Biogas Production Potential of Thermophilic Anaerobic Biodegradation of Organic Waste by a Microbial Consortium Identified with Metagenomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bioreactor Design and Anaerobic Biodegradation Performance
2.2. Analytical Methods
2.3. Metagenome’s Sequencing and Bioinformatics Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hööka, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Competitive liquid biofuels from biomass. Appl. Energy 2011, 88, 17–28. [Google Scholar] [CrossRef]
- Kralova, I.; Sjöblom, J. Biofuels–Renewable Energy Sources: A Review. J. Dispers. Sci. Technol. 2010, 31, 409–425. [Google Scholar] [CrossRef]
- Moghaddam, E.A.; Ahlgren, S.; Hulteberg, C.; Nordberg, Å. Energy balance and global warming potential of biogas-based fuels from a life cycle perspective. Fuel Proc. Technol. 2015, 132, 74–82. [Google Scholar] [CrossRef]
- Saghir, M.; Zafar, S.; Tahir, A.; Ouadi, M.; Siddique, B.; Hornung, A. Unlocking the potential of biomass energy in Pakistan. Front. Energy Res. 2019, 7, 24. [Google Scholar] [CrossRef]
- Dahlgren, S. Biogas-based fuels as renewable energy in the transport sector: An overview of the potential of using CBG, LBG and other vehicle fuels produced from biogas. Biofuels 2020, 13, 587–599. [Google Scholar] [CrossRef]
- Ziganshin, A.M.; Liebetrau, J.; Pröter, J.; Kleinsteuber, S. Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl. Microbiol. Biotechnol. 2013, 97, 5161–5174. [Google Scholar] [CrossRef]
- Labatut, R.A.; Angenent, L.T.; Scott, N.R. Conventional mesophilic vs. thermophilic anaerobic digestion: A trade-off between performance and stability? Water Res. 2014, 15, 249–258. [Google Scholar] [CrossRef]
- Sawatdeenarunat, C.; Surendra, K.C.; Takara, D.; Oechsner, H.; Khanal, S.K. Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresour. Technol. 2015, 178, 178–186. [Google Scholar] [CrossRef]
- Passoth, V.; Sandgren, M. Biofuel production from straw hydrolysates: Current achievements and perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 5105–5116. [Google Scholar] [CrossRef] [Green Version]
- Barakat, A.; Chuetor, S.; Monlau, F.; Solhy, A.; Rouau, X. Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis. Appl. Energy 2014, 113, 97–105. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Li, B.; Patel, K.; Wang, L.B. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woody Biomass for Energy. NGO Concerns and Recommendations. Available online: http//Biomass_Programme_EN.pdf (accessed on 16 December 2021).
- Singh, A.; Kuila, A.; Adak, S.; Bishai, M.; Banerjee, R. Utilization of vegetable wastes for bioenergy generation. Agric. Res. 2012, 1, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Weiland, P. Biogas production: Current state and perspective. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Moset, V.; Poulsen, M.; Wahid, R.; Hojberg, O.; Moller, H.B. Mesophilic versus thermophilic anaerobic digestion of cattle manure: Methane productivity and microbial ecology. Microb. Biotechnol. 2015, 8, 787–800. [Google Scholar] [CrossRef]
- Riggio, S.; Hernandéz-Shek, M.A.; Torrijos, M.; Vives, G.; Esposito, G.; van Hullebusch, E.D.; Steyer, J.P.; Escudié, R. Comparison of the mesophilic and thermophilic anaerobic digestion of spent cow bedding in leach-bed reactors. Bioresour. Technol. 2017, 234, 466–471. [Google Scholar] [CrossRef]
- Böske, J.; Wirth, B.; Garlipp, F.; Mumme, J.; Van den Weghe, H. Upflow anaerobic solidstate (UASS) digestion of horse manure: Thermophilic vs. mesophilic performance. Bioresour. Technol. 2015, 175, 8–16. [Google Scholar] [CrossRef]
