The Impacts of Microgravity on Bacterial Metabolism
Abstract
:1. Introduction
2. Stresses Imposed by Spaceflight
3. Metabolic Changes under Spaceflight and Simulated Microgravity Conditions
3.1. Primary Metabolism
3.2. Secondary Metabolism
Organism | Metabolite | Impact of Microgravity | Experimental Location | References |
---|---|---|---|---|
Bacillus brevis strain Nagano (1997) | Gramicidin S | Unchanged production level | Simulated microgravity (Single High-aspect rotating vessels (sHARV)) | [97] |
Escherichia coli ZK650 (1997) | Microcin B17 | Decreased production with extracellular accumulation | Simulated microgravity (High-aspect rotating vessels (HARV)) | [110] |
Escherichia coli ZK650 (2001) | Microcin B17 | Increased production with shear stress (teflon bead) | Simulated microgravity (Rotating-wall bioreactors (RWV)) | [111] |
Streptpomyces clavuligerus NRRL 3585 (ATCC 27064) (1997) | β-lactam antibiotics | Decreased production | Simulated microgravity (Single High-aspect rotating vessels (sHARV)) | [98] |
Streptomyces ansochromogenus 7100 (1998) | Nikkomycin, Nikkomycin X, Z | Increased by 13–18 % | Space flight (15 days) | [101] |
Streptomyces hygroscopicus ATCC 29253 (2000) | Rapamycin | Decreased production with extracellular accumulation site | Simulated microgravity (Rotating-wall bioreactor (RWB)) | [99] |
Streptomyces plicatus WC56452 (2002) | Actinomycin D | Increased production with altered time course | US Space Shuttle mission STS-80 | [103] |
Streptomyces plicatus WC56452 (2006) | Actinomycin D | Increased concentration at day 8 and 12 with decrease after | International space station (ISS) | [104] |
Streptomyces coelicolor A3(2) (2015) | Undecylprodigiosin (RED) | Unchanged production amount, earlier production time | 2D-clinostat | [109] |
Streptomyces coelicolor A3(2) (2015) | Actinorhodin (ACT) | Decreased production | 2D-clinostat | [109] |
Streptomyces coelicolor A3(2) (2015) | Undecylprodigiosin (RED) | Decreased production | Shenzhou-8 Space mission | [109] |
Streptomyces coelicolor A3(2) (2015) | Actinorhodin (ACT) | Decreased production | Shenzhou-8 Space mission | [109] |
Cupriavidus metallidurans LMG 1195 (2009) | Poly-β-hydroxybutyrate (PHB) | Increased production at 24 h and decrease after 48 h | Simulated microgravity (Rotating wall vessel (RWV)) | [105] |
Microcystis aeruginosa PCC7806 (2010) | Microcystin | Increased production with extracellular accumulation | Simulated microgravity (Rotary cell culture system (RCCS)) | [107] |
3.3. Link between Primary and Secondary Metabolites
4. Concluding Remarks and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, H.; Weitao, T.; He, Q. Coping with the Environment: How Microbes Survive Environmental Challenges. Int. J. Microbiol. 2011, 2011, 379519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onyango, L.A.; Alreshidi, M.M. Adaptive Metabolism in Staphylococci: Survival and Persistence in Environmental and Clinical Settings. J. Pathog. 2018, 2018, 1092632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bienhold, C.; Zinger, L.; Boetius, A.; Ramette, A. Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria. PLoS ONE 2016, 11, e0148016. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Alvarez, V.; King, G.M.; Nüsslein, K. Comparative Bacterial Diversity in Recent Hawaiian Volcanic Deposits of Different Ages. FEMS Microbiol. Ecol. 2007, 60, 60–73. [Google Scholar] [CrossRef] [Green Version]
- DasSarma, P.; DasSarma, S. Survival of Microbes in Earth’s Stratosphere. Curr. Opin. Microbiol. 2018, 43, 24–30. [Google Scholar] [CrossRef]
