight Effects on Escherichia Coli and a Proposed Model of Underlying Physical Mechanisms. Microbiology 1997, 143, 449–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poon, C. Factors Implicating the Validity and Interpretation of Mechanobiology Studies in Simulated Microgravity Environments. Eng. Rep. 2020, 2, e12242. [Google Scholar] [CrossRef]
- Benoit, M.R.; Klaus, D.M. Microgravity, Bacteria, and the Influence of Motility. Adv. Space Res. 2007, 39, 1225–1232. [Google Scholar] [CrossRef]
- Westerwalbesloh, C.; Grünberger, A.; Stute, B.; Weber, S.; Wiechert, W.; Kohlheyer, D.; von Lieres, E. Modeling and CFD Simulation of Nutrient Distribution in Picoliter Bioreactors for Bacterial Growth Studies on Single-Cell Level. Lab A Chip 2015, 15, 4177–4186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Density of Aqueous Solutions of Organic Substances as Sugars and Alcohols. Available online: https://www.engineeringtoolbox.com/density-aqueous-solution-organic-sugar-alcohol-concentration-d_1954.html (accessed on 26 February 2022).
- Kumar, A.; Rani, R.; Saini, B.; Bamezai, R.K. Volumetric, Compressibility, Taste Behavior and Viscometric Studies of Methionine with Some Saccharides in Aqueous Medium at Different Temperatures. J. Solution. Chem. 2017, 46, 931–956. [Google Scholar] [CrossRef]
- Darros-Barbosa, R.; Balaban, M.O.; Teixeira, A.A. Temperature and Concentration Dependence of Density of Model Liquid Foods. Int. J. Food Prop. 2003, 6, 195–214. [Google Scholar] [CrossRef]
- Zea, L.; Larsen, M.; Estante, F.; Qvortrup, K.; Moeller, R.; Dias de Oliveira, S.; Stodieck, L.; Klaus, D. Phenotypic Changes Exhibited by E. Coli Cultured in Space. Front. Microbiol. 2017, 8, 1598. [Google Scholar] [CrossRef] [Green Version]
- Sargo, C.R.; Campani, G.; Silva, G.G.; Giordano, R.C.; Da Silva, A.J.; Zangirolami, T.C.; Correia, D.M.; Ferreira, E.C.; Rocha, I. Salmonella Typhimurium and Escherichia Coli Dissimilarity: Closely Related Bacteria with Distinct Metabolic Profiles. Biotechnol. Prog. 2015, 31, 1217–1225. [Google Scholar] [CrossRef] [Green Version]
- Phillips, R.; Orme, N. Physical Biology of the Cell; Garland Science, Taylor and Francis Group LLC: New York, NY, USA, 2013. [Google Scholar]
- Díaz, I.B.Z.; Froelich, C.A.; Ricke, S.C. Adaptation of a Methionine Auxotroph Escherichia Coli Growth Assay to Microtiter Plates for Quantitating Methionine. J. Rapid Methods Autom. Microbiol. 2002, 10, 217–229. [Google Scholar] [CrossRef]
Name | Publication Year | Description and Relevant Features | References |
---|---|---|---|
Parent Software | |||
LAMMPS (Large-Scale Atomic/Molecular Massively Parallel Simulator) | 1995 | Classical molecular dynamics simulator
| [34] |
LIGGGHTS® (LAMMPS Improved for General Granular and Granular Heat Transfer Simulations) | 2012 | Enhanced support for larger granular particles
| [33] |
OpenFOAM (Field Operation and Manipulation) | 1998 | Computational fluid dynamics package
| [35] |
CFDEM®Coupling | 2012 | Couples LIGGGHTS® and OpenFOAM
| [32] |
Related Software | |||
SediFOAM | 2017 | Alternative solid–fluid coupling approach of LAMMPS and OpenFOAM | [37] |
NUFEB (Newcastle University Frontiers in Engineering Biology) | 2019 | Agent-based biological extension of SediFOAM
| [31] |
ParScale (Particle Scale Models) | 2017 | Intra-particle transport models coupled to LIGGGHTS® and CFDEM®Coupling
| [38] |
COMETS (Computation of Microbial Ecosystems in Time and Space) | 2021 | Population-based flux balance analysis with spatial growth and diffusion
| [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, R.; Lee, J.A. CAMDLES: CFD-DEM Simulation of Microbial Communities in Spaceflight and Artificial Microgravity. Life 2022, 12, 660. https://doi.org/10.3390/life12050660
An R, Lee JA. CAMDLES: CFD-DEM Simulation of Microbial Communities in Spaceflight and Artificial Microgravity. Life. 2022; 12(5):660. https://doi.org/10.3390/life12050660
Chicago/Turabian StyleAn, Rocky, and Jessica Audrey Lee. 2022. "CAMDLES: CFD-DEM Simulation of Microbial Communities in Spaceflight and Artificial Microgravity" Life 12, no. 5: 660. https://doi.org/10.3390/life12050660
APA StyleAn, R., & Lee, J. A. (2022). CAMDLES: CFD-DEM Simulation of Microbial Communities in Spaceflight and Artificial Microgravity. Life, 12(5), 660. https://doi.org/10.3390/life12050660