- Gómez, X.; Blanco, D.; Lobato, A.; Calleja, A.; Martínez-Núñez, F.; Martin-Villacorta, J. Digestion of cattle manure under mesophilic and thermophilic conditions: Characterization of organic matter applying thermal analysis and 1H NMR. Biodegradation 2011, 22, 623–635. [Google Scholar] [CrossRef]
- Updegraff, D.M. Semimicro determination of cellulose in biological materials. Anal. Biochem. 1969, 3, 420–424. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Waste and Wastewater APHA; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Pausan, M.R.; Csorba, C.; Singer, G.; Till, H.; Schöpf, V.; Santigli, E.; Klug, B.; Högenauer, C.; Blohs, M.; Moissl-Eichinger, C. Exploring the Archaeome: Detection of Archaeal Signatures in the Human Body. Front. Microbiol. 2019, 10, 2796. [Google Scholar] [CrossRef] [Green Version]
- Novakovic, J.; Kontogianni, N.; Barampouti, E.M. Towards upscaling the valorization of wheat straw residues: Alkaline pretreatment using sodium hydroxide, enzymatic hydrolysis and biogas production. Environ. Sci. Pollut. Res. 2021, 28, 24486–24498. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.F.; Parsin, S.; Lüdtke, O. Biogas production from straw—The challenge feedstock pretreatment. Biomass Convers. Biorefinery 2020, 12, 379–402. [Google Scholar] [CrossRef]
- Simeonov, I.; Denchev, D.; Kabaivanova, L.; Kroumova, E.; Chorukova, E.; Hubenov, V.; Mihailova, S. Different types of pre-treatment of lignocellulosic wastes for methane production. Bulg. Chem. Commun. 2017, 49, 430–435. [Google Scholar]
- Hubenov, V.; Carcioch, R.A.; Ivanova, J.; Vasileva, I.; Dimitrov, K.; Simeonov, I.; Kabaivanova, L. Biomethane production using ultrasound pre-treated maize stalks with subsequent microalgae cultivation. Biotechnol. Biotechnol. Equip. 2020, 34, 800–809. [Google Scholar] [CrossRef]
- Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J. Radiat. Res. Appl. Sci. 2014, 7, 163–173. [Google Scholar] [CrossRef]
- Zhu, L.; O’Dwyer, J.; Chang, V.; Granda, C.; Holtzapple, M. Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 2008, 99, 3817–3828. [Google Scholar] [CrossRef]
- Sorensen, T.; Cruys-Bagger, N.; Windahl, M.; Badino, S.; Borch, K.; Westh, P. Temperature Effects on Kinetic Parameters and Substrate Affinity of Cel7A Cellobiohydrolases. J. Biol. Chem. 2015, 290, 22193–22202. [Google Scholar] [CrossRef] [Green Version]
- Ning, X.; Shixun, L.; Fengxue, X.; Jie, Z.; Honghua, J.; Jiming, X.; Min, J.; Weiliang, D. Biomethane Production From Lignocellulose: Biomass Recalcitrance and Its Impacts on Anaerobic Digestion. Front. Bioeng. Biotechnol. 2019, 7, 191. [Google Scholar] [CrossRef]
- Tu, M.; Pan, X.; Saddler, J.N. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J. Agric. Food. Chem. 2009, 57, 7771–7778. [Google Scholar] [CrossRef]
- Shi, X.; Guo, X.; Zuo, J.; Wang, Y.; Zhang, M. A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts. Waste Manag. 2018, 75, 261–269. [Google Scholar] [CrossRef]
- Suhartini, S.; Heavena, S.; Banks, C.J. Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: Performance, dewaterability and foam control. Bioresour. Technol. 2014, 152, 202–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poh, P.E.; Chong, M.F. Biomethanation of Palm Oil Mill Effluent (POME) with a thermophilic mixed culture cultivated using POME as a substrate. Chem. Eng. J. 2010, 164, 146–154. [Google Scholar] [CrossRef]
- Murto, M.; Björnsson, L.; Mattiasson, B. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J. Environ. Manag. 2004, 70, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Speece, R.E.; Boonyakitsombut, S.; Kim, M.; Azbar, N.; Ursillo, P. Overview of Anaerobic Treatment: Thermophilic and Propionate Implications Water Environment Research; Wiley: Hoboken, NJ, USA, 2006; Volume 78, pp. 460–473. Available online: https://www.jstor.org/stable/25053534 (accessed on 17 April 2022).