- Ujimura, R.E.F.; Ato, Y.O.S.; Ishizawa, T.O.N.; Anba, K.E.N.; Shima, K.E.O. Analysis of Early Bacterial Communities on Volcanic Deposits on the Island of Miyake (Miyake-Jima), Japan: A 6-Year Study at a Fixed Site. Microbes Environ. 2012, 27, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Li, D.G.; Huang, Y.; Liu, C.T. Effects of Spaceflight and Simulated Microgravity on Microbial Growth and Secondary Metabolism. Mil. Med. Res. 2018, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Horneck, G.; Klaus, D.M.; Mancinelli, R.L. Space Microbiology. Microbiol. Mol. Biol. Rev. 2010, 74, 121–156. [Google Scholar] [CrossRef] [Green Version]
- Grimm, D.; Wise, P.; Lebert, M.; Richter, P.; Baatout, S. How and Why Does the Proteome Respond to Microgravity? Expert Rev. Proteom. 2011, 8, 13–27. [Google Scholar] [CrossRef]
- Seyedsayamdost, M.R. Toward a Global Picture of Bacterial Secondary Metabolism. J. Ind. Microbiol. Biotechnol. 2019, 46, 301–311. [Google Scholar] [CrossRef]
- Sanchez, S.; Demain, A.L. Metabolic Regulation and Overproduction of Primary Metabolites. Microb. Biotechnol. 2008, 1, 283–319. [Google Scholar] [CrossRef] [PubMed]
- Horak, I.; Engelbrecht, G.; van Rensburg, P.J.J.; Claassens, S. Microbial Metabolomics: Essential Definitions and the Importance of Cultivation Conditions for Utilizing Bacillus Species as Bionematicides. J. Appl. Microbiol. 2019, 127, 326–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milojevic, T.; Weckwerth, W. Molecular Mechanisms of Microbial Survivability in Outer Space: A Systems Biology Approach. Front. Microbiol. 2020, 11, 923. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kumar, M.; Mittal, A.; Kumar, P. Microbial Metabolites in Nutrition, Healthcare and Agriculture. 3 Biotech 2017, 7, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demain, A.L. Pharmaceutically Active Secondary Metabolites of Microorganisms. Appl. Microbiol. Biotechnol. 1999, 52, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, M.; Uchiyama, T.; Omura, S.; Cane, D.E.; Ikeda, H. Genome-Minimized Streptomyces Host for the Heterologous Expression of Secondary Metabolism. Proc. Natl. Acad. Sci. USA 2010, 107, 2646–2651. [Google Scholar] [CrossRef] [Green Version]
- Bijlani, S.; Stephens, E.; Singh, N.K.; Venkateswaran, K.; Wang, C.C.C. Advances in Space Microbiology. iScience 2021, 24, 102395. [Google Scholar] [CrossRef]
- Lynch, S.V.; Matin, A. Travails of Microgravity: Man and Microbes in Space. Biologist 2005, 52, 80–87. [Google Scholar]
- Stein, T.P. Weight, Muscle and Bone Loss during Space Flight: Another Perspective. Eur. J. Appl. Physiol. 2013, 113, 2171–2181. [Google Scholar] [CrossRef]
- Nickerson, C.A.; Ott, C.M.; Wilson, J.W.; Ramamurthy, R.; LeBlanc, C.L.; Höner zu Bentrup, K.; Hammond, T.; Pierson, D.L. Low-Shear Modeled Microgravity: A Global Environmental Regulatory Signal Affecting Bacterial Gene Expression, Physiology, and Pathogenesis. J. Microbiol. Methods 2003, 54, 1–11. [Google Scholar] [CrossRef]
- Acres, J.M.; Youngapelian, M.J.; Nadeau, J. The Influence of Spaceflight and Simulated Microgravity on Bacterial Motility and Chemotaxis. NPJ Microgravity 2021, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Aunins, T.R.; Erickson, K.E.; Prasad, N.; Levy, S.E.; Jones, A.; Shrestha, S.; Mastracchio, R.; Stodieck, L.; Klaus, D.; Zea, L.; et al. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response. Front. Microbiol. 2018, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Colorado, A.A.; Castro-Wallace, S.L.; Ott, C.M.; Smith, D.J. A Researcher’s Guide to International Space Station: Microbial Research; Dansberry, B., Gilder, C., Duke, C., Eds.; NASA ISS Research Integration Office: Houston, TX, USA, 2013. [Google Scholar]
- Medina, F.J.; Manzano, A.; Villacampa, A.; Ciska, M.; Herranz, R. Understanding Reduced Gravity Effects on Early Plant Development Before Attempting Life-Support Farming in the Moon and Mars. Front. Astron. Space Sci. 2021, 8, 729154. [Google Scholar] [CrossRef]
