Soil Organic Carbon Mineralization and Its Temperature Sensitivity under Different Substrate Levels in the Mollisols of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Experimental Design
2.3. Soil Sampling and Preparation
2.4. Laboratory Incubation Experiment
2.5. CO2 Production
2.6. Evaluations and Calculations
2.7. Data Analysis
3. Results
3.1. Changes in Cumulative CO2 Production under Different SOC Contents at 5, 15, 25 and 35 °C
3.2. Characteristics of the Q10 Value under Different SOC Contents
3.3. Key Factors That Drive Changes in SOC Mineralization
4. Discussion
4.1. Effects of SOC Contents and Temperature on SOC Mineralization
4.2. Influences of SOC Contents on the Temperature Sensitivity of SOC Mineralization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doetter, S.; Stevens, A.; Six, J.; Merckx, R.; Van, O.K.; Pinto, M.C.; Casanova-Katny, A.; Muñoz, C.; Boudin, M.; Venegas, E.Z.; et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 2015, 8, 780–784. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.B.; Frieler, K.; Knutti, R.; Allen, M.R. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 2009, 458, 1158–1162. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, W.H.; Andrews, J.A. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Cambule, A.H.; Rossiter, D.G.; Stoorvogel, J.J.; Smaling, E.M.A. Soil organic carbon stocks in the Limpopo National Park, Mozambique: Amount, spatial distribution and uncertainty. Geoderma 2014, 213, 46–56. [Google Scholar] [CrossRef]
- Wang, S.; Xu, L.; Zhuang, Q.L.; He, N.P. Investigating the spatio-temporal variability of soil organic carbon stocks in different ecosystems of China. Sci. Total. Environ. 2021, 758, 143644. [Google Scholar] [CrossRef]
- Deng, B.L.; Yuan, X.; Siemann, E.; Wang, S.L.; Fang, H.F.; Wang, B.H.; Gao, Y.; Shad, N.; Liu, X.J.; Zhang, W.Y.; et al. Feedstock particle size and pyrolysis temperature regulate effects of biochar on soil nitrous oxide and carbon dioxide emissions. Waste Manag. 2021, 120, 33–40. [Google Scholar] [CrossRef]
- Moonis, M.; Lee, J.; Jin, H.; Kim, D.G.; Park, J.H. Effects of warming, wetting and nitrogen addition on substrate-induced respiration and temperature sensitivity of heterotrophic respiration in a temperate forest soil. Pedosphere 2021, 31, 363–372. [Google Scholar] [CrossRef]
- Bahn, M.; Rodeghiero, M.; Anderson-Dunn, M.; Dore, S.; Gimeno, C.; Drösler, M.; Jones, S. Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 2008, 11, 1352–1367. [Google Scholar] [CrossRef] [Green Version]
- Mande, H.K.; Abdullah, A.M.; Aris, A.Z.; Nuruddin, A.A. A comparison of soil CO2 efflux rate in young rubber plantation, oil palm plantation, recovering and primary forest ecosystems of Malaysia. Pol. J. Environ. Stud. 2014, 23, 1649–1657. [Google Scholar]
- Liu, C.; Chu, W.; Li, H.; Boyd, S.A.; Teppen, B.J.; Mao, J.; Lehmann, J.; Zhang, W. Quantification and characterization of dissolved organic carbon from biochars. Geoderma 2019, 335, 161–169. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J.L. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review. Environ. Sci. Technol. 2018, 52, 5027–5047. [Google Scholar] [CrossRef] [PubMed]
- Hartley, I.P.; Ineson, P. Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil. Biol. Biochem. 2008, 40, 1567–1574. [Google Scholar] [CrossRef] [Green Version]
- Carney, K.M.; Hungate, B.A.; Drake, B.G.; Megonigal, J.P. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc. Natl. Acad. Sci. USA 2007, 104, 4990–4995. [Google Scholar] [CrossRef] [Green Version]
- Giardina, C.P.; Ryan, M.G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 2000, 404, 858–861. [Google Scholar] [CrossRef]
- Dai, S.S.; Li, L.J.; Ye, R.; Zhu-Barker, X.; Horwath, W.R. The temperature sensitivity of organic carbon mineralization is affected by exogenous carbon inputs and soil organic carbon content. Eur. J. Soil. Biol. 2017, 81, 69–75. [Google Scholar] [CrossRef]