- Aitken, M.D.; Walters, G.W.; Crunk, P.L.; Willis, J.L.; Farrell, J.B.; Schafer, P.L.; Arnet, C.; Turner, B.G. Laboratory Evaluation of Thermophilic-Anaerobic Digestion to Produce Class A Biosolids. 1. Stabilization Performance of a Continuous-Flow Reactor at Low Residence Time. Water Environ. Res. 2005, 77, 3019–3027. [Google Scholar] [CrossRef] [PubMed]
- Cerón-Vivas, A.; Cáceres, K.T.; Rincón, A.; Cajigas, Á.A. Influence of pH and the C/N ratio on the biogas production of wastewater. Rev. Fac. De Ing. Univ. De Antioq. 2019, 92, 70–79. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The anaerobic digestion of solid organic waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Grim, J.; Malmros, P.; Schnürer, A.; Nordberg, Å. Comparison of pasteurization and integrated thermophilic sanitation at a full-scale biogas plant—Heat demand and biogas production. Energy 2015, 79, 419–427. [Google Scholar] [CrossRef]
- Weitemeyer, S.; Kleinhans, D.; Vogt, T.; Agert, C. Integration of Renewable Energy Sources in future power systems: The role of storage. Renew. Energy 2015, 75, 14–20. [Google Scholar] [CrossRef] [Green Version]
- De Wit, M.; Faaij, A. European biomass resource potential and costs. Biomass Bioenergy 2010, 34, 188–202. [Google Scholar] [CrossRef]
- Seruga, P.; Krzywonos, M.; Palusza, Z.; Urbanowska, A.; Pawlak-Kruczek, H.; Niedzwiecki, Ł.; Pinkowska, H. Pathogen Reduction Potential in Anaerobic Digestion of Organic Fraction of Municipal Solid Waste and Food Waste. Molecules 2020, 25, 275. [Google Scholar] [CrossRef] [Green Version]
- Börjesson, P.; Mattiasson, B. Biogas as a resource-efficient vehicle fuel. Trends Biotechnol. 2008, 26, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Kaldis, F.; Cysneiros, D.; Day, J.; Karatzas, K.-A.G. Chatzifragkou A, Anaerobic Digestion of Steam-Exploded Wheat Straw and Co-Digestion Strategies for Enhanced Biogas Production. Appl. Sci. 2020, 10, 8284. [Google Scholar] [CrossRef]
- Anukam, A.; Mohammadi, A.; Naqvi, M.; Granström, K. A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes 2019, 7, 504. [Google Scholar] [CrossRef] [Green Version]
- Bertucci, M.; Calusinska, M.; Goux, X.; Rouland-Lefèvre, C.; Untereiner, B.; Ferrer, P.; Gerin, P.A.; Delfosse, P. Carbohydrate Hydrolytic Potential and Redundancy of an Anaerobic Digestion Microbiome Exposed to Acidosis, as Uncovered by Metagenomics. Appl. Environ. Microbiol. 2019, 85, e00895-19. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Liu, J.; Wang, C.; Wang, C.; Zhao, X.; Yin, F.; Zhang, W. Long-Term Biocatalytic Methanation of Hydrogen and Carbon Dioxide Based on Closed Nutrient Recycling and Microbial Community Succession. SSRN eJournal 2022, 25. [Google Scholar] [CrossRef]
- Darcy, T.J.; Sandman, K.; Reeve, J.N. Methanobacterium formicicum, a mesophilic methanogen, contains three HFo histones. J. Bacteriol. 1995, 177, 858–860. [Google Scholar] [CrossRef] [Green Version]
- Kougias, P.G.; Treu, L.; Benavente, D.P.; Boe, K.; Campanaro, S.; Angelidaki, I. Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresour. Technol. 2017, 225, 429–437. [Google Scholar] [CrossRef]
- Rachbauer, L.; Beyer, R.; Bochmann, G.; Fuchs, W. Characteristics of adapted hydrogenotrophic community during biomethanation. Sci. Total Environ. 2017, 595, 912–919. [Google Scholar] [CrossRef]