- Castro, V.A.; Thrasher, A.N.; Healy, M.; Ott, C.M.; Pierson, D.L. Microbial Characterization during the Early Habitation of the International Space Station. Microb. Ecol. 2004, 47, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Pierson, D.L. Microbial Contamination of Spacecraft. Gravit. Space Biol. Bull. 2001, 14, 1–6. [Google Scholar] [PubMed]
- Venkateswaran, K.; Vaishampayan, P.; Cisneros, J.; Pierson, D.L.; Rogers, S.O.; Perry, J. International Space Station Environmental Microbiome—Microbial Inventories of ISS Filter Debris. Appl. Microbiol. Biotechnol. 2014, 98, 6453–6466. [Google Scholar] [CrossRef]
- Voorhies, A.A.; Mark Ott, C.; Mehta, S.; Pierson, D.L.; Crucian, B.E.; Feiveson, A.; Oubre, C.M.; Torralba, M.; Moncera, K.; Zhang, Y.; et al. Study of the Impact of Long-Duration Space Missions at the International Space Station on the Astronaut Microbiome. Sci. Rep. 2019, 9, 9911. [Google Scholar] [CrossRef]
- Leys, N.M.E.J.; Hendrickx, L.; De Boever, P.; Baatout, S.; Mergeay, M. Space Flight Effects on Bacterial Physiology. J. Biol. Regul. Homeost. Agents 2004, 18, 193–199. [Google Scholar]
- Herranz, R.; Anken, R.; Boonstra, J.; Braun, M.; Christianen, P.C.M.; De Geest, M.; Hauslage, J.; Hilbig, R.; Hill, R.J.A.; Lebert, M.; et al. Ground-Based Facilities for Simulation of Microgravity: Organism-Specific Recommendations for Their Use, and Recommended Terminology. Astrobiology 2013, 13, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Albrecht-Buehler, G. The Simulation of Microgravity Conditions on the Ground. ASGSB Bull. 1992, 5, 3–10. [Google Scholar]
- Klaus, D.M.; Todd, P.; Schatz, A. Functional Weightlessness during Clinorotation of Cell Suspensions. Adv. Sp. Res. 1998, 21, 1315–1318. [Google Scholar] [CrossRef]
- Klaus, D.M. Clinostats and Bioreactors. Gravit. Space Biol. Bull. 2001, 14, 55–64. [Google Scholar] [PubMed]
- Hasenstein, K.H.; van Loon, J.J.W.A. Clinostats and Other Rotating Systems-Design, Function, and Limitations. Gener. Appl. Extra-Terr. Environ. Earth 2015, 14, 147–156. [Google Scholar]
- Zea, L.; Prasad, N.; Levy, S.E.; Stodieck, L.; Jones, A.; Shrestha, S.; Klaus, D. A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space. PLoS ONE 2016, 11, e0164359. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, C.A.; Ott, C.M.; Wilson, J.W.; Ramamurthy, R.; Pierson, D.L. Microbial Responses to Microgravity and Other Low-Shear Environments. Microbiol. Mol. Biol. Rev. 2004, 68, 345–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senatore, G.; Mastroleo, F.; Leys, N.; Mauriello, G. Effect of Microgravity & Space Radiation on Microbes. Future Microbiol. 2018, 13, 831–847. [Google Scholar] [CrossRef]
- Benoit, M.R.; Klaus, D.M. Microgravity, Bacteria and the Influence of Motility. Adv. Space Res. 2007, 39, 1225–1232. [Google Scholar] [CrossRef]
- Vukanti, R.; Mintz, E.; Leff, L. Changes in Gene Expression of E. Coli under Conditions of Modeled Reduced Gravity. Microgravity Sci. Technol. 2008, 20, 41–57. [Google Scholar] [CrossRef]
- Thévenet, D.; D’Ari, R.; Bouloc, P. The SIGNAL Experiment in BIORACK: Escherichia coli in Microgravity. J. Biotechnol. 1996, 47, 89–97. [Google Scholar] [CrossRef]
- Klaus, D.M.; Benoit, M.R.; Nelson, E.S.; Hammond, T.G. Extracellular Mass Transport Considerations for Space Flight Research Concerning Suspended and Adherent In Vitro Cell Cultures. J. Gravit. Physiol. J. Int. Soc. Gravit. Physiol. 2004, 11, 17–27. [Google Scholar]