- Hopkins, F.M.; Filley, T.R.; Gleixner, G.; Lange, M.; Top, S.M.; Trumbore, S.E. Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil. Biol. Biochem. 2014, 76, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Nie, M.; Pendall, E.; Bell, C.; Gasch, C.K.; Raut, S.; Tamang, S.; Wallenstein, M.D. Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol. Lett. 2012, 16, 234–241. [Google Scholar] [CrossRef]
- Melillo, J.M.; Steudler, P.A.; Aber, J.D.; Newkirk, K.; Lux, H.; Bowles, F.P.; Catricala, C.; Magill, A.; Ahrens, T.; Morrisseau, S. Soil warming and carbon-cycle feedbacks to the climate system. Science 2002, 298, 2173–2176. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, W.J. Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chin. Sci. Bull. 2006, 51, 1785–1803. [Google Scholar] [CrossRef]
- Song, G.; Li, L.; Pan, G.; Zhang, Q. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry 2005, 74, 47–62. [Google Scholar] [CrossRef]
- Nelson, D.; Sommers, L. Total Carbon, Organic Carbon and Organic Matter; ASA Publication: Madison, WI, USA, 1982; pp. 539–577. [Google Scholar]
- Institute of Soil Science, Chinese Academy Science (ISSCAS). Physical and Chemical Analysis Methods of Soils; Shanghai Science Technology Press: Shanghai, China, 1978; pp. 2–145. [Google Scholar]
- Alef, K.; Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry; Academic Press: London, UK, 1995. [Google Scholar]
- Cotrufo, M.; Ineson, P. Effects of enhanced atmospheric CO2 and nutrient supply on the quality and subsequent decomposition of fine roots of Betula pendula Roth. and Picea Sitchensis (Bong.) Carr. Plant Soil 1995, 170, 267–277. [Google Scholar] [CrossRef]
- Rey, A.; Pegoraro, E.; Tedeschi, V.; Parri, I.D.; Jarvis, P.G.; Valentini, R. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global. Change. Biol. 2002, 8, 851–866. [Google Scholar] [CrossRef]
- Xu, X.; Inubushi, K.; Sakamoto, K. Effect of vegetations and temperature on microbial biomass carbon and metabolic quotients of temperate volcanic forest soils. Geoderma 2006, 136, 310–319. [Google Scholar] [CrossRef]
- Leifeld, J.; Fuhrer, J. The Temperature Response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry 2005, 75, 433–453. [Google Scholar] [CrossRef]
- Sofi, J.A.; Lone, A.H.; Canie, M.A.; Dar, N.A.; Bhat, S.A.; Mukhtar, M.; Dar, M.A.; Ramzan, S. Soil Microbiological Activity and Carbon Dynamics in the Current Climate Change Scenarios: A Review. Pedosphere 2016, 26, 577–591. [Google Scholar] [CrossRef]
- Wixon, D.L.; Balser, T.C. Toward conceptual clarity: PLFA in warmed soils. Soil. Biol. Biochem. 2013, 57, 769–774. [Google Scholar] [CrossRef]
- Sarmiento, J.L.; Gruber, N. Sinks for anthropogenic carbon. Phys. Today 2002, 55, 30–36. [Google Scholar] [CrossRef]
- Kimetu, J.M.; Lehmann, J.; Kinyangi, J.M.; Cheng, C.H.; Thies, J.; Mugendi, D.N.; Pell, A. Soil organic C stabilization and thresholds in C saturation. Soil. Biol. Biochem. 2009, 41, 2100–2104. [Google Scholar] [CrossRef]
- Moyano, F.E.; Manzoni, S.; Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil. Biol. Biochem. 2013, 59, 72–85. [Google Scholar] [CrossRef]
- Degens, B.P.; Schipper, L.A.; Sparling, G.P.; Vojvodic-Vukovic, M. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil. Biol. Biochem. 2000, 32, 189–196. [Google Scholar] [CrossRef]
- Bao, T.L.; Gao, L.Q.; Wang, S.S.; Yang, X.Q.; Ren, W.; Zhao, Y.G. Moderate disturbance increases the PLFA diversity and biomass of the microbial community in biocrusts in the Loess Plateau region of China. Plant Soil 2020, 451, 499–513. [Google Scholar] [CrossRef]
- Li, L.J.; Han, X.Z.; You, M.Y.; Yuan, Y.R.; Ding, X.L.; Qiao, Y.F. Carbon and nitrogen mineralization patterns of two contrasting crop residues in a Mollisol: Effects of residue type and placement in soils. Eur. J. Soil Biol. 2013, 54, 1–6. [Google Scholar] [CrossRef]