- Savvas, S.; Donnelly, J.; Patterson, T.; Chong, Z.S.; Esteves, S.R. Biological methanation of CO2 in a novel biofilm plug-flow reactor: A high rate and low parasitic energy process. Appl. Energy 2017, 202, 238–247. [Google Scholar] [CrossRef]
- Demirel, B.; Scherer, P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Biotechnol. 2008, 7, 173–190. [Google Scholar] [CrossRef]
- Lee, M.; Hidaka, T.; Tsuno, H. Effect of temperature on performance and microbial diversity in hyperthermophilic digester system fed with kitchen garbage. Bioresour. Technol. 2008, 99, 6852–6860. [Google Scholar] [CrossRef] [PubMed]
- Kabaivanova, L.; Hubenov, V.; Dimitrova, L.; Simeonov, I.; Wang, H.; Petrova, P. Archaeal and Bacterial Content in a Two-Stage Anaerobic System for Efficient Energy Production from Agricultural Wastes. Molecules 2022, 27, 1512. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, K.; Xia, Y.; Lau, F.; Tang, D.; Fung, W.; Fang, H.; Zhang, T. Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. Appl. Microbiol. Biotechnol. 2014, 98, 5709–5718. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, J.; Vasileva, I.; Kabaivanova, L. Enhancement of Algal Biomass Accumulation Using Undiluted Anaerobic Digestate. Int. J. Pharma Med. Biol. Sci. 2020, 9, 111–116. [Google Scholar] [CrossRef]
- Vasileva, I.; Ivanova, J.; Angelova, L. Urea from waste waters—Perspective nitrogen and carbon source for green algae Scenedesmus sp. cultivation. J. Int. Sci. Publ. 2016, 10, 311–319. [Google Scholar]
- Lošák, T.; Hlušek, J.; Bělíková, H.; Vítězová, M.; Vítěz, T.; Antonkiewicz, J. What is more suitable for kohlrabi fertilization—Digestate or mineral fertilizers? Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 787–791. [Google Scholar] [CrossRef] [Green Version]
Parameter | Wheat Straw | Corn Stalks |
---|---|---|
TS, % | 93.1 ± 0.05 | 95.0 ± 0.05 |
VS, % | 88.4 ± 0.05 | 89.8 ± 0.05 |
Total nitrogen, g/L | 1.1 ± 0.05 | 0.92 ± 0.05 |
Proteins, g/L | 6.5 ± 0.05 | 4.0 ± 0.05 |
Cellulose, % VS | 32–38 ± 0.05 | 26–37 ± 0.05 |
Hemicellulose, % VS | 21–28 ± 0.05 | 22–29 ± 0.05 |
Lignin, % VS | 15–20 ± 0.05 | 17–23 ± 0.05 |
Samples | Element (%) | ||
---|---|---|---|
Substrate | Carbon, C | Nitrogen, N | C/N Ratio |
Loading 30 g/L | 42.18 | 2.31 | 18.26 |
Loading 40 g/L | 42.41 | 2.27 | 18.68 |
Loading 45 g/L | 43.06 | 2.29 | 18.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabaivanova, L.; Petrova, P.; Hubenov, V.; Simeonov, I. Biogas Production Potential of Thermophilic Anaerobic Biodegradation of Organic Waste by a Microbial Consortium Identified with Metagenomics. Life 2022, 12, 702. https://doi.org/10.3390/life12050702
Kabaivanova L, Petrova P, Hubenov V, Simeonov I. Biogas Production Potential of Thermophilic Anaerobic Biodegradation of Organic Waste by a Microbial Consortium Identified with Metagenomics. Life. 2022; 12(5):702. https://doi.org/10.3390/life12050702
Chicago/Turabian StyleKabaivanova, Lyudmila, Penka Petrova, Venelin Hubenov, and Ivan Simeonov. 2022. "Biogas Production Potential of Thermophilic Anaerobic Biodegradation of Organic Waste by a Microbial Consortium Identified with Metagenomics" Life 12, no. 5: 702. https://doi.org/10.3390/life12050702
APA StyleKabaivanova, L., Petrova, P., Hubenov, V., & Simeonov, I. (2022). Biogas Production Potential of Thermophilic Anaerobic Biodegradation of Organic Waste by a Microbial Consortium Identified with Metagenomics. Life, 12(5), 702. https://doi.org/10.3390/life12050702