- Zea, L.; Larsen, M.; Estante, F.; Qvortrup, K.; Moeller, R.; de Oliveira, S.D.; Stodieck, L.; Klaus, D. Phenotypic Changes Exhibited by E. Coli Cultured in Space. Front. Microbiol. 2017, 8, 1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mennigmann, H.D.; Lange, M. Growth and Differentiation of Bacillus Subtilis under Microgravitiy. Naturwissenschaften 1986, 73, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Kacena, M.A.; Merrell, G.A.; Manfredi, B.; Smith, E.E.; Klaus, D.M.; Todd, P. Bacterial Growth in Space Flight: Logistic Growth Curve Parameters for Escherichia coli and Bacillus Subtilis. Appl. Microbiol. Biotechnol. 1999, 51, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Kacena, M.A.; Leonard, P.E.; Todd, P.; Luttges, M.W. Low Gravity and Inertial Effects on the Growth of E. Coli and B. Subtilis in Semi-Solid Media. Aviat. Space Environ. Med. 1997, 68, 1104–1108. [Google Scholar] [PubMed]
- Benoit, M.; Klaus, D. Can Genetically Modified Escherichia coli with Neutral Buoyancy Induced by Gas Vesicles Be Used as an Alternative Method to Clinorotation for Microgravity Studies? Microbiology 2005, 151, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.B. Effects of Space Flight, Clinorotation, and Centrifugation on the Growth and Metabolism of Escherichia Coli. Ph.D. Thesis, University of Colorado at Boulder, Boulder, CO, USA, 1999. [Google Scholar]
- Brown, R.B.; Klaus, D.; Todd, P. Effects of Space Flight, Clinorotation, and Centrifugation on the Substrate Utilization Efficiency of E. Coli. Microgravity Sci. Technol. 2002, 13, 24–29. [Google Scholar] [CrossRef]
- Arunasri, K.; Adil, M.; Venu Charan, K.; Suvro, C.; Himabindu Reddy, S.; Shivaji, S. Effect of Simulated Microgravity on E. Coli K12 MG1655 Growth and Gene Expression. PLoS ONE 2013, 8, e57860. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Sundin, G.W.; Wu, L.; Zhou, J.; Tiedje, J.M. Comparative Analysis of Differentially Expressed Genes in Shewanella Oneidensis MR-1 Following Exposure to UVC, UVB and UVA Radiation. J. Bacteriol. 2005, 187, 3556–3564. [Google Scholar] [CrossRef] [Green Version]
- Ohnishi, K.; Ohnishi, T. The Biological Effects of Space Radiation during Long Stays in Space. Biol. Sci. Space 2005, 18, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Daly, M.J.; Vasilenko, A.; Omelchenko, M.V.; Gaidamakova, E.K.; Wu, L.; Zhou, J.; Sundin, G.W.; Tiedje, J.M. Transcriptome Analysis Applied to Survival of Shewanella Oneidensis MR-1 Exposed to Ionizing Radiation. J. Bacteriol. 2006, 188, 1199–1204. [Google Scholar] [CrossRef] [Green Version]
- Heinemann, M.; Sauer, U. Systems Biology of Microbial Metabolism. Curr. Opin. Microbiol. 2010, 13, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Reaves, M.L.; Rabinowitz, J.D. Metabolomics in Systems Microbiology. Curr. Opin. Biotechnol. 2011, 22, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lempp, M.; Farke, N.; Kuntz, M.; Freibert, S.A.; Lill, R.; Link, H. Systematic Identification of Metabolites Controlling Gene Expression in E. Coli. Nat. Commun. 2019, 10, 4463. [Google Scholar] [CrossRef]
- Liu, M.; Durfee, T.; Cabrera, J.E.; Zhao, K.; Jin, D.J.; Blattner, F.R. Global Transcriptional Programs Reveal a Carbon Source Foraging Strategy by Escherichia coli. J. Biol. Chem. 2005, 280, 15921–15927. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Guo, Y.; Fang, T.; Jiang, X.; Wang, D.; Li, D.; Bai, P.; Zhang, B.; Wang, J.; Liu, C. Effects of Simulated Microgravity on the Physiology of Stenotrophomonas Maltophilia and Multiomic Analysis. Front. Microbiol. 2021, 12, 701265. [Google Scholar] [CrossRef]
- Leonardi, R.; Roach, P.L. Thiamine Biosynthesis in Escherichia coli: In Vitro Reconstitution of the Thiazole Synthase Activity. J. Biol. Chem. 2004, 279, 17054–17062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gigliobianco, T.; Lakaye, B.; Wins, P.; El Moualij, B.; Zorzi, W.; Bettendorff, L. Adenosine Thiamine Triphosphate Accumulates in Escherichia coli Cells in Response to Specific Conditions of Metabolic Stress. BMC Microbiol. 2010, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Dittrich, C.R.; Bennett, G.N.; San, K.Y. Characterization of the Acetate-Producing Pathways in Escherichia coli. Biotechnol. Prog. 2005, 21, 1062–1067. [Google Scholar] [CrossRef]