- Gray, S.B.; Classen, A.T.; Kardol, P.; Yermakov, Z.; Miller, R.M. Multiple climate change factors interact to alter soil microbial community structure in an oldfield ecosystem. Soil. Sci. Soc. Am. J. 2011, 75, 2217–2226. [Google Scholar] [CrossRef] [Green Version]
- Dilly, O.; Zyakun, A. Priming effect and respiratory quotient in a Forest soil amended with glucose. Geomicrobiol. J. 2008, 25, 425–431. [Google Scholar] [CrossRef]
- Steinweg, J.M.; Plante, A.F.; Conant, R.T.; Paul, E.A.; Tanaka, D.L. Patterns of substrate utilization during long-term incubations at different temperatures. Soil. Biol. Biochem. 2008, 40, 2722–2728. [Google Scholar] [CrossRef]
- Reichstein, M.; Bednorz, F.; Broll, G.; Kätterer, T. Temperature dependence of carbon mineralisation. Soil. Biol. Biochem. 2000, 32, 947–958. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–172. [Google Scholar] [CrossRef]
Site | Coordinates | Mean Annual Temperature (°C) | Mean Annual Precipitation (mm) | Crop |
---|---|---|---|---|
Lishu | N 43°20′, E 124°28′ | 5.4 | 556.2 | Maize |
Dehui | N 44°12′, E 125°33′ | 4.5 | 457.6 | Maize |
Hailun | N 47°27′, E 126°56′ | 1.5 | 549.3 | Maize |
Bei’an | N 48°09′, E 126°44′ | 1.1 | 523.4 | Maize |
Nenjiang | N 49°08′, E 125°37′ | −0.2 | 532.1 | Maize |
Site | SOC (g kg−1) | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) | AN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) | pH | C/N |
---|---|---|---|---|---|---|---|---|---|
Lishu | 9.63 ± 2.44 a | 0.79 ± 0.03 a | 0.64 ± 0.02 a | 12.58 ± 1.69 | 97.39 ± 9.88 a | 64.10 ± 8.98 a | 145.11 ± 10.99 | 6.63 ± 0.12 a | 12.21 ± 0.89 |
Dehui | 18.56 ± 2.67 b | 1.68 ± 0.04 b | 0.84 ± 0.01 a | 12.97 ± 1.27 | 120.73 ± 14.87 a | 26.29 ± 7.31 b | 151.24 ± 9.54 | 5.95 ± 0.06 b | 11.05 ± 1.19 |
Hailun | 29.35 ± 3.56 c | 2.55 ± 0.11 c | 1.60 ± 0.03 b | 13.84 ± 2.76 | 218.00 ± 25.98 b | 57.81 ± 4.77 c | 156.77 ± 15.33 | 6.10 ± 0.02 b | 11.48 ± 2.18 |
Bei’an | 34.11 ± 2.98 c | 2.86 ± 0.08 c | 1.93 ± 0.07 bc | 14.37 ± 2.38 | 338.74 ± 19.87 c | 58.34 ± 3.99 c | 167.88 ± 14.86 | 5.42 ± 0.11 c | 11.87 ± 0.99 |
Nenjiang | 63.17 ± 4.76 d | 4.87 ± 0.13 d | 2.43 ± 0.05 c | 15.56 ± 3.04 | 366.72 ± 26.56 c | 57.15 ± 4.68 c | 163.44 ± 16.21 | 6.34 ± 0.05 a | 12.99 ± 1.21 |
Index | Factors | F Value | df | p |
---|---|---|---|---|
CO2 production | C level | 380.25 | 22 | p < 0.01 |
Soil temperature | 1126.20 | 28 | p < 0.01 | |
C level × Soil temperature | 35.30 | 19 | p < 0.01 |
SOC | TN | TP | TK | AN | AP | AK | pH | C/N | |
---|---|---|---|---|---|---|---|---|---|
Pearson Correlation | 0.936 ** | 0.927 ** | 0.847 ** | 0.915 ** | 0.896 ** | 0.194 | 0.761 * | −0.106 | 0.331 |
Sig. (2-tailed) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.241 | 0.021 | 0.389 | 0.281 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Sui, Y.; Chen, Y.; Bao, T.; Jiao, X. Soil Organic Carbon Mineralization and Its Temperature Sensitivity under Different Substrate Levels in the Mollisols of Northeast China. Life 2022, 12, 712. https://doi.org/10.3390/life12050712
Yu H, Sui Y, Chen Y, Bao T, Jiao X. Soil Organic Carbon Mineralization and Its Temperature Sensitivity under Different Substrate Levels in the Mollisols of Northeast China. Life. 2022; 12(5):712. https://doi.org/10.3390/life12050712
Chicago/Turabian StyleYu, He, Yueyu Sui, Yimin Chen, Tianli Bao, and Xiaoguang Jiao. 2022. "Soil Organic Carbon Mineralization and Its Temperature Sensitivity under Different Substrate Levels in the Mollisols of Northeast China" Life 12, no. 5: 712. https://doi.org/10.3390/life12050712
APA StyleYu, H., Sui, Y., Chen, Y., Bao, T., & Jiao, X. (2022). Soil Organic Carbon Mineralization and Its Temperature Sensitivity under Different Substrate Levels in the Mollisols of Northeast China. Life, 12(5), 712. https://doi.org/10.3390/life12050712