- Moreau, P.L. The Lysine Decarboxylase CadA Protects Escherichia coli Starved of Phosphate against Fermentation Acids. J. Bacteriol. 2007, 189, 2249–2261. [Google Scholar] [CrossRef] [Green Version]
- Neumann, P.; Weidner, A.; Pech, A.; Stubbs, M.T.; Tittmann, K. Structural Basis for Membrane Binding and Catalytic Activation of the Peripheral Membrane Enzyme Pyruvate Oxidase from Escherichia coli. Proc. Natl. Acad. Sci. USA 2008, 105, 17390–17395. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Fang, X.; Liu, C. Genomic and Proteomic Analysis of Escherichia coli After Spaceflight Reveals Changes Involving Metabolic Pathways. Arch. Med. Res. 2015, 46, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Crabbé, A.; Schurr, M.J.; Monsieurs, P.; Morici, L.; Schurr, J.; Wilson, J.W.; Ott, C.M.; Tsaprailis, G.; Pierson, D.L.; Stefanyshyn-Piper, H.; et al. Transcriptional and Proteomic Responses of Pseudomonas Aeruginosa PAO1 to Spaceflight Conditions Involve Hfq Regulation and Reveal a Role for Oxygen. Appl. Environ. Microbiol. 2011, 77, 1221–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, M.D.; Fajardo-Cavazos, P.; Nicholson, W.L. Comparison of Bacillus Subtilis Transcriptome Profiles from Two Separate Missions to the International Space Station. NPJ Microgravity 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christgen, S.L.; Becker, D.F. Role of Proline in Pathogen and Host Interactions. Antioxid. Redox Signal. 2019, 30, 683–709. [Google Scholar] [CrossRef]
- Barrientos-Moreno, L.; Molina-Henares, M.A.; Pastor-García, M.; Ramos-González, M.I.; Espinosa-Urgel, M. Arginine Biosynthesis Modulates Pyoverdine Production and Release in Pseudomonas Putida as Part of the Mechanism of Adaptation to Oxidative Stress. J. Bacteriol. 2019, 201, e00454-19. [Google Scholar] [CrossRef] [Green Version]
- Fuhrmann, J.; Subramanian, V.; Kojetin, D.J.; Thompson, P.R. Activity-Based Profiling Reveals a Regulatory Link between Oxidative Stress and Protein Arginine Phosphorylation. Cell Chem. Biol. 2016, 23, 967–977. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.; Van Tonder, A.J.; Vilchèze, C.; Mendes, V.; Thomas, S.E.; Malek, A.; Chen, B.; Chen, M.; Kim, J.; Blundell, T.L.; et al. Arginine-Deprivation-Induced Oxidative Damage Sterilizes Mycobacterium Tuberculosis. Proc. Natl. Acad. Sci. USA 2018, 115, 9779–9784. [Google Scholar] [CrossRef] [Green Version]
- Poole, K. Bacterial Stress Responses as Determinants of Antimicrobial Resistance. J. Antimicrob. Chemother. 2012, 67, 2069–2089. [Google Scholar] [CrossRef] [Green Version]
- Ott, E.; Kawaguchi, Y.; Kölbl, D.; Chaturvedi, P.; Nakagawa, K.; Yamagishi, A.; Weckwerth, W.; Milojevic, T. Proteometabolomic Response of Deinococcus Radiodurans Exposed to UVC and Vacuum Conditions: Initial Studies Prior to the Tanpopo Space Mission. PLoS ONE 2017, 12, e0189381. [Google Scholar] [CrossRef] [Green Version]
- Paulsen, C.E.; Carroll, K.S. Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery. Chem. Rev. 2013, 113, 4633–4679. [Google Scholar] [CrossRef]
- Levine, R.L.; Moskovitz, J.; Stadtman, E.R. Oxidation of Methionine in Proteins: Roles in Antioxidant Defense and Cellular Regulation. IUBMB Life 2000, 50, 301–307. [Google Scholar] [CrossRef] [PubMed]
- McLean, R.J.C.; Cassanto, J.M.; Barnes, M.B.; Koo, J.H. Bacterial Biofilm Formation under Microgravity Conditions. FEMS Microbiol. Lett. 2001, 195, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Li, H.; Zhang, C.; Liang, B.; Li, J.; Wang, L.; Du, X.; Liu, X.; Qiu, S.; Song, H. Relationship between Antibiotic Resistance, Biofilm Formation and Biofilm-Specific Resistance in Acinetobacter Baumannii. Front. Microbiol. 2016, 7, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, S.L.; Nelman-Gonzalez, M.; Nickerson, C.A.; Ott, C.M. Induction of Attachment-Independent Biofilm Formation and Repression of Hfq Expression by Low-Fluid-Shear Culture of Staphylococcus Aureus. Appl. Environ. Microbiol. 2011, 77, 6368–6378. [Google Scholar] [CrossRef] [Green Version]
- Lynch, S.V.; Mukundakrishnan, K.; Benoit, M.R.; Ayyaswamy, P.S.; Matin, A. Escherichia coli Biofilms Formed under Low-Shear Modeled Microgravity in a Ground-Based System. Appl. Environ. Microbiol. 2006, 72, 7701–7710. [Google Scholar] [CrossRef] [Green Version]
- Crabbé, A.; De Boever, P.; Van Houdt, R.; Moors, H.; Mergeay, M.; Cornelis, P. Use of the Rotating Wall Vessel Technology to Study the Effect of Shear Stress on Growth Behaviour of Pseudomonas Aeruginosa PA01. Environ. Microbiol. 2008, 10, 2098–2110. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Wang, Q.; Ge, P.; Woo, P.C.Y.; Yan, J.; Zhao, Y.; Gao, G.F.; Liu, C.H.; Liu, C. Genomic and Transcriptomic Analysis of NDM-1 Klebsiella Pneumoniae in Spaceflight Reveal Mechanisms Underlying Environmental Adaptability. Sci. Rep. 2014, 4, 6216. [Google Scholar] [CrossRef] [Green Version]
- Barrientos-Moreno, L.; Molina-Henares, M.A.; Ramos-González, M.I.; Espinosa-Urgel, M. Arginine as an Environmental and Metabolic Cue for Cyclic Diguanylate Signalling and Biofilm Formation in Pseudomonas Putida. Sci. Rep. 2020, 10, 13623. [Google Scholar] [CrossRef]
- Jakubovics, N.S.; Robinson, J.C.; Samarian, D.S.; Kolderman, E.; Yassin, S.A.; Bettampadi, D.; Bashton, M.; Rickard, A.H. Critical Roles of Arginine in Growth and Biofilm Development by Streptococcus Gordonii. Mol. Microbiol. 2015, 97, 281–300. [Google Scholar] [CrossRef]
- Everett, J.; Turner, K.; Cai, Q.; Gordon, V.; Whiteley, M.; Rumbaugh, K. Arginine Is a Critical Substrate for the Pathogenesis of Pseudomonas Aeruginosa in Burn Wound Infections. mBio 2017, 8, e02160-16. [Google Scholar] [CrossRef] [Green Version]
- Vroom, M.M.; Rodriguez-Ocasio, Y.; Lynch, J.B.; Ruby, E.G.; Foster, J.S. Modeled Microgravity Alters Lipopolysaccharide and Outer Membrane Vesicle Production of the Beneficial Symbiont Vibrio Fischeri. NPJ Microgravity 2021, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, W.L.; Moeller, R.; Horneck, G. Transcriptomic Responses of Germinating Bacillus Subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT. Astrobiology 2012, 12, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Mastroleo, F.; van Houdt, R.; Atkinson, S.; Mergeay, M.; Hendrickx, L.; Wattiez, R.; Leys, N. Modelled Microgravity Cultivation Modulates N-Acylhomoserine Lactone Production in Rhodospirillum Rubrum S1H Independently of Cell Density. Microbiology 2013, 159, 2456–2466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, D.; Zhu, Y.; An, L.; Liu, J.; Su, L.; Guo, Y.; Chen, Z.; Wang, Y.; Wang, L.; Wang, J.; et al. A Multi-Omic Analysis of an Enterococcus Faecium Mutant Reveals Specific Genetic Mutations and Dramatic Changes in MRNA and Protein Expression. BMC Microbiol. 2013, 13, 304. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Chang, D.; Xu, H.; Chen, J.; Su, L.; Guo, Y.; Chen, Z.; Wang, Y.; Wang, L.; Wang, J.; et al. Impact of a Short-Term Exposure to Spaceflight on the Phenotype, Genome, Transcriptome and Proteome of Escherichia coli. Int. J. Astrobiol. 2015, 14, 435–444. [Google Scholar] [CrossRef]
- Demain, A.L.; Fang, A. The Natural Functions of Secondary Metabolites. Adv. Biochem. Eng. Biotechnol. 2000, 69, 1–39. [Google Scholar] [CrossRef]
- Craney, A.; Ozimok, C.; Pimentel-Elardo, S.M.; Capretta, A.; Nodwell, J.R. Chemical Perturbation of Secondary Metabolism Demonstrates Important Links to Primary Metabolism. Chem. Biol. 2012, 19, 1020–1027. [Google Scholar] [CrossRef] [Green Version]
- Price-Whelan, A.; Dietrich, L.E.P.; Newman, D.K. Pyocyanin Alters Redox Homeostasis and Carbon Flux through Central Metabolic Pathways in Pseudomonas Aeruginosa PA14. J. Bacteriol. 2007, 189, 6372–6381. [Google Scholar] [CrossRef] [Green Version]
- Price-Whelan, A.; Dietrich, L.E.P.; Newman, D.K. Rethinking “secondary” Metabolism: Physiological Roles for Phenazine Antibiotics. Nat. Chem. Biol. 2006, 2, 71–78. [Google Scholar] [CrossRef]
- Dietrich, L.E.P.; Teal, T.K.; Price-Whelan, A.; Dianne, K. Newman Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria Lars. Science 2008, 321, 1203–1206. [Google Scholar] [CrossRef] [Green Version]
- Santamaria, G.; Liao, C.; Wang, Z.; Rhee, K.; Pinto, F.; Yan, J.; Xavier, J.B. Evolution and Regulation of Microbial Secondary Metabolism. bioRxiv 2021, 1–64. [Google Scholar] [CrossRef]
- Xu, F.; Wu, Y.; Zhang, C.; Davis, K.M.; Moon, K.; Leah, B.; Bushin, M.R.S. A Genetics-Free Method for High-Throughput Discovery of Cryptic Microbial Metabolites. Nat. Chem. Biol. 2019, 15, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, N.; Eliasson, A.; Nielsen, J. Control of Fluxes towards Antibiotics and the Role of Primary Metabolism in Production of Antibiotics. Adv. Biochem. Eng. Biotechnol. 2004, 88, 137–178. [Google Scholar] [CrossRef] [PubMed]
- Yoon, V.; Nodwell, J.R. Activating Secondary Metabolism with Stress and Chemicals. J. Ind. Microbiol. Biotechnol. 2014, 41, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.; Pierson, D.L.; Mishra, S.K.; Koenig, D.W.; Demain, A.L. Gramicidin S Production by Bacillus Brevis in Simulated Microgravity. Curr. Microbiol. 1997, 34, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.; Pierson, D.L.; Mishra, S.K.; Koenig, D.W.; Demain, A.L. Secondary Metabolism in Simulated Microgravity: β-Lactam Production by Streptomyces Clavuligerus. J. Ind. Microbiol. Biotechnol. 1997, 18, 22–25. [Google Scholar] [CrossRef]
- Fang, A.; Pierson, D.L.; Mishra, S.K.; Demain, A.L. Growth of Streptomyces Hygroscopicus in Rotating-Wall Bioreactor under Simulated Microgravity Inhibits Rapamycin Production. Appl. Microbiol. Biotechnol. 2000, 54, 33–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demain, A.L.; Fang, A. Secondary Metabolism in Simulated Microgravity. Chem. Rec. 2001, 1, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Luo, A.; Gao, C.; Song, Y.; Tan, H.; Liu, Z. Biological Responses of a Streptomyces Strain Producing-Nikkomycin to Space Flight. Space Med. Med. Eng. 1998, 11, 411–414. [Google Scholar]
- Steinbach, W.J.; Stevens, D.A. Review of Newer Antifungal and Immunomodulatory Strategies for Invasive Aspergillosis. Clin. Infect. Dis. 2003, 37, 157–187. [Google Scholar] [CrossRef]
- Lam, K.S.; Gustavson, D.R.; Pirnik, D.L.; Pack, E.; Bulanhagui, C.; Mamber, S.W.; Forenza, S.; Stodieck, L.S.; Klaus, D.M. The Effect of Space Flight on the Production of Actinomycin D by Streptomyces Plicatus. J. Ind. Microbiol. Biotechnol. 2002, 29, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Benoit, M.R.; Li, W.; Stodieck, L.S.; Lam, K.S.; Winther, C.L.; Roane, T.M.; Klaus, D.M. Microbial Antibiotic Production Aboard the International Space Station. Appl. Microbiol. Biotechnol. 2006, 70, 403–411. [Google Scholar] [CrossRef] [PubMed]
- De Gelder, J.; Vandenabeele, P.; De Boever, P.; Mergeay, M.; Moens, L.; De Vos, P. Raman Spectroscopic Analysis of Cupriavidus Metallidurans LMG 1195 (CH34) Cultured in Low-Shear Microgravity Conditions. Microgravity Sci. Technol. 2009, 21, 217–223. [Google Scholar] [CrossRef]
- Anderson, A.J.; Dawes, E.A. Occurrence, Metabolism, Metabolic Role, and Industrial Uses of Bacterial Polyhydroxyalkanoates. Microbiol. Rev. 1990, 54, 450–472. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.; Wang, G.; Hao, Z.; An, Y. Simulated Microgravity Alters Growth and Microcystin Production in Microcystis Aeruginosa (Cyanophyta). Toxicon 2010, 56, 1–7. [Google Scholar] [CrossRef]
- Adams, D.G.; Duggan, P.S. Cyanobacteria-Bryophyte Symbioses. J. Exp. Bot. 2008, 59, 1047–1058. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Liu, N.; Rong, X.; Ruan, J.; Huang, Y. Effects of Simulated Microgravity and Spaceflight on Morphological Differentiation and Secondary Metabolism of Streptomyces Coelicolor A3(2). Appl. Microbiol. Biotechnol. 2015, 99, 4409–4422. [Google Scholar] [CrossRef]
- Fang, A.; Pierson, D.L.; Koenig, D.W.; Mishra, S.K.; Demain, A.L. Effect of Simulated Microgravity and Shear Stress on Microcin B17 Production by Escherichia coli and on Its Excretion into the Medium. Appl. Environ. Microbiol. 1997, 63, 4090–4092. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Fang, A.; Pierson, D.L.; Mishra, S.K.; Demain, A.L. Shear Stress Enhances Microcin B17 Production in a Rotating Wall Bioreactor, but Ethanol Stress Does Not. Appl. Microbiol. Biotechnol. 2001, 56, 384–387. [Google Scholar] [CrossRef]
- Baral, B.; Akhgari, A.; Metsä-Ketelä, M. Activation of Microbial Secondary Metabolic Pathways: Avenues and Challenges. Synth. Syst. Biotechnol. 2018, 3, 163–178. [Google Scholar] [CrossRef]
- Fewer, D.P.; Metsä-Ketelä, M. A Pharmaceutical Model for the Molecular Evolution of Microbial Natural Products. FEBS J. 2020, 287, 1429–1449. [Google Scholar] [CrossRef] [PubMed]
- Bochkov, D.V.; Sysolyatin, S.V.; Kalashnikov, A.I.; Surmacheva, I.A. Shikimic Acid: Review of Its Analytical, Isolation, and Purification Techniques from Plant and Microbial Sources. J. Chem. Biol. 2012, 5, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T. A modification of the method for determining the production of indol by bacteria. J. Exp. Med. 1897, 2, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Miziorko, H.M. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch. Biochem. Biophys. 2011, 505, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Thirumurugan, D.; Cholarajan, A.; Raja, S.S.S.; Vijayakumar, R. An Introductory Chapter: Secondary Metabolites. In Secondary Metabolites—Sources and Applications; IntechOpen: London, UK, 2018; pp. 3–22. [Google Scholar]
- Richardson, A.R.; Somerville, G.A.; Sonenshein, A.L. Regulating the Intersection of Metabolism and Pathogenesis in Gram-Positive Bacteria. Microbiol. Spectr. 2015, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Koppisch, A.T.; Khosla, C. Structure-Based Mutagenesis of the Malonyl-CoA:Acyl Carrier Protein Transacylase from Streptomyces Coelicolor. Biochemistry 2003, 42, 11057–11064. [Google Scholar] [CrossRef]
- Huangfu, J.; Zhang, G.; Li, J.; Li, C. Advances in Engineered Microorganisms for Improving Metabolic Conversion via Microgravity Effects. Bioengineered 2015, 6, 251–255. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, G.; Curtis, P.D. The Impacts of Microgravity on Bacterial Metabolism. Life 2022, 12, 774. https://doi.org/10.3390/life12060774
Sharma G, Curtis PD. The Impacts of Microgravity on Bacterial Metabolism. Life. 2022; 12(6):774. https://doi.org/10.3390/life12060774
Chicago/Turabian StyleSharma, Gayatri, and Patrick D. Curtis. 2022. "The Impacts of Microgravity on Bacterial Metabolism" Life 12, no. 6: 774. https://doi.org/10.3390/life12060774
APA StyleSharma, G., & Curtis, P. D. (2022). The Impacts of Microgravity on Bacterial Metabolism. Life, 12(6), 774. https://doi.org/10.3390/life